[go: nahoru, domu]

login
A061420
a(n) = a(ceiling((n-1)*2/3)) + 1 with a(0) = 0.
3
0, 1, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
OFFSET
0,3
COMMENTS
Least k such that f^(k)(n) = 0 where f(x) = floor(2/3*x) and f^(k+1)(x) = f(f^(k)(x)). - Benoit Cloitre, May 26 2007
Number of 3:2 compressor stages in a Wallace tree multiplier starting with (n+2) partial products. - Chinmaya Dash, Aug 18 2020
LINKS
K. A. C. Bickerstaff, M. Schulte and E. E. Swartzlander, Reduced area multipliers, Proceedings of International Conference on Application Specific Array Processors (ASAP '93), Venice, Italy, 1993, pp. 478-489. See Table 1 p. 480.
William J. Gilbert, Radix Representations of Quadratic Fields, Journal of Mathematical Analysis and Applications 83 (1981) pp 264-274. Gilbert (page 273) cites Wang and Washburn (below) in connection with the length of the base 3/2 expansion of the even positive integers.
A. M. Odlyzko and H. S. Wilf, Functional iteration and the Josephus problem, Glasgow Math. J. 33, 235-240, 1991.
E. T. H. Wang, Phillip C. Washburn, Problem E2604, American Mathematical Monthly 84 (1977) pp. 821-822.
FORMULA
a(n) = a(n-1) + 1 if n is in A061419; a(n) = a(n-1) otherwise.
From Clark Kimberling, Oct 19 2012: (Start)
a(n) = a(floor(2*n/3)) + 1, where a(0) = 0 (alternative definition).
Washburn's solution of Problem E2604 (see References) shows that (for n>0), a(n) = -floor(-L((n+1)/c)), where L is the logarithm with base 3/2 and
c = lim_{n->infinity} (2/3)^n*s(n) where s(n) = floor(3*s(n-1)/2) + 1 and s(0)=0. The editors state that "It may be interesting to know whether c is irrational or even transcendental"; c = 1.62227050288476731595695098289932... .
Odlyzko and Wilf also discuss the defining recurrence, and they, after Washburn, give a formula for the sequence using c, as in the third Mathematica program below.
(End)
EXAMPLE
a(10) = a(ceiling(9*2/3)) + 1 = a(6) + 1 = 4 + 1 = 5.
MAPLE
a:= n-> `if`(n=0, 0, a(ceil((n-1)*2/3))+1):
seq(a(n), n=0..100); # Alois P. Heinz, Oct 29 2012
MATHEMATICA
(* 1st program, using the alternative definition *)
a[0] = 0; a[n_] := a[Floor[2 n/3]] + 1;
Table[a[n], {n, 0, 120}]
(* 2nd program, using Cloitre's recurrence *)
f[x_] := Floor[2 x/3]; g[0, x_] := f[x];
g[k_, x_] := f[g[k - 1, x]];
u[n_] := Flatten[Table[g[k, n], {k, 0, 12}]]
v[n_] := First[Position[u[n], 0]];
Flatten[Table[v[n], {n, 1, 120}]]
(* 3rd program, using the constant c *)
f[n_] := -Floor[-Log[3/2, (n + 1)/1.62227050288476731595695098289932]]
Table[f[n], {n, 1, 120}]
(* Clark Kimberling, Oct 23 2012 *)
PROG
(PARI) a(n) = if(n<0, 0, s=n; c=0; while(floor(s)>0, s=floor(2/3*s); c++); c) \\ Benoit Cloitre, May 26 2007
(Magma) [IsZero(n) select 0 else Self(Floor(2*n/3)+1)+1: n in [0..90]]; // Bruno Berselli, Oct 31 2012
CROSSREFS
Cf. A029837, A061419, A083286 (the constant c).
Sequence in context: A083398 A221671 A301640 * A003057 A239308 A216256
KEYWORD
nonn
AUTHOR
Henry Bottomley, May 02 2001
STATUS
approved