OFFSET
0,3
COMMENTS
Series reversion of x(Sum_{k>=0} a(k)x^k) is x(Sum_{k>=0} A003168(k)x^k).
G.f. A(x) = Sum_{k>=0} a(k)x^k satisfies 0 = 2*x - (x + 1)*A(x) + A(x)^2.
LINKS
Foissy, Loic, Algebraic structures on double and plane posets, J. Algebr. Comb. 37, No. 1, 39-66 (2013).
FORMULA
G.f.: (1 + x + sqrt(1 - 6*x + x^2))/2. (= 1/g.f. A001003)
D-finite with recurrence: n*a(n) + 3*(-2*n + 3)*a(n-1) + (n-3)*a(n-2) = 0. - R. J. Mathar, Jul 23 2017
MATHEMATICA
ReciprocalSeries[ser_, n_] := CoefficientList[ Series[1/ser, {x, 0, n}], x];
LittleSchroeder := (1 + x - Sqrt[1 - 6 x + x^2])/(4 x); (* A001003 *)
ReciprocalSeries[LittleSchroeder, 22] (* Peter Luschny, Jan 10 2019 *)
PROG
(PARI) a(n)=polcoeff((1+x+sqrt(1-6*x+x^2+x*O(x^n)))/2, n)
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 20 2003
STATUS
approved