[go: nahoru, domu]

login
A100066
Expansion of x/((1-x)sqrt(1-4x^2)).
8
0, 1, 1, 3, 3, 9, 9, 29, 29, 99, 99, 351, 351, 1275, 1275, 4707, 4707, 17577, 17577, 66197, 66197, 250953, 250953, 956385, 956385, 3660541, 3660541, 14061141, 14061141, 54177741, 54177741, 209295261, 209295261, 810375651, 810375651
OFFSET
0,4
COMMENTS
An inverse Chebyshev transform of x/(1-x+x^2), where the Chebyshev transform of g(x) is ((1-x^2)/(1+x^2))g(x/(1+x^2)) and the inverse transform maps a g.f. A(x) to (1/sqrt(1-4x^2))A(xc(x^2)) where c(x) is the g.f. of the Catalan numbers A000108.
Hankel transform of a(n+1) is A120582. The Hankel transform of a(n) is -[x^n]x/(1+2x-4x^2). - Paul Barry, Mar 29 2010
LINKS
G. C. Greubel and Vincenzo Librandi, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi).
FORMULA
a(n) = Sum_{k=0..n} if(mod(n-k)=2, binomial(n, (n-k)/2) * 2*sin(Pi*k/3) / sqrt(3).
a(n) = Sum_{k=0..n} binomial(n, (n-k)/2)*(1+(-1)^(n-k))*sin(Pi*k/3)/sqrt(3)}.
a(n) = Sum_{k=0..n} binomial(n-1, (n-1)/2)*(1-(-1)^k)/2.
a(n+1) = Sum_{k=0..floor(n/2)} binomial(2k, k) = Sum{k=0..n} binomial(k, k/2)*(1+(-1)^k)/2.
a(2n-1) = a(2n) = A006134(n-1) = Sum_{k=0..n}( (2k)!/(k!)^2 ) for n > 0. - Alexander Adamchuk, Feb 23 2007
From Paul Barry, Mar 29 2010: (Start)
G.f.: x*(1+x)/((1-x^2)*sqrt(1-4*x^2)) = x/((1-x)*sqrt(1-4*x^2)).
E.g.f.: int(exp(x-t)*Bessel_I(0,2t),t,0,x). (End)
D-finite with recurrence: (-n+1)*a(n) + (n-1)*a(n-1) + 4*(n-2)*a(n-2) + 4*(-n+2)*a(n-3) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ (3-(-1)^n) * 2^(n+1/2) / (6*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 12 2014
MAPLE
a:=n->sum(binomial(2*j, j), j=0..n): seq(a(n/2), n=-1..33); # Zerinvary Lajos, Apr 30 2007
MATHEMATICA
CoefficientList[Series[x/((1-x)*Sqrt[1-4*x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 12 2014 *)
PROG
(PARI) Vec(x/((1-x)sqrt(1-4x^2)) + O(x^50)) \\ G. C. Greubel, Jan 30 2017
CROSSREFS
Cf. A006134.
Sequence in context: A147244 A146575 A373322 * A170832 A232281 A223743
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Nov 02 2004
STATUS
approved