OFFSET
0,1
COMMENTS
The value is in radians.
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 5.
Mircea Ivan, Problem 11592, The American Mathematical Monthly, Vol. 118, No. 7 (2011), p. 654; Arggh! Eye Factorial ... Arg(i!), Solutions to problem 11592 by Nora Thornbe, Omran Kouba and Denis Constales, ibid., Vol. 120, No. 7 (2013), p. 662-664.
Cornel Ioan Vălean, Problema 327, La Gaceta de la Real Sociedad Matemática Española, Vol. 21, No. 2 (2018), pp. 331-343.
FORMULA
Equals -arg(i*Gamma(i)), since i! = Gamma(1+i) = i*Gamma(i).
Equals lim_{n->infinity} ((Sum_{k=1..n} arctan(1/k)) - log(n)). - Jean-François Alcover, Aug 07 2014, after Steven Finch
From Amiram Eldar, Jun 12 2021: (Start)
Equals 1 - Integral_{x=0..Pi/2} frac(cot(x)) dx, where frac(x) = x - floor(x) is the fractional part of x.
Both formulae are from Vălean (2018). (End)
Equals log((Gamma(1-i)/Gamma(1+i))^(-i/2)). - Vaclav Kotesovec, Jun 12 2021
EXAMPLE
0.30164032046753319788753165779...
MATHEMATICA
RealDigits[-Arg[Gamma[1 + I]], 10, 105] // First (* Jean-François Alcover, Aug 07 2014 *)
CROSSREFS
KEYWORD
AUTHOR
Stanislav Sykora, May 29 2012
STATUS
approved