OFFSET
1,5
COMMENTS
This sequence counts polyominoes whose symmetry group has order 1.
REFERENCES
A. R. Conway and A. J. Guttmann, On two-dimensional percolation, J. Phys. A: Math. Gen. 28(1995) 891-904.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
John Mason, Table of n, a(n) for n = 1..50 (This version corrects erroneous values from a(44) onwards in previous version.)
Tomás Oliveira e Silva, Enumeration of polyominoes
T. R. Parkin, L. J. Lander, and D. R. Parkin, Polyomino Enumeration Results, presented at SIAM Fall Meeting, 1967) and accompanying letter from T. J. Lander (annotated scanned copy). See page 21.
D. H. Redelmeier, Counting polyominoes: yet another attack, Discrete Math., 36 (1981), 191-203.
D. H. Redelmeier, Table 3 of Counting polyominoes...
FORMULA
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
Extended to n=28 by Tomás Oliveira e Silva.
STATUS
editing