[go: nahoru, domu]

login
A114088 revision #10

A114088
Triangle read by rows: T(n,k) is number of partitions of n whose tail below its Durfee square has k parts (n >= 1; 0 <= k <= n-1).
40
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 5, 6, 6, 5, 3, 2, 1, 1, 1, 6, 8, 8, 7, 5, 3, 2, 1, 1, 1, 7, 10, 10, 9, 7, 5, 3, 2, 1, 1, 1, 9, 13, 13, 12, 10, 7, 5, 3, 2, 1, 1, 1, 10, 16, 17, 15, 13, 10, 7, 5, 3, 2, 1, 1, 1, 12, 20, 22, 20, 17
OFFSET
1,7
COMMENTS
From Gus Wiseman, May 21 2022: (Start)
Also the number of integer partitions of n with k parts below the diagonal. For example, the partition (3,2,2,1) has two parts (at positions 3 and 4) below the diagonal (1,2,3,4). Row n = 8 counts the following partitions:
8 71 611 5111 41111 311111 2111111 11111111
44 332 2222 22211 221111
53 422 3221 32111
62 431 3311
521 4211
Indices of parts below the diagonal are also called strong nonexcedances.
(End)
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (pp. 27-28).
G. E. Andrews and K. Eriksson, Integer Partitions, Cambridge Univ. Press, 2004 (pp. 75-78).
FORMULA
G.f. = Sum_{k>=1} q^(k^2) / Product_{j=1..k} (1 - q^j)*(1 - t*q^j).
Sum(k*T(n,k),k=0..n-1)=A114089(n).
EXAMPLE
T(7,2)=3 because we have [5,1,1], [3,2,1,1] and [2,2,2,1] (the bottom tails are [1,1], [1,1] and [2,1], respectively).
Triangle starts:
1;
1,1;
1,1,1;
2,1,1,1;
2,2,1,1,1;
3,3,2,1,1,1;
3,4,3,2,1,1,1;
MAPLE
g:=sum(z^(k^2)/product((1-z^j)*(1-t*z^j), j=1..k), k=1..20): gserz:=simplify(series(g, z=0, 30)): for n from 1 to 14 do P[n]:=coeff(gserz, z^n) od: for n from 1 to 14 do seq(coeff(t*P[n], t^j), j=1..n) od; # yields sequence in triangular form
MATHEMATICA
subdiags[y_]:=Length[Select[Range[Length[y]], #>y[[#]]&]];
Table[Length[Select[IntegerPartitions[n], subdiags[#]==k&]], {n, 1, 15}, {k, 0, n-1}] (* Gus Wiseman, May 21 2022 *)
CROSSREFS
Row sums: A000041.
Column k = 0: A003114.
Weak opposite: A115994.
Permutations: A173018, weak A123125.
Ordered: A352521, rank stat A352514, weak A352522.
Opposite ordered: A352524, first col A008930, rank stat A352516.
Weak opposite ordered: A352525, first col A177510, rank stat A352517.
Weak: A353315.
Opposite: A353318.
A000700 counts self-conjugate partitions, ranked by A088902.
A115720 counts partitions by Durfee square, rank stat A257990.
A352490 gives the (strong) nonexcedance set of A122111, counted by A000701.
Sequence in context: A114087 A215521 A008284 * A208245 A309049 A274190
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 12 2006
STATUS
editing