[go: nahoru, domu]

login
Search: a006765 -id:a006765
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of free polyominoes (or square animals) with n cells.
(Formerly M1425 N0561)
+10
195
1, 1, 1, 2, 5, 12, 35, 108, 369, 1285, 4655, 17073, 63600, 238591, 901971, 3426576, 13079255, 50107909, 192622052, 742624232, 2870671950, 11123060678, 43191857688, 168047007728, 654999700403, 2557227044764, 9999088822075, 39153010938487, 153511100594603
OFFSET
0,4
COMMENTS
For n>0, a(n) + A030228(n) = A000988(n) because the number of free polyominoes plus the number of polyominoes lacking bilateral symmetry equals the number of one-sided polyominoes. - Graeme McRae, Jan 05 2006
The possible symmetry groups of a (nonempty) polyomino are the 10 subgroups of the dihedral group D_8 of order 8: D_8, 1, Z_2 (five times), Z_4, (Z_2)^2 (twice). - Benoit Jubin, Dec 30 2008
Names for first few polyominoes: monomino, domino, tromino, tetromino, pentomino, hexomino, heptomino, octomino, enneomino, decomino, hendecomino, dodecomino, ...
Limit_{n->oo} a(n)^(1/n) = mu with 3.98 < mu < 4.64 (quoted by Castiglione et al., with a reference to Barequet et al., 2006, for the lower bound). The upper bound is due to Klarner and Rivest, 1973. By Madras, 1999, it is now known that this limit, also known as Klarner's constant, is equal to the limit growth rate lim_{n->oo} a(n+1)/a(n).
Polyominoes are worth exploring in the elementary school classroom. Students in grade 2 can reproduce the first 6 terms. Grade 3 students can explore area and perimeter. Grade 4 students can talk about polyomino symmetries.
The pentominoes should be singled out for special attention: 1) they offer a nice, manageable set that a teacher can commercially acquire without too much expense. 2) There are also deeply strategic games and perplexing puzzles that are great for all students. 3) A fraction of students will become engaged because of the beautiful solutions.
Conjecture: Almost all polyominoes are holey. In other words, A000104(n)/a(n) tends to 0 for increasing n. - John Mason, Dec 11 2021 (This is true, a consequence of Madras's 1999 pattern theorem. - Johann Peters, Jan 06 2024)
REFERENCES
S. W. Golomb, Polyominoes, Appendix D, p. 152; Princeton Univ. Pr. NJ 1994
J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.
D. A. Klarner, The Mathematical Gardner, p. 252 Wadsworth Int. CA 1981
W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
George E. Martin, Polyominoes - A Guide to Puzzles and Problems in Tiling, The Mathematical Association of America, 1996
Ed Pegg, Jr., Polyform puzzles, in Tribute to a Mathemagician, Peters, 2005, pp. 119-125.
R. C. Read, Some applications of computers in graph theory, in L. W. Beineke and R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, NY, 1978, pp. 417-444.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
John Mason, Table of n, a(n) for n = 0..50 (terms 0..45,47 from Toshihiro Shirakawa)
Z. Abel, E. Demaine, M. Demaine, H. Matsui and G. Rote, Common Developments of Several Different Orthogonal Boxes.
G. Barequet, M. Moffie, A. Ribo and G. Rote, Counting polyominoes on twisted cylinders, Integers 6 (2006), A22, 37 pp. (electronic).
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
Juris Čerņenoks and Andrejs Cibulis, Tetrads and their Counting, Baltic J. Modern Computing, Vol. 6 (2018), No. 2, 96-106.
A. Clarke, Polyominoes
A. R. Conway and A. J. Guttmann, On two-dimensional percolation, J. Phys. A: Math. Gen. 28(1995) 891-904.
I. Jensen, Enumerations of lattice animals and trees, arXiv:cond-mat/0007239 [cond-mat.stat-mech], 2000.
I. Jensen and A. J. Guttmann, Statistics of lattice animals (polyominoes) and polygons, Journal of Physics A: Mathematical and General, vol. 33, pp. L257-L263, 2000.
M. Keller, Counting polyforms.
D. A. Klarner and R. L. Rivest, A procedure for improving the upper bound for the number of n-ominoes, Canadian J. of Mathematics, 25 (1973), 585-602.
N. Madras, A pattern theorem for lattice clusters, arXiv:math/9902161 [math.PR], 1999; Annals of Combinatorics, 3 (1999), 357-384.
S. Mertens, Lattice animals: a fast enumeration algorithm and new perimeter polynomials, J. Statistical Physics, vol. 58, no. 5/6, pp. 1095-1108, Mar. 1990.
Stephan Mertens and Markus E. Lautenbacher, Counting lattice animals: A parallel attack J. Stat. Phys., vol. 66, no. 1/2, pp. 669-678, 1992.
W. R. Muller, K. Szymanski, J. V. Knop, and N. Trinajstic, On the number of square-cell configurations, Theor. Chim. Acta 86 (1993) 269-278
Joseph Myers, Polyomino tiling
Tomás Oliveira e Silva, Animal enumerations on the {4,4} Euclidean tiling [The enumeration to order 28]
T. R. Parkin, L. J. Lander, and D. R. Parkin, Polyomino Enumeration Results, presented at SIAM Fall Meeting, 1967, and accompanying letter from T. J. Lander (annotated scanned copy)
Anuj Pathania, Scalable Task Schedulers for Many-Core Architectures, Ph.D. Thesis, Karlsruher Instituts für Technologie (Germany, 2018).
Henri Picciotto, Polyomino Lessons
Jaime Rangel-Mondragón, Polyominoes and Related Families, The Mathematica Journal, Volume 9, Issue 3.
D. H. Redelmeier, Counting polyominoes: yet another attack, Discrete Math., 36 (1981), 191-203.
D. H. Redelmeier, Table 3 of Counting polyominoes...
Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
Eric Weisstein's World of Mathematics, Polyomino
Wikipedia, Polyomino
D. Xu, T. Horiyama, T. Shirakawa and R. Uehara, Common Developments of Three Incongruent Boxes of Area 30, in Proc. 12th Annual Conference, TAMC 2015, Singapore, May 18-20, 2015, LNCS Vol. 9076, pp. 236-247.
L. Zucca, Pentominoes
FORMULA
a(n) = A000104(n) + A001419(n). - R. J. Mathar, Jun 15 2014
a(n) = A006749(n) + A006746(n) + A006748(n) + A006747(n) + A056877(n) + A056878(n) + A144553(n) + A142886(n). - Andrew Howroyd, Dec 04 2018
a(n) = A259087(n) + A259088(n). - R. J. Mathar, May 22 2019
a(n) = (4*A006746(n) + 4*A006748(n) + 4*A006747(n) + 6*A056877(n) + 6*A056878(n) + 6*A144553(n) + 7*A142886(n) + A001168(n))/8. - John Mason, Nov 14 2021
EXAMPLE
a(0) = 1 as there is 1 empty polyomino with #cells = 0. - Fred Lunnon, Jun 24 2020
MATHEMATICA
(* In this program by Jaime Rangel-Mondragón, polyominoes are represented as a list of Gaussian integers. *)
polyominoQ[p_List] := And @@ ((IntegerQ[Re[#]] && IntegerQ[Im[#]])& /@ p);
rot[p_?polyominoQ] := I*p;
ref[p_?polyominoQ] := (# - 2 Re[#])& /@ p;
cyclic[p_] := Module[{i = p, ans = {p}}, While[(i = rot[i]) != p, AppendTo[ans, i]]; ans];
dihedral[p_?polyominoQ] := Flatten[{#, ref[#]}& /@ cyclic[p], 1];
canonical[p_?polyominoQ] := Union[(# - (Min[Re[p]] + Min[Im[p]]*I))& /@ p];
allPieces[p_] := Union[canonical /@ dihedral[p]];
polyominoes[1] = {{0}};
polyominoes[n_] := polyominoes[n] = Module[{f, fig, ans = {}}, fig = ((f = #1; ({f, #1 + 1, f, #1 + I, f, #1 - 1, f, #1 - I}&) /@ f)&) /@ polyominoes[n - 1]; fig = Partition[Flatten[fig], n]; f = Select[Union[canonical /@ fig], Length[#1] == n &]; While[f != {}, ans = {ans, First[f]}; f = Complement[f, allPieces[First[f]]]]; Partition[Flatten[ans], n]];
a[n_] := a[n] = Length[ polyominoes[n]];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Mar 24 2015, after Jaime Rangel-Mondragón *)
CROSSREFS
Sequences classifying polyominoes by symmetry group: A006746, A006747, A006748, A006749, A056877, A056878, A142886, A144553, A144554.
Cf. A001168 (not reduced by D_8 symmetry), A000104 (no holes), A054359, A054360, A001419, A000988, A030228 (chiral polyominoes).
See A006765 for another version.
Cf. also A000577, A000228, A103465, A210996 (bisection).
Excluding a(0), 8th and 9th row of A366766.
KEYWORD
nonn,hard,nice,core
EXTENSIONS
Extended to n=28 by Tomás Oliveira e Silva
Link updated by William Rex Marshall, Dec 16 2009
Edited by Gill Barequet, May 24 2011
Misspelling "polyominos" corrected by Don Knuth, May 03 2016
a(29)-a(45), a(47) from Toshihiro Shirakawa
a(46) calculated using values from A001168 (I. Jensen), A006748/A056877/A056878/A144553/A142886 (Robert A. Russell) and A006746/A006747 (John Mason), Nov 14 2021
STATUS
approved
Triangle read by rows: T(n,d) is the number of distinct properly d-dimensional polyominoes (or polycubes) with n cells (n >= 1, d >= 0).
+10
19
1, 0, 1, 0, 1, 1, 0, 1, 4, 2, 0, 1, 11, 11, 3, 0, 1, 34, 77, 35, 6, 0, 1, 107, 499, 412, 104, 11, 0, 1, 368, 3442, 4888, 2009, 319, 23, 0, 1, 1284, 24128, 57122, 36585, 8869, 951, 47, 0, 1, 4654, 173428, 667959, 647680, 231574, 36988, 2862, 106, 0, 1, 17072, 1262464, 7799183, 11173880, 5712765, 1297366, 146578, 8516, 235
OFFSET
1,9
LINKS
W. F. Lunnon, Counting multidimensional polyominoes. Computer Journal 18 (1975), no. 4, pp. 366-367.
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 1 4 2
0 1 11 11 3
0 1 34 77 35 6
0 1 107 499 412 104 11
0 1 368 3442 4888 2009 319 23
0 1 1284 24128 57122 36585 8869 951 47
0 1 4654 173428 667959 647680 231574 36988 2862 106
0 1 17072 1262464 7799183 11173880 5712765 1297366 146578 8516 235
...
CROSSREFS
Cf. A049429 (col. d=0 omitted), A195738 (oriented), A195739 (fixed).
Row sums give A005519. Columns give A006765, A006766, A006767, A006768.
Diagonals (with algorithms) are A000055, A036364, A355053.
Cf. A330891 (cumulative sums of the rows).
KEYWORD
nonn,nice,tabl,hard
AUTHOR
Richard C. Schroeppel
EXTENSIONS
Edited by N. J. A. Sloane, Sep 23 2011
More terms from John Niss Hansen, Mar 31 2015
STATUS
approved
Triangle T(n,d) = number of distinct d-dimensional polyominoes (or polycubes) with n cells (0 < d < n).
+10
11
1, 1, 1, 1, 4, 2, 1, 11, 11, 3, 1, 34, 77, 35, 6, 1, 107, 499, 412, 104, 11, 1, 368, 3442, 4888, 2009, 319, 23, 1, 1284, 24128, 57122, 36585, 8869, 951, 47, 1, 4654, 173428, 667959, 647680, 231574, 36988, 2862, 106, 1, 17072, 1262464, 7799183, 11173880, 5712765, 1297366, 146578, 8516, 235
OFFSET
2,5
COMMENTS
These are unoriented polyominoes of the regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). For unoriented polyominoes, chiral pairs are counted as one. The dimension of the convex hull of the cell centers determines the dimension d. - Robert A. Russell, Aug 09 2022
REFERENCES
Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.
EXAMPLE
From Robert A. Russell, Aug 09 2022: (Start)
Triangle begins with T(2,1):
n\d 1 2 3 4 5 6 7 8 9 10
2 1
3 1 1
4 1 4 2
5 1 11 11 3
6 1 34 77 35 6
7 1 107 499 412 104 11
8 1 368 3442 4888 2009 319 23
9 1 1284 24128 57122 36585 8869 951 47
10 1 4654 173428 667959 647680 231574 36988 2862 106
11 1 17072 1262464 7799183 11173880 5712765 1297366 146578 8516 235
(End)
CROSSREFS
Cf. A049430 (col. d=0 added), A195738 (oriented), A195739 (fixed).
Diagonals (with algorithms) are A000055, A036364, A355053.
Row sums give A005519. Columns are A006765-A006768.
KEYWORD
nonn,nice,tabl,hard
AUTHOR
Richard C. Schroeppel
EXTENSIONS
Two more rows added by Robert A. Russell, Aug 09 2022.
STATUS
approved
Number of polyhypercubes or 4-dimensional polyominoes with n cells (regarding mirror-images as distinct).
+10
2
1, 1, 1, 2, 7, 27, 164, 1316, 12757, 134174, 1474341, 16588434
OFFSET
0,4
REFERENCES
Don Reble, Personal communication, Feb 25 2015
FORMULA
a(n) = A006760(n) + A006765(n) + A006766(n) + signum(n-1) for n >= 1. - Sean A. Irvine, Jul 19 2017
CROSSREFS
KEYWORD
hard,nonn
AUTHOR
N. J. A. Sloane, Mar 01 2015
STATUS
approved

Search completed in 0.013 seconds