[go: nahoru, domu]

login
Search: a006768 -id:a006768
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,d) is the number of distinct properly d-dimensional polyominoes (or polycubes) with n cells (n >= 1, d >= 0).
+10
19
1, 0, 1, 0, 1, 1, 0, 1, 4, 2, 0, 1, 11, 11, 3, 0, 1, 34, 77, 35, 6, 0, 1, 107, 499, 412, 104, 11, 0, 1, 368, 3442, 4888, 2009, 319, 23, 0, 1, 1284, 24128, 57122, 36585, 8869, 951, 47, 0, 1, 4654, 173428, 667959, 647680, 231574, 36988, 2862, 106, 0, 1, 17072, 1262464, 7799183, 11173880, 5712765, 1297366, 146578, 8516, 235
OFFSET
1,9
LINKS
W. F. Lunnon, Counting multidimensional polyominoes. Computer Journal 18 (1975), no. 4, pp. 366-367.
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 1 4 2
0 1 11 11 3
0 1 34 77 35 6
0 1 107 499 412 104 11
0 1 368 3442 4888 2009 319 23
0 1 1284 24128 57122 36585 8869 951 47
0 1 4654 173428 667959 647680 231574 36988 2862 106
0 1 17072 1262464 7799183 11173880 5712765 1297366 146578 8516 235
...
CROSSREFS
Cf. A049429 (col. d=0 omitted), A195738 (oriented), A195739 (fixed).
Row sums give A005519. Columns give A006765, A006766, A006767, A006768.
Diagonals (with algorithms) are A000055, A036364, A355053.
Cf. A330891 (cumulative sums of the rows).
KEYWORD
nonn,nice,tabl,hard
AUTHOR
Richard C. Schroeppel
EXTENSIONS
Edited by N. J. A. Sloane, Sep 23 2011
More terms from John Niss Hansen, Mar 31 2015
STATUS
approved
Triangle T(n,d) = number of distinct d-dimensional polyominoes (or polycubes) with n cells (0 < d < n).
+10
11
1, 1, 1, 1, 4, 2, 1, 11, 11, 3, 1, 34, 77, 35, 6, 1, 107, 499, 412, 104, 11, 1, 368, 3442, 4888, 2009, 319, 23, 1, 1284, 24128, 57122, 36585, 8869, 951, 47, 1, 4654, 173428, 667959, 647680, 231574, 36988, 2862, 106, 1, 17072, 1262464, 7799183, 11173880, 5712765, 1297366, 146578, 8516, 235
OFFSET
2,5
COMMENTS
These are unoriented polyominoes of the regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). For unoriented polyominoes, chiral pairs are counted as one. The dimension of the convex hull of the cell centers determines the dimension d. - Robert A. Russell, Aug 09 2022
REFERENCES
Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.
EXAMPLE
From Robert A. Russell, Aug 09 2022: (Start)
Triangle begins with T(2,1):
n\d 1 2 3 4 5 6 7 8 9 10
2 1
3 1 1
4 1 4 2
5 1 11 11 3
6 1 34 77 35 6
7 1 107 499 412 104 11
8 1 368 3442 4888 2009 319 23
9 1 1284 24128 57122 36585 8869 951 47
10 1 4654 173428 667959 647680 231574 36988 2862 106
11 1 17072 1262464 7799183 11173880 5712765 1297366 146578 8516 235
(End)
CROSSREFS
Cf. A049430 (col. d=0 added), A195738 (oriented), A195739 (fixed).
Diagonals (with algorithms) are A000055, A036364, A355053.
Row sums give A005519. Columns are A006765-A006768.
KEYWORD
nonn,nice,tabl,hard
AUTHOR
Richard C. Schroeppel
EXTENSIONS
Two more rows added by Robert A. Russell, Aug 09 2022.
STATUS
approved

Search completed in 0.013 seconds