Displaying 1-10 of 18 results found.
Semiprimes of the form A007925(n) = n^(n+1)-(n+1)^n.
+20
3
7849, 3667649, 91171007, 2395420006033, 11877172892329028459041, 604107995057426434824791, 107174878415004743976428761769, 424678439961073471604787362241217, 1983672219242345491970468171243171249, 10788746499945827829225142589096882612369, 42855626937384013751014398588294858582343260060671
EXAMPLE
a(1)=7849 because 5^6-6^5=7849=47*167 is a semiprime.
MATHEMATICA
Select[Table[n^(n + 1) - (n + 1)^n, {n, 30}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 21 2012 *)
PROG
(Magma) IsSemiprime:=func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [3..30] | IsSemiprime(s) where s is n^(n+1)-(n+1)^n]; // Vincenzo Librandi, Sep 21 2012
CROSSREFS
Cf. A007925 n^(n+1)-(n+1)^n, A072179 n^(n+1)-(n+1)^n is prime, A099499 primes of the form n^(n+1)-(n+1)^n, A099497 n^(n+1)-(n+1)^n is a semiprime.
Numbers k such that A007925(k) = k^(k+1) - (k+1)^k is a semiprime.
+20
2
5, 7, 8, 11, 17, 18, 21, 23, 25, 27, 32, 47, 51, 56, 59, 165
COMMENTS
a(15)=59 confirmed by the factorization of 59^60 - 60^59, which is the product of the 52-digit prime 1994803969065168661575061125592557043358338451845483 and the 55-digit prime 8529249434913526091880095870250840825853220069057672947.
EXAMPLE
a(1) = 5 because 5^6 - 6^5 = 7849 = 47*167 is a semiprime.
a(1) = 5 because 5^6 - 6^5 = 47*167
a(2) = 7 because 7^8 - 8^7 = 23*159463
a(3) = 8 because 8^9 - 9^8 = 257*354751
a(4) = 11 because 11^12 - 12^11 = 33479*71549927
a(5) = 17 because 17^18 - 18^17 = 443881*26757560905578361
a(6) = 18 because 18^19 - 19^18 = 100417*6015993258685545623
a(7) = 21 because 21^22 - 22^21 = 10745792197529*9973660056412561
a(8) = 23 because 23^24 - 24^23 = 92798617729*4576344458074395243073
a(9) = 25 because 25^26 - 26^25 = 1627*1219220786258356172077730898121187
a(10) = 27 because 27^28 - 28^27 = 12298336501553*877252504725615101634783073
a(11) = 32 because 32^33 - 33^32 = 3506869732968391733353*12220478717670771804763962407
a(12) = 47 because 47^48 - 48^47 = 11*15621013371424880252957237277868559270462038147831682437840584991339231377934499
a(13) = 51 because 51^52 - 52^51 = 10562756058978342869988055703171*5575962824795589360993690554534422732411612977322491058843
a(14) = 56 because 56^57 - 57^56 = 5*843980334169667457302970806376511482920948635540290643213973523914715036518308339240201775858865907
a(15) = 59 because 59^60 - 60^59 = 1994803969065168661575061125592557043358338451845483*8529249434913526091880095870250840825853220069057672947
a(16) = 165 because 165^166 - 166^165 = 7633959407*16307690786821361595026621717879347561301150483781862339651556401266189322630373265190696672506475741217560239791446654891805648807872536646884416611251422684856600732984767987061831649144878649678190762809385448362714901584206533854093359279076584767352259587745683931159999248465944943129517543272252180930134912057221968601458271001580745436226192252814407
CROSSREFS
Cf. A007925 (n^(n+1)-(n+1)^n), A072179 (k^(k+1)-(k+1)^k is prime), A099498 (semiprimes of the form k^(k+1)-(k+1)^k).
EXTENSIONS
165 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 12 2008
Primes of the form A007925(n)=n^(n+1)-(n+1)^n.
+20
1
17, 162287, 2486784401, 83695120256591, 84721522804414816904952398305908708011513455440403306207160333176150520399
COMMENTS
The next term a(6)=883^884-884^883 has 2605 decimal digits and is too large to display.
MATHEMATICA
Select[Table[n^(n+1)-(n+1)^n, {n, 0, 1000}], PrimeQ] (* Vincenzo Librandi, Jul 18 2012 *)
PROG
(Magma) [a: n in [0..50] | IsPrime(a) where a is n^(n+1)-(n+1)^n ]; // Vincenzo Librandi, Jul 18 2012
CROSSREFS
Cf. A007925 n^(n+1)-(n+1)^n, A072179 n^(n+1)-(n+1)^n is prime, A099497 n^(n+1)-(n+1)^n is a semiprime, A099498 semiprimes of the form n^(n+1)-(n+1)^n.
Partial sums of A007925, starting at n=1.
+20
0
-1, -2, 15, 414, 8263, 170550, 3838199, 95009206, 2581793607, 76644369006, 2472064375039, 86167184631630, 3229828797076775, 129604998329498374, 5545091849435542023, 252031805153121499398, 12129204697482149958439
MATHEMATICA
lst={}; s=0; Do[s+=n^(n+1)-(n+1)^n; AppendTo[lst, s], {n, 5!}]; lst
Accumulate[Table[n^(n+1)-(n+1)^n, {n, 20}]] (* Harvey P. Dale, Aug 26 2012 *)
Smallest prime factors of numbers of the form (n-1)^n - n^(n-1) A007925
+20
0
17, 3, 47, 162287, 23, 257, 2486784401, 3, 33479, 83695120256591, 5, 67, 7, 3, 443881, 100417, 859, 79, 10745792197529, 3, 92798617729, 67, 1627, 11, 12298336501553, 3, 19, 241, 167, 3506869732968391733353, 5, 3, 47, 5, 317
COMMENTS
For n = 1 to 3 no prime factors in A007925(n).
MATHEMATICA
Table[FactorInteger[(n-1)^n-n^(n-1)][[1, 1]], {n, 4, 40}] (* Harvey P. Dale, May 25 2011 *)
AUTHOR
Torbjorn Alm (talm(AT)tele2.se), Mar 17 2010
1, 3, 17, 145, 1649, 23401, 397585, 7861953, 177264449, 4486784401, 125937424601, 3881436747409, 130291290501553, 4731091158953433, 184761021583202849, 7721329860319737601, 343809097055019694337, 16248996011806421522977
COMMENTS
Odd prime p divides a(p-2). For n>1, a(prime(n)-2)/prime(n) = A125074(n) = {1, 29, 3343, 407889491, 298572057493, 454195874136455153, ...}. Prime p divides a((p+5)/2) for p = {19, 23, 61}. - Alexander Adamchuk, Nov 18 2006
For all n != 1, a(n) mod 8 = 1.
If n mod 6 = 0, 3, or 5, then a(n) mod 6 = 1. If n mod 6 = 1, then a(n) mod 6 = 3. If n mod 6 = 2 or 4, then a(n) mod 6 = 5.
For all n, a(n)-1 is a multiple of n^2.
For n odd and n >= 3, a(n)-1 is a multiple of (n+1)^2.
For n even and n >= 0, a(n)+1 is a multiple of (n+1)^2.
For proofs, see the Englander link. (End)
FORMULA
a(n) = a(n-1) + A258389(n) for n >= 1.
(End)
a(n) = n^(n+2) - (n+2)^n.
+10
9
-1, -2, 0, 118, 2800, 61318, 1417472, 35570638, 973741824, 29023111918, 938082635776, 32730551749894, 1227224552173568, 49239697945731382, 2105895743771443200, 95663702284183543582, 4600926951773050961920, 233592048827366522661214
FORMULA
a(n) = n^(n+2) - (n+2)^n.
PROG
(Magma) [n^(n+2) -(n+2)^n: n in [0..40]]; // G. C. Greubel, Jul 14 2021
(Sage) [n^(n+2) -(n+2)^n for n in (0..40)] # G. C. Greubel, Jul 14 2021
Table T(m,k)=m^k-k^m (with 0^0 taken to be 1) as square array read by antidiagonals.
+10
7
0, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 2, 0, -2, -1, 1, 3, 1, -1, -3, -1, 1, 4, 0, 0, 0, -4, -1, 1, 5, -7, -17, 17, 7, -5, -1, 1, 6, -28, -118, 0, 118, 28, -6, -1, 1, 7, -79, -513, -399, 399, 513, 79, -7, -1, 1, 8, -192, -1844, -2800, 0, 2800, 1844, 192, -8, -1, 1, 9, -431
a(n) = (n+1)^n - n^(n-1) for n > 0, a(0) = 1.
+10
6
1, 1, 7, 55, 561, 7151, 109873, 1979503, 40949569, 956953279, 24937424601, 717070946087, 22555076751793, 770416688131663, 28399211252136481, 1123728578581456351, 47508270371060021505, 2137250367863029663487, 101941438738172545000873, 5138752649702088758467159
FORMULA
E.g.f.: W(-x) - W(-x)/(x*(1+W(-x))) where W is the Lambert W function. - Robert Israel, Oct 19 2015
MAPLE
a:= n-> (f-> f(n+1)-f(n))(n-> `if`(n=0, 0, n^(n-1))):
MATHEMATICA
Table[(n+1)^n-n^(n-1), {n, 25}]
PROG
(PARI) vector(100, n, (n+1)^n - n^(n-1)) \\ Altug Alkan, Oct 19 2015
EXTENSIONS
a(0)=1 prepended and definition adapted by Alois P. Heinz, Feb 26 2020
a(n) = n^(n+2) + (n+2)^n.
+10
5
1, 4, 32, 368, 5392, 94932, 1941760, 45136576, 1173741824, 33739007300, 1061917364224, 36314872537968, 1340612376924160, 53132088082450132, 2250010931847299072, 101388548387203175168, 4843806013966239465472
PROG
(Magma) [n^(n+2) + (n+2)^n: n in [0..30]]; // G. C. Greubel, Jul 14 2021
(Sage) [n^(n+2) + (n+2)^n for n in (0..30)] # G. C. Greubel, Jul 14 2021
Search completed in 0.012 seconds
|