[go: nahoru, domu]

login
Search: a007925 -id:a007925
     Sort: relevance | references | number | modified | created      Format: long | short | data
Semiprimes of the form A007925(n) = n^(n+1)-(n+1)^n.
+20
3
7849, 3667649, 91171007, 2395420006033, 11877172892329028459041, 604107995057426434824791, 107174878415004743976428761769, 424678439961073471604787362241217, 1983672219242345491970468171243171249, 10788746499945827829225142589096882612369, 42855626937384013751014398588294858582343260060671
OFFSET
1,1
EXAMPLE
a(1)=7849 because 5^6-6^5=7849=47*167 is a semiprime.
MATHEMATICA
Select[Table[n^(n + 1) - (n + 1)^n, {n, 30}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 21 2012 *)
PROG
(Magma) IsSemiprime:=func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [3..30] | IsSemiprime(s) where s is n^(n+1)-(n+1)^n]; // Vincenzo Librandi, Sep 21 2012
CROSSREFS
Cf. A007925 n^(n+1)-(n+1)^n, A072179 n^(n+1)-(n+1)^n is prime, A099499 primes of the form n^(n+1)-(n+1)^n, A099497 n^(n+1)-(n+1)^n is a semiprime.
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Oct 19 2004
EXTENSIONS
a(9)-a(11) from Vincenzo Librandi, Sep 21 2012
STATUS
approved
Numbers k such that A007925(k) = k^(k+1) - (k+1)^k is a semiprime.
+20
2
5, 7, 8, 11, 17, 18, 21, 23, 25, 27, 32, 47, 51, 56, 59, 165
OFFSET
1,1
COMMENTS
a(15)=59 confirmed by the factorization of 59^60 - 60^59, which is the product of the 52-digit prime 1994803969065168661575061125592557043358338451845483 and the 55-digit prime 8529249434913526091880095870250840825853220069057672947.
The next term is >= 182. - Hugo Pfoertner, Jul 18 2019
EXAMPLE
a(1) = 5 because 5^6 - 6^5 = 7849 = 47*167 is a semiprime.
a(1) = 5 because 5^6 - 6^5 = 47*167
a(2) = 7 because 7^8 - 8^7 = 23*159463
a(3) = 8 because 8^9 - 9^8 = 257*354751
a(4) = 11 because 11^12 - 12^11 = 33479*71549927
a(5) = 17 because 17^18 - 18^17 = 443881*26757560905578361
a(6) = 18 because 18^19 - 19^18 = 100417*6015993258685545623
a(7) = 21 because 21^22 - 22^21 = 10745792197529*9973660056412561
a(8) = 23 because 23^24 - 24^23 = 92798617729*4576344458074395243073
a(9) = 25 because 25^26 - 26^25 = 1627*1219220786258356172077730898121187
a(10) = 27 because 27^28 - 28^27 = 12298336501553*877252504725615101634783073
a(11) = 32 because 32^33 - 33^32 = 3506869732968391733353*12220478717670771804763962407
a(12) = 47 because 47^48 - 48^47 = 11*15621013371424880252957237277868559270462038147831682437840584991339231377934499
a(13) = 51 because 51^52 - 52^51 = 10562756058978342869988055703171*5575962824795589360993690554534422732411612977322491058843
a(14) = 56 because 56^57 - 57^56 = 5*843980334169667457302970806376511482920948635540290643213973523914715036518308339240201775858865907
a(15) = 59 because 59^60 - 60^59 = 1994803969065168661575061125592557043358338451845483*8529249434913526091880095870250840825853220069057672947
a(16) = 165 because 165^166 - 166^165 = 7633959407*16307690786821361595026621717879347561301150483781862339651556401266189322630373265190696672506475741217560239791446654891805648807872536646884416611251422684856600732984767987061831649144878649678190762809385448362714901584206533854093359279076584767352259587745683931159999248465944943129517543272252180930134912057221968601458271001580745436226192252814407
CROSSREFS
Cf. A007925 (n^(n+1)-(n+1)^n), A072179 (k^(k+1)-(k+1)^k is prime), A099498 (semiprimes of the form k^(k+1)-(k+1)^k).
KEYWORD
nonn,hard,more
AUTHOR
Hugo Pfoertner, Oct 19 2004, Aug 13 2007
EXTENSIONS
165 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 12 2008
STATUS
approved
Primes of the form A007925(n)=n^(n+1)-(n+1)^n.
+20
1
17, 162287, 2486784401, 83695120256591, 84721522804414816904952398305908708011513455440403306207160333176150520399
OFFSET
1,1
COMMENTS
The next term a(6)=883^884-884^883 has 2605 decimal digits and is too large to display.
EXAMPLE
a(2)=162287 because A007925(A072179(2))=6^7-7^6=162287 is prime.
MATHEMATICA
Select[Table[n^(n+1)-(n+1)^n, {n, 0, 1000}], PrimeQ] (* Vincenzo Librandi, Jul 18 2012 *)
PROG
(Magma) [a: n in [0..50] | IsPrime(a) where a is n^(n+1)-(n+1)^n ]; // Vincenzo Librandi, Jul 18 2012
CROSSREFS
Cf. A007925 n^(n+1)-(n+1)^n, A072179 n^(n+1)-(n+1)^n is prime, A099497 n^(n+1)-(n+1)^n is a semiprime, A099498 semiprimes of the form n^(n+1)-(n+1)^n.
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Oct 19 2004
STATUS
approved
Partial sums of A007925, starting at n=1.
+20
0
-1, -2, 15, 414, 8263, 170550, 3838199, 95009206, 2581793607, 76644369006, 2472064375039, 86167184631630, 3229828797076775, 129604998329498374, 5545091849435542023, 252031805153121499398, 12129204697482149958439
OFFSET
1,2
MATHEMATICA
lst={}; s=0; Do[s+=n^(n+1)-(n+1)^n; AppendTo[lst, s], {n, 5!}]; lst
Accumulate[Table[n^(n+1)-(n+1)^n, {n, 20}]] (* Harvey P. Dale, Aug 26 2012 *)
KEYWORD
sign
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Oct 09 2008
STATUS
approved
Smallest prime factors of numbers of the form (n-1)^n - n^(n-1) A007925
+20
0
17, 3, 47, 162287, 23, 257, 2486784401, 3, 33479, 83695120256591, 5, 67, 7, 3, 443881, 100417, 859, 79, 10745792197529, 3, 92798617729, 67, 1627, 11, 12298336501553, 3, 19, 241, 167, 3506869732968391733353, 5, 3, 47, 5, 317
OFFSET
4,1
COMMENTS
For n = 1 to 3 no prime factors in A007925(n).
MATHEMATICA
Table[FactorInteger[(n-1)^n-n^(n-1)][[1, 1]], {n, 4, 40}] (* Harvey P. Dale, May 25 2011 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Torbjorn Alm (talm(AT)tele2.se), Mar 17 2010
STATUS
approved
a(n) = n^(n+1)+(n+1)^n.
+10
13
1, 3, 17, 145, 1649, 23401, 397585, 7861953, 177264449, 4486784401, 125937424601, 3881436747409, 130291290501553, 4731091158953433, 184761021583202849, 7721329860319737601, 343809097055019694337, 16248996011806421522977
OFFSET
0,2
COMMENTS
Odd prime p divides a(p-2). For n>1, a(prime(n)-2)/prime(n) = A125074(n) = {1, 29, 3343, 407889491, 298572057493, 454195874136455153, ...}. Prime p divides a((p+5)/2) for p = {19, 23, 61}. - Alexander Adamchuk, Nov 18 2006
From Mathew Englander, Jul 08 2020: (Start)
For all n != 1, a(n) mod 8 = 1.
If n mod 6 = 0, 3, or 5, then a(n) mod 6 = 1. If n mod 6 = 1, then a(n) mod 6 = 3. If n mod 6 = 2 or 4, then a(n) mod 6 = 5.
For all n, a(n)-1 is a multiple of n^2.
For n odd and n >= 3, a(n)-1 is a multiple of (n+1)^2.
For n even and n >= 0, a(n)+1 is a multiple of (n+1)^2.
For proofs, see the Englander link. (End)
LINKS
Mathew Englander, Notes on OEIS A051442
FORMULA
a(n) = (n + e + o(1)) * n^n. - Charles R Greathouse IV, Jan 12 2012
From Mathew Englander, Jul 08 2020: (Start)
a(n) = A093898(n+1, n) for n >= 1.
a(n) = a(n-1) + A258389(n) for n >= 1.
a(n) = A007778(n) + A000169(n+1).
(End)
MATHEMATICA
Table[n^(n+1)+(n+1)^n, {n, 0, 20}] (* Harvey P. Dale, Oct 02 2018 *)
PROG
(PARI) a(n)=(n+1)^n+n^(n+1) \\ Charles R Greathouse IV, Jan 12 2012
(Magma)[n^(n+1)+(n+1)^n: n in [0..20]]; // Vincenzo Librandi, Jan 12 2012
(Maxima) A051442[n]:=n^(n+1)+(n+1)^n$ makelist(A051442[n], n, 0, 30); /* Martin Ettl, Oct 29 2012 */
KEYWORD
nonn,easy
STATUS
approved
a(n) = n^(n+2) - (n+2)^n.
+10
9
-1, -2, 0, 118, 2800, 61318, 1417472, 35570638, 973741824, 29023111918, 938082635776, 32730551749894, 1227224552173568, 49239697945731382, 2105895743771443200, 95663702284183543582, 4600926951773050961920, 233592048827366522661214
OFFSET
0,2
LINKS
FORMULA
a(n) = n^(n+2) - (n+2)^n.
MATHEMATICA
a[n_]:=n^(n+2)-(n+2)^n; lst={}; Do[AppendTo[lst, a[n]], {n, 0, 4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 20 2008 *)
PROG
(Magma) [n^(n+2) -(n+2)^n: n in [0..40]]; // G. C. Greubel, Jul 14 2021
(Sage) [n^(n+2) -(n+2)^n for n in (0..40)] # G. C. Greubel, Jul 14 2021
CROSSREFS
Cf. A007925 (n^(n+1) - (n+1)^n).
KEYWORD
sign
STATUS
approved
Table T(m,k)=m^k-k^m (with 0^0 taken to be 1) as square array read by antidiagonals.
+10
7
0, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 2, 0, -2, -1, 1, 3, 1, -1, -3, -1, 1, 4, 0, 0, 0, -4, -1, 1, 5, -7, -17, 17, 7, -5, -1, 1, 6, -28, -118, 0, 118, 28, -6, -1, 1, 7, -79, -513, -399, 399, 513, 79, -7, -1, 1, 8, -192, -1844, -2800, 0, 2800, 1844, 192, -8, -1, 1, 9, -431
OFFSET
0,12
CROSSREFS
Rows A000012 (offset), A023443, A024012, A024026, A024040 and diagonals A000004, A007925, A046065, A055652.
KEYWORD
easy,sign,tabl
AUTHOR
Henry Bottomley, Jun 07 2000
EXTENSIONS
Title corrected by Sean A. Irvine, Mar 30 2022
STATUS
approved
a(n) = (n+1)^n - n^(n-1) for n > 0, a(0) = 1.
+10
6
1, 1, 7, 55, 561, 7151, 109873, 1979503, 40949569, 956953279, 24937424601, 717070946087, 22555076751793, 770416688131663, 28399211252136481, 1123728578581456351, 47508270371060021505, 2137250367863029663487, 101941438738172545000873, 5138752649702088758467159
OFFSET
0,3
FORMULA
a(n) = A152917(n+1) - A152917(n). - Alexei Kourbatov, Oct 19 2015
E.g.f.: W(-x) - W(-x)/(x*(1+W(-x))) where W is the Lambert W function. - Robert Israel, Oct 19 2015
MAPLE
a:= n-> (f-> f(n+1)-f(n))(n-> `if`(n=0, 0, n^(n-1))):
seq(a(n), n=0..20); # Alois P. Heinz, Feb 26 2020
MATHEMATICA
Table[(n+1)^n-n^(n-1), {n, 25}]
PROG
(Maxima) A178922[n]:=(n+1)^n-n^(n-1)$ makelist(A178922[n], n, 1, 30); /* Martin Ettl, Oct 29 2012 */
(PARI) vector(100, n, (n+1)^n - n^(n-1)) \\ Altug Alkan, Oct 19 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
a(0)=1 prepended and definition adapted by Alois P. Heinz, Feb 26 2020
STATUS
approved
a(n) = n^(n+2) + (n+2)^n.
+10
5
1, 4, 32, 368, 5392, 94932, 1941760, 45136576, 1173741824, 33739007300, 1061917364224, 36314872537968, 1340612376924160, 53132088082450132, 2250010931847299072, 101388548387203175168, 4843806013966239465472
OFFSET
0,2
LINKS
PROG
(Magma) [n^(n+2) + (n+2)^n: n in [0..30]]; // G. C. Greubel, Jul 14 2021
(Sage) [n^(n+2) + (n+2)^n for n in (0..30)] # G. C. Greubel, Jul 14 2021
CROSSREFS
KEYWORD
nonn
STATUS
approved

Search completed in 0.012 seconds