[go: nahoru, domu]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a013631 -id:a013631
Displaying 1-10 of 29 results found. page 1 2 3
     Sort: relevance | references | number | modified | created      Format: long | short | data
A002117 Apéry's number or Apéry's constant zeta(3). Decimal expansion of zeta(3) = Sum_{m >= 1} 1/m^3.
(Formerly M0020)
+10
426
1, 2, 0, 2, 0, 5, 6, 9, 0, 3, 1, 5, 9, 5, 9, 4, 2, 8, 5, 3, 9, 9, 7, 3, 8, 1, 6, 1, 5, 1, 1, 4, 4, 9, 9, 9, 0, 7, 6, 4, 9, 8, 6, 2, 9, 2, 3, 4, 0, 4, 9, 8, 8, 8, 1, 7, 9, 2, 2, 7, 1, 5, 5, 5, 3, 4, 1, 8, 3, 8, 2, 0, 5, 7, 8, 6, 3, 1, 3, 0, 9, 0, 1, 8, 6, 4, 5, 5, 8, 7, 3, 6, 0, 9, 3, 3, 5, 2, 5, 8, 1, 4, 6, 1, 9, 9, 1, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Sometimes called Apéry's constant.
"A natural question is whether Zeta(3) is a rational multiple of Pi^3. This is not known, though in 1978 R. Apéry succeeded in proving that Zeta(3) is irrational. In Chapter 8 we pointed out that the probability that two random integers are relatively prime is 6/Pi^2, which is 1/Zeta(2). This generalizes to: The probability that k random integers are relatively prime is 1/Zeta(k) ... ." [Stan Wagon]
In 2001 Tanguy Rivoal showed that there are infinitely many odd (positive) integers at which zeta is irrational, including at least one value j in the range 5 <= j <= 21 (refined the same year by Zudilin to 5 <= j <= 11), at which zeta(j) is irrational. See the Rivoal link for further information and references.
The reciprocal of this constant is the probability that three integers chosen randomly using uniform distribution are relatively prime. - Joseph Biberstine (jrbibers(AT)indiana.edu), Apr 13 2005
Also the value of zeta(1,2), the double zeta-function of arguments 1 and 2. - R. J. Mathar, Oct 10 2011
Also the length of minimal spanning tree for large complete graph with uniform random edge lengths between 0 and 1, cf. link to John Baez's comment. - M. F. Hasler, Sep 26 2017
Sum of the inverses of the cubes (A000578). - Michael B. Porter, Nov 27 2017
This number is the average value of sigma_2(n)/n^2 where sigma_2(n) is the sum of the squares of the divisors of n. - Dimitri Papadopoulos, Jan 07 2022
REFERENCES
S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, pp. 40-53.
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 84.
R. William Gosper, Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics, Computers in Mathematics (Stanford CA, 1986); Lecture Notes in Pure and Appl. Math., Dekker, New York, 125 (1990), 261-284; MR 91h:11154.
Xavier Gourdon, Analyse, Les Maths en tête, Ellipses, 1994, Exemple 3, page 224.
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F17, Series associated with the zeta-function, p. 391.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford University Press; 6 edition (2008), pp. 47, 268-269.
Paul Levrie, The Ubiquitous Apéry Number, Math. Intelligencer, Vol. 45, No. 2, 2023, pp. 118-119.
A. A. Markoff, Mémoire sur la transformation de séries peu convergentes en séries très convergentes, Mém. de l'Acad. Imp. Sci. de St. Pétersbourg, XXXVII, 1890.
Paul J. Nahin, In Pursuit of Zeta-3, Princeton University Press, 2021.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Stan Wagon, Mathematica In Action, W. H. Freeman and Company, NY, 1991, page 354.
A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Dover (1987), Ex. 92-93.
LINKS
T. Amdeberhan, Faster and Faster convergent series for zeta(3), arXiv:math/9804126 [math.CO], 1998.
Kunihiro Aoki and Ryo Furue, A model for the size distribution of marine microplastics: a statistical mechanics approach, arXiv:2103.10221 [physics.ao-ph], 2021.
Peter Bala, Some series for zeta(3), Nov 2023.
John Baez, Comments about zeta(3), Azimuth Project blog, August 2017.
R. Barbieri, J. A. Mignaco and E. Remiddi, Electron form factors up to fourth order. I., Il Nuovo Cim. 11A (4) (1972) 824-864, table II (7), (9), (19)
J. Borwein and D. Bradley, Empirically determined Apéry-like formulas for zeta(4n+3), arXiv:math/0505124 [math.CA], 2005.
Mainendra Kumar Dewangan and Subhra Datta, Effective permeability tensor of confined flows with wall grooves of arbitrary shape, J. of Fluid Mechanics (2020) Vol. 891.
L. Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
X. Gourdon and P. Sebah, The Apery's constant: zeta(3)
Brady Haran and Tony Padilla, Apéry's constant (calculated with Twitter), Numberphile video (2017).
W. Janous, Around Apéry's constant, J. Inequ. Pure Appl. Math. 7(1) (2006), #35.
Yasuyuki Kachi and Pavlos Tzermias, Infinite products involving zeta(3) and Catalan's constant, Journal of Integer Sequences, 15 (2012), #12.9.4.
Masato Kobayashi, Integral representations for zeta(3) with the inverse sine function, arXiv:2108.01247 [math.NT], 2021.
M. Kondratiewa and S. Sadov, Markov's transformation of series and the WZ method, arXiv:math/0405592 [math.CA], 2004.
Tobias Kyrion, A closed-form expression for zeta(3), arXiv:2008.05573 [math.GM], 2020.
C. Lupu and D. Orr, Series representations for the Apéry constant zeta(3) involving the values zeta(2n), Ramanujan J. 48(3) (2019), 477-494.
R. J. Mathar, Yet another table of integrals, arXiv:1207.5845 [math.CA], 2012-2014.
G. P. Michon, Roger Apéry, Numericana.
Simon Plouffe, Zeta(2) to Zeta(4096) to 2048 digits each (gzipped file).
A. van der Poorten, A Proof that Euler Missed.
Ernst E. Scheufens, From Fourier series to rapidly convergent series for zeta(3), Mathematics Magazine, Vol. 84, No. 1 (2011), pp. 26-32.
G. Villemin's Almanach of Numbers, Constante d'Apéry (in French).
S. Wedeniwski, The value of zeta(3) to 1000000 places [Gutenberg Project Etext].
S. Wedeniwski, Plouffe's Inverter, Apery's constant to 128000026 decimal digits.
Eric Weisstein's World of Mathematics, Apéry's Constant.
Eric Weisstein's World of Mathematics, Relatively Prime.
H. Wilf, Accelerated series for universal constants, by the WZ method, Discrete Mathematics and Theoretical Computer Science 3(4) (1999), 189-192.
Wenzhe Yang, Apéry's irrationality proof, mirror symmetry and Beukers' modular forms, arXiv:1911.02608 [math.NT], 2019.
Wadim Zudilin, An elementary proof of Apéry's theorem, arXiv:math/0202159 [math.NT], 2002.
FORMULA
Lima gives an approximation to zeta(3) as (236*log(2)^3)/197 - 283/394*Pi*log(2)^2 + 11/394*Pi^2*log(2) + 209/394*log(sqrt(2) + 1)^3 - 5/197 + (93*Catalan*Pi)/197. - Jonathan Vos Post, Oct 14 2009 [Corrected by Wouter Meeussen, Apr 04 2010]
zeta(3) = 5/2*Integral_(x=0..2*log((1+sqrt(5))/2), x^2/(exp(x)-1)) + 10/3*(log((1+sqrt(5))/2))^3. - Seiichi Kirikami, Aug 12 2011
zeta(3) = -4/3*Integral_{x=0..1} log(x)/x*log(1+x) = Integral_{x=0..1} log(x)/x*log(1-x) = -4/7*Integral_{x=0..1} log(x)/x*log((1+x)/(1-x)) = 4*Integral_{x=0..1} 1/x*log(1+x)^2 = 1/2*Integral_{x=0..1} 1/x*log(1-x)^2 = -16/7*Integral_{x=0..Pi/2} x*log(2*cos(x)) = -4/Pi*Integral_{x=0..Pi/2} x^2*log(2*cos(x)). - Jean-François Alcover, Apr 02 2013, after R. J. Mathar
From Peter Bala, Dec 04 2013: (Start)
zeta(3) = (16/7)*Sum_{k even} (k^3 + k^5)/(k^2 - 1)^4.
zeta(3) - 1 = Sum_{k >= 1} 1/(k^3 + 4*k^7) = 1/(5 - 1^6/(21 - 2^6/(55 - 3^6/(119 - ... - (n - 1)^6/((2*n - 1)*(n^2 - n + 5) - ...))))) (continued fraction).
More generally, there is a sequence of polynomials P(n,x) (of degree 2*n) such that
zeta(3) - Sum_{k = 1..n} 1/k^3 = Sum_{k >= 1} 1/( k^3*P(n,k-1)*P(n,k) ) = 1/((2*n^2 + 2*n + 1) - 1^6/(3*(2*n^2 + 2*n + 3) - 2^6/(5*(2*n^2 + 2*n + 7) - 3^6/(7*(2*n^2 + 2*n + 13) - ...)))) (continued fraction). See A143003 and A143007 for details.
Series acceleration formulas:
zeta(3) = (5/2)*Sum_{n >= 1} (-1)^(n+1)/( n^3*binomial(2*n,n) )
= (5/2)*Sum_{n >= 1} P(n)/( (2*n(2*n - 1))^3*binomial(4*n,2*n) )
= (5/2)*Sum_{n >= 1} (-1)^(n+1)*Q(n)/( (3*n(3*n - 1)*(3*n - 2))^3*binomial(6*n,3*n) ), where P(n) = 24*n^3 + 4*n^2 - 6*n + 1 and Q(n) = 9477*n^6 - 11421*n^5 + 5265*n^4 - 1701*n^3 + 558*n^2 - 108*n + 8 (Bala, section 7). (End)
zeta(3) = Sum_{n >= 1} (A010052(n)/n^(3/2)) = Sum_{n >= 1} ( (floor(sqrt(n)) - floor(sqrt(n-1)))/n^(3/2) ). - Mikael Aaltonen, Feb 22 2015
zeta(3) = Product_{k>=1} 1/(1 - 1/prime(k)^3). - Vaclav Kotesovec, Apr 30 2020
zeta(3) = 4*(2*log(2) - 1 - 2*Sum_{k>=2} zeta(2*k+1)/2^(2*k+1)). - Jorge Coveiro, Jun 21 2020
zeta(3) = (4*zeta'''(1/2)*(zeta(1/2))^2-12*zeta(1/2)*zeta'(1/2)*zeta''(1/2)+8*(zeta'(1/2))^3-Pi^3*(zeta(1/2))^3)/(28*(zeta(1/2))^3). - Artur Jasinski, Jun 27 2020
zeta(3) = Sum_{k>=1} H(k)/(k+1)^2, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jul 31 2020
From Artur Jasinski, Sep 30 2020: (Start)
zeta(3) = (5/4)*Li_3(1/f^2) + Pi^2*log(f)/6 - 5*log(f)^3/6,
zeta(3) = (8/7)*Li_3(1/2) + (2/21)*Pi^2 log(2) - (4/21) log(2)^3, where f is golden ratio (A001622) and Li_3 is the polylogarithm function, formulas published by John Landen in 1780, p. 118. (End)
zeta(3) = (1/2)*Integral_{x=0..oo} x^2/(e^x-1) dx (Gourdon). - Bernard Schott, Apr 28 2021
From Peter Bala, Jan 18 2022: (Start)
zeta(3) = 1 + Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)) = 25/24 + (2!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)) = 28333/27000 + (3!)^4*(Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*(4*n^4 + 2^4)*(4*n^4 + 3^4)). In general, for k >= 1, we have zeta(3) = r(k) + (k!)^4*Sum_{n >= 1} 1/(n^3*(4*n^4 + 1)*...*(4*n^4 + k^4)), where r(k) is rational.
zeta(3) = (6/7) + (64/7)*Sum_{n >= 1} n/(4*n^2 - 1)^3.
More generally, for k >= 0, it appears that zeta(3) = a(k) + b(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^3, where a(k) and b(k) are rational.
zeta(3) = (10/7) - (128/7)*Sum_{n >= 1} n/(4*n^2 - 1)^4.
More generally, for k >= 0, it appears that zeta(3) = c(k) + d(k)*Sum_{n >= 1} n/( (4*n^2 - 1)*(4*n^2 - 9)*...*(4*n^2 - (2*k+1)^2) )^4, where c(k) and d(k) are rational. [added Nov 27 2023: for the values of a(k), b(k), c(k) and d(k) see the Bala 2023 link, Sections 8 and 9.]
zeta(3) = 2/3 + (2^13)/(3*7)*Sum_{n >= 1} n^3/(4*n^2 - 1)^6. (End)
zeta(3) = -Psi(2)(1/2)/14 (the second derivative of digamma function evaluated at 1/2). - Artur Jasinski, Mar 18 2022
zeta(3) = -(8*Pi^2/9) * Sum_{k>=0} zeta(2*k)/((2*k+1)*(2*k+3)*4^k) = (2*Pi^2/9) * (log(2) + 2 * Sum_{k>=0} zeta(2*k)/((2*k+3)*4^k)) (Scheufens, 2011, Glasser Math. Comp. 22 1968). - Amiram Eldar, May 28 2022
zeta(3) = Sum_{k>=1} (30*k-11) / (4*(2k-1)*k^3*(binomial(2k,k))^2) (Gosper, 1986 and Richard K. Guy reference). - Bernard Schott, Jul 20 2022
zeta(3) = (4/3)*Integral_{x >= 1} x*log(x)*(1 + log(x))*log(1 + 1/x^x) dx = (2/3)*Integral_{x >= 1} x^2*log(x)^2*(1 + log(x))/(1 + x^x) dx. - Peter Bala, Nov 27 2023
zeta_3(n) = 1/180*(-360*n^3*f(-3, n/4) + Pi^3*(n^4 + 20*n^2 + 16))/(n*(n^2 + 4)), where f(-3, n) = Sum_{k>=1} 1/(k^3*(exp(Pi*k/n) - 1)). Will give at least 1 digit of precision/term, example: zeta_3(5) = 1.202056944732.... - Simon Plouffe, Dec 21 2023
zeat(3) = 1 + (1/2)*Sum_{n >= 1} (2*n + 1)/(n^3*(n + 1)^3) = 5/4 - (1/4)*Sum_{n >= 1} (2*n + 1)/(n^4*(n + 1)^4) = 147/120 + (2/15)*Sum_{n >= 1} (2*n + 1)/(n^5*(n + 1)^5) - (64/15)*Sum_{n >= 1} (n + 1)/(n^5*(n + 2)^5) = 19/16 + (128/21)*Sum_{n >= 1} (n + 1)/(n^6*(n + 2)^6) - (1/21)*Sum_{n >= 1} (2*n + 1)/(n^6*(n + 1)^6). - Peter Bala, Apr 15 2024
EXAMPLE
1.2020569031595942853997...
MAPLE
# Calculates an approximation with n exact decimal places (small deviation
# in the last digits are possible). Goes back to ideas of A. A. Markoff 1890.
zeta3 := proc(n) local s, w, v, k; s := 0; w := -1; v := 4;
for k from 2 by 2 to 7*n/2 do
w := -w*v/k;
v := v + 8;
s := s + 1/(w*k^3);
od; 20*s; evalf(%, n) end:
zeta3(10000); # Peter Luschny, Jun 10 2020
MATHEMATICA
RealDigits[ N[ Zeta[3], 100] ] [ [1] ]
(* Second program (historical interest): *)
d[n_] := 34*n^3 + 51*n^2 + 27*n + 5; 6/Fold[Function[d[#2-1] - #2^6/#1], 5, Reverse[Range[100]]] // N[#, 108]& // RealDigits // First
(* Jean-François Alcover, Sep 19 2014, after Apéry's continued fraction *)
PROG
(PARI) default(realprecision, 20080); x=zeta(3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b002117.txt", n, " ", d)); \\ Harry J. Smith, Apr 19 2009
(Maxima) fpprec : 100$ ev(bfloat(zeta(3)))$ bfloat(%); /* Martin Ettl, Oct 21 2012 */
(Python)
from mpmath import mp, apery
mp.dps=109
print([int(z) for z in list(str(apery).replace('.', ''))[:-1]]) # Indranil Ghosh, Jul 08 2017
(Magma) L:=RiemannZeta(: Precision:=100); Evaluate(L, 3); // G. C. Greubel, Aug 21 2018
CROSSREFS
Cf. A197070: 3*zeta(3)/4; A233090: 5*zeta(3)/8; A233091: 7*zeta(3)/8.
Cf. A000578 (cubes).
Cf. sums of inverses: A152623 (tetrahedral numbers), A175577 (octahedral numbers), A295421 (dodecahedral numbers), A175578 (icosahedral numbers).
KEYWORD
cons,nonn,nice
AUTHOR
EXTENSIONS
More terms from David W. Wilson
Additional comments from Robert G. Wilson v, Dec 08 2000
Quotation from Stan Wagon corrected by N. J. A. Sloane on Dec 24 2005. Thanks to Jose Brox for noticing this error.
Edited by M. F. Hasler, Sep 26 2017
STATUS
approved
A013661 Decimal expansion of Pi^2/6 = zeta(2) = Sum_{m>=1} 1/m^2. +10
366
1, 6, 4, 4, 9, 3, 4, 0, 6, 6, 8, 4, 8, 2, 2, 6, 4, 3, 6, 4, 7, 2, 4, 1, 5, 1, 6, 6, 6, 4, 6, 0, 2, 5, 1, 8, 9, 2, 1, 8, 9, 4, 9, 9, 0, 1, 2, 0, 6, 7, 9, 8, 4, 3, 7, 7, 3, 5, 5, 5, 8, 2, 2, 9, 3, 7, 0, 0, 0, 7, 4, 7, 0, 4, 0, 3, 2, 0, 0, 8, 7, 3, 8, 3, 3, 6, 2, 8, 9, 0, 0, 6, 1, 9, 7, 5, 8, 7, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
"In 1736 he [Leonard Euler, 1707-1783] discovered the limit to the infinite series, Sum 1/n^2. He did it by doing some rather ingenious mathematics using trigonometric functions that proved the series summed to exactly Pi^2/6. How can this be? ... This demonstrates one of the most startling characteristics of mathematics - the interconnectedness of, seemingly, unrelated ideas." - Clawson [See Hardy and Wright, Theorems 332 and 333. - N. J. A. Sloane, Jan 20 2017]
Also dilogarithm(1). - Rick L. Shepherd, Jul 21 2004
Also Integral_{x>=0} x/(exp(x)-1) dx. [Abramowitz-Stegun, 23.2.7., for s=2, p. 807]
For the partial sums see the fractional sequence A007406/A007407.
Pi^2/6 is also the length of the circumference of a circle whose diameter equals the ratio of volume of an ellipsoid to the circumscribed cuboid. Pi^2/6 is also the length of the circumference of a circle whose diameter equals the ratio of surface area of a sphere to the circumscribed cube. - Omar E. Pol, Oct 07 2011
1 < n^2/(eulerphi(n)*sigma(n)) < zeta(2) for n > 1. - Arkadiusz Wesolowski, Sep 04 2012
Volume of a sphere inscribed in a cube of volume Pi. More generally, Pi^x/6 is the volume of an ellipsoid inscribed in a cuboid of volume Pi^(x-1). - Omar E. Pol, Feb 17 2016
Surface area of a sphere inscribed in a cube of surface area Pi. More generally, Pi^x/6 is the surface area of a sphere inscribed in a cube of surface area Pi^(x-1). - Omar E. Pol, Feb 19 2016
zeta(2)+1 is a weighted average of the integers, n > 2, using zeta(n)-1 as the weights for each n. We have: Sum_{n >= 2} (zeta(n)-1) = 1 and Sum_{n >= 2} n*(zeta(n)-1) = zeta(2)+1. - Richard R. Forberg, Jul 14 2016
zeta(2) is the expected value of sigma(n)/n. - Charlie Neder, Oct 22 2018
Graham shows that a rational number x can be expressed as a finite sum of reciprocals of distinct squares if and only if x is in [0, Pi^2/6-1) U [1, Pi^2/6). See section 4 for other results and Theorem 5 for the underlying principle. - Charles R Greathouse IV, Aug 04 2020
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
F. Aubonnet, D. Guinin and B. Joppin, Précis de Mathématiques, Analyse 2, Classes Préparatoires, Premier Cycle Universitaire, Bréal, 1990, Exercice 908, pages 82 and 91-92.
Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Perseus Books, 1996, p. 97.
W. Dunham, Euler: The Master of Us All, The Mathematical Association of America, Washington, D.C., 1999, p. xxii.
Hardy and Wright, 'An Introduction to the Theory of Numbers'. See Theorems 332 and 333.
A. A. Markoff, Mémoire sur la transformation de séries peu convergentes en séries très convergentes, Mém. de l'Acad. Imp. Sci. de St. Pétersbourg, XXXVII, 1890.
G. F. Simmons, Calculus Gems, Section B.15, B.24, pp. 270-271, 323-325, McGraw Hill, 1992.
Arnold Walfisz, Weylsche Exponentialsummen in der neueren Zahlentheorie, Deutscher Verlag der Wissenschaften, Berlin, 1963, p. 99, Satz 1.
A. Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 261.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Revised Edition, Penguin Books, London, England, 1997, page 23.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
D. H. Bailey, J. M. Borwein and D. M. Bradley, Experimental determination of Apéry-like identities for zeta(4n+2), arXiv:math/0505270 [math.NT], 2005-2006.
David Benko and John Molokach, The Basel Problem as a Rearrangement of Series, The College Mathematics Journal, Vol. 44, No. 3 (May 2013), pp. 171-176.
R. Calinger, Leonard Euler: The First St. Petersburg Years (1727-1741), Historia Mathematica, Vol. 23, 1996, pp. 121-166.
Alessio Del Vigna, On a solution to the Basel problem based on the fundamental theorem of calculus, arXiv:2104.01710 [math.HO], 2021.
Leonhard Euler, On the sums of series of reciprocals, arXiv:math/0506415 [math.HO], 2005-2008.
Leonhard Euler, De summis serierum reciprocarum, E41.
R. L. Graham, On finite sums of unit fractions, Proceedings of the London Mathematical Society, s3-14 (1964), pp. 193-207. doi:10.1112/plms/s3-14.2.193
Michael D. Hirschhorn, A simple proof that zeta(2) = Pi^2/6, The Mathematical Intelligencer 33:3 (2011), pp 81-82.
Alain Lasjaunias and Jean-Paul Tran, A note on the equality Pi^2/6 = Sum_{n>=1} 1/n^2, arXiv:2312.02245 [math.HO], 2023.
Math. Reference Project, The Zeta Function, Zeta(2)
Simon Plouffe, Plouffe's Inverter, Zeta(2) or Pi**2/6 to 100000 digits
Simon Plouffe, Zeta(2) to Zeta(4096) to 2048 digits each (gzipped file)
A. L. Robledo, value of the Riemann zeta function at s=2, PlanetMath.org.
E. Sandifer, How Euler Did It, Estimating the Basel Problem
E. Sandifer, How Euler Did It, Basel Problem with Integrals
Eric Weisstein's World of Mathematics, Dilogarithm.
Eric Weisstein's World of Mathematics, Riemann Zeta Function zeta(2).
Wikipedia, Basel Problem
Herbert S. Wilf, Accelerated series for universal constants, by the WZ method, Discrete Mathematics & Theoretical Computer Science, Vol 3, No 4 (1999).
FORMULA
Limit_{n->oo} (1/n)*(Sum_{k=1..n} frac((n/k)^(1/2))) = zeta(2) and in general we have lim_{n->oo} (1/n)*(Sum_{k=1..n} frac((n/k)^(1/m))) = zeta(m), m >= 2. - Yalcin Aktar, Jul 14 2005
Equals Integral_{x=0..1} (log(x)/(x-1)) dx or Integral_{x>=1} (log(x/(x-1))/x) dx. - Jean-François Alcover, May 30 2013
For s >= 2 (including Complex), zeta(s) = Product_{n >= 1} prime(n)^s/(prime(n)^s - 1). - Fred Daniel Kline, Apr 10 2014
Also equals 1 + Sum_{n>=0} (-1)^n*StieltjesGamma(n)/n!. - Jean-François Alcover, May 07 2014
zeta(2) = Sum_{n>=1} ((floor(sqrt(n)) - floor(sqrt(n-1)))/n). - Mikael Aaltonen, Jan 10 2015
zeta(2) = Sum_{n>=1} (((sqrt(5)-1)/2/sqrt(5))^n/n^2) + Sum_{n>=1} (((sqrt(5)+1)/2/sqrt(5))^n/ n^2) + log((sqrt(5)-1)/2/sqrt(5))log((sqrt(5)+1)/2/sqrt(5)). - Seiichi Kirikami, Oct 14 2015
The above formula can also be written zeta(2) = dilog(x) + dilog(y) + log(x)*log(y) where x = (1-1/sqrt(5))/2 and y=(1+1/sqrt(5))/2. - Peter Luschny, Oct 16 2015
zeta(2) = Integral_{x>=0} 1/(1 + e^x^(1/2)) dx, because (1 - 1/2^(s-1))*Gamma[1 + s]*Zeta[s] = Integral_{x>=0} 1/(1 + e^x^(1/s)) dx. After Jean-François Alcover in A002162. - Mats Granvik, Sep 12 2016
zeta(2) = Product_{n >= 1} (144*n^4)/(144*n^4 - 40*n^2 + 1). - Fred Daniel Kline, Oct 29 2016
zeta(2) = lim_{n->oo} (1/n) * Sum_{k=1..n} A017665(k)/A017666(k). - Dimitri Papadopoulos, May 10 2019 [See the Walfisz reference, and a comment in A284648, citing also the Sándor et al. Handbook. - Wolfdieter Lang, Aug 22 2019]
Equals Sum_{k>=1} H(k)/(k*(k+1)), where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Aug 16 2020
Equals (8/3)*(1/2)!^4 = (8/3)*Gamma(3/2)^4. - Gary W. Adamson, Aug 17 2021
Equals ((m+1)/m) * Integral_{x=0..1} log(Sum _{k=0..m} x^k )/x dx, m > 0 (Aubonnet reference). - Bernard Schott, Feb 11 2022
Equals 1 + Sum_{n>=2} Sum_{i>=n+1} (zeta(i)-1). - Richard R. Forberg, Jun 04 2023
EXAMPLE
1.6449340668482264364724151666460251892189499012067984377355582293700074704032...
MAPLE
evalf(Pi^2/6, 120); # Muniru A Asiru, Oct 25 2018
# Calculates an approximation with n exact decimal places (small deviation
# in the last digits are possible). Goes back to ideas of A. A. Markoff 1890.
zeta2 := proc(n) local q, s, w, v, k; q := 0; s := 0; w := 1; v := 4;
for k from 2 by 2 to 7*n/2 do
w := w*v/k;
q := q + v;
v := v + 8;
s := s + 1/(w*q);
od; 12*s; evalf[n](%) end:
zeta2(1000); # Peter Luschny, Jun 10 2020
MATHEMATICA
RealDigits[N[Pi^2/6, 100]][[1]]
RealDigits[Zeta[2], 10, 120][[1]] (* Harvey P. Dale, Jan 08 2021 *)
PROG
(PARI) default(realprecision, 200); Pi^2/6
(PARI) default(realprecision, 200); dilog(1)
(PARI) default(realprecision, 200); zeta(2)
(PARI) A013661(n)={localprec(n+2); Pi^2/.6\10^n%10} \\ Corrected and improved by M. F. Hasler, Apr 20 2021
(PARI) default(realprecision, 20080); x=Pi^2/6; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b013661.txt", n, " ", d)); \\ Harry J. Smith, Apr 29 2009
(PARI) sumnumrat(1/x^2, 1) \\ Charles R Greathouse IV, Jan 20 2022
(Maxima) fpprec : 100$ ev(bfloat(zeta(2)))$ bfloat(%); /* Martin Ettl, Oct 21 2012 */
(Magma) pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi^2/6))); // Vincenzo Librandi, Oct 13 2015
(Python) # Use some guard digits when computing.
# BBP formula (3 / 16) P(2, 64, 6, (16, -24, -8, -6, 1, 0)).
from decimal import Decimal as dec, getcontext
def BBPzeta2(n: int) -> dec:
getcontext().prec = n
s = dec(0); f = dec(1); g = dec(64)
for k in range(int(n * 0.5536546824812272) + 1):
sixk = dec(6 * k)
s += f * ( dec(16) / (sixk + 1) ** 2 - dec(24) / (sixk + 2) ** 2
- dec(8) / (sixk + 3) ** 2 - dec(6) / (sixk + 4) ** 2
+ dec(1) / (sixk + 5) ** 2 )
f /= g
return (s * dec(3)) / dec(16)
print(BBPzeta2(2000)) # Peter Luschny, Nov 01 2023
CROSSREFS
Cf. A001008 (H(n): numerators), A002805 (denominators), A013679 (continued fraction), A002117 (zeta(3)), A013631 (cont.frac. for zeta(3)), A013680 (cont.frac. for zeta(4)), 1/A059956, A108625, A142995, A142999.
KEYWORD
cons,nonn,nice
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Nov 22 2023
STATUS
approved
A013679 Continued fraction for zeta(2) = Pi^2/6. +10
28
1, 1, 1, 1, 4, 2, 4, 7, 1, 4, 2, 3, 4, 10, 1, 2, 1, 1, 1, 15, 1, 3, 6, 1, 1, 2, 1, 1, 1, 2, 2, 3, 1, 3, 1, 1, 5, 1, 2, 2, 1, 1, 6, 27, 20, 3, 97, 105, 1, 1, 1, 1, 1, 45, 2, 8, 19, 1, 4, 1, 1, 3, 1, 2, 1, 1, 1, 5, 1, 1, 2, 3, 6, 1, 1, 1, 2, 1, 5, 1, 1, 2, 9, 5, 3, 2, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.
David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 23.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
G. Xiao, Contfrac
EXAMPLE
1.644934066848226436472415166... = 1 + 1/(1 + 1/(1 + 1/(1 + 1/(4 + ...))))
MATHEMATICA
ContinuedFraction[ Pi^2/6, 100]
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^2/6); for (n=1, 20000, write("b013679.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 29 2009
CROSSREFS
Cf. A013661 (decimal expansion).
Cf. continued fractions for zeta(3)-zeta(20): A013631, A013680-A013696.
KEYWORD
nonn,cofr,nice,easy
AUTHOR
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 10 2024
STATUS
approved
A013680 Continued fraction for zeta(4). +10
23
1, 12, 6, 1, 3, 1, 4, 183, 1, 1, 2, 1, 3, 1, 1, 5, 4, 2, 7, 23, 1, 1, 1, 1, 3, 2, 4, 2, 2, 22, 1, 13, 5, 1, 4, 2, 1, 3, 1, 1, 1, 6, 11, 40, 1, 7, 5, 2, 4, 1, 2, 3, 14, 9, 1, 33, 78, 1, 12, 4, 1, 2, 551, 1, 1, 1, 1, 1, 1, 2, 1, 9, 2, 7, 3, 1, 3, 2, 15, 1, 1, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
G. Xiao, Contfrac
EXAMPLE
zeta(4) = 1 + 1/(12 + 1/(6 + 1/(1 + 1/(3 + ...)))). - Harry J. Smith, Apr 29 2009
MATHEMATICA
ContinuedFraction[Zeta[4], 80] (* Harvey P. Dale, Oct 13 2013 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(Pi^4/90); for (n=1, 20000, write("b013680.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 29 2009
CROSSREFS
Cf. A013662 (zeta(4)). - Harry J. Smith, Apr 29 2009
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013681-A013696.
KEYWORD
nonn,cofr
AUTHOR
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 09 2024
STATUS
approved
A013696 Continued fraction for zeta(20). +10
18
1, 1048259, 1, 2, 1, 18, 3, 1, 9, 7, 1, 1, 2, 1, 13, 3, 1, 1, 1, 2, 4, 2, 10, 2, 1, 1, 2, 8, 1, 1, 1, 3, 1, 3, 9, 2, 1, 2, 1, 1, 4, 2, 2, 56, 2, 2, 1, 1, 1, 6, 5, 2, 15, 1, 5, 2, 2, 1, 5, 1, 1, 39, 1, 6, 2, 6, 1, 1, 1, 3, 24, 11, 1, 1, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
MATHEMATICA
ContinuedFraction[Zeta[20], 100] (* Harvey P. Dale, Aug 20 2011 *)
CROSSREFS
Cf. A013678.
Cf. continued fractions for zeta(2)-zeta(19): A013679, A013631, A013680-A013695.
KEYWORD
nonn,cofr
AUTHOR
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 08 2024
STATUS
approved
A013681 Continued fraction for zeta(5). +10
5
1, 27, 12, 1, 1, 15, 1, 5, 1, 2, 19, 1, 1, 32, 1, 13, 1, 1, 1, 3, 1, 3, 2, 16, 1, 12, 4, 1, 5, 1, 1, 1, 1, 1, 2, 2, 6, 1, 8, 8, 6, 2, 3, 2, 2, 1, 30, 1, 17, 116, 1, 7, 1, 1, 1, 1, 1, 1, 2, 2, 12, 1, 4, 1, 1, 94, 1, 1, 3, 3, 6, 6, 1, 1, 2, 1, 17, 1, 1, 7, 1, 1, 11 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
MATHEMATICA
ContinuedFraction[Zeta[5], 80] (* Harvey P. Dale, Nov 30 2012 *)
CROSSREFS
Cf. A013663 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.
KEYWORD
nonn,cofr
AUTHOR
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 09 2024
STATUS
approved
A078984 Numerators of continued fraction convergents to zeta(3). +10
3
1, 5, 6, 113, 119, 232, 351, 1636, 1987, 19519, 177658, 374835, 552493, 927328, 1479821, 3886970, 28688611, 32575581, 61264192, 461424925, 5136938367, 5598363292, 10735301659, 16333664951, 59736296512, 76069961463 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
MATHEMATICA
Numerator[Convergents[Zeta[3], 30]] Harvey P. Dale, May 19 2012
PROG
(PARI) a(n)=component(component(contfracpnqn(contfrac(zeta(3), n+1)), 1), 1)
CROSSREFS
Cf. A078985 (denominators), A013631 (continued fraction).
KEYWORD
cofr,frac,nonn
AUTHOR
Benoit Cloitre, Dec 20 2002
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 10 2024
STATUS
approved
A229057 First occurrences of n in the continued fraction of zeta(3). +10
3
0, 11, 24, 1, 63, 26, 16, 139, 9, 118, 20, 238, 174, 77, 180, 45, 199, 3, 82, 618, 752, 411, 176, 196, 413, 137, 145, 560, 232, 28, 2275, 1548, 659, 888, 297, 1039, 2278, 321, 1273, 1881, 344, 2925, 672, 253, 1960, 1541, 1680, 295, 5422 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Correctly indexed version of A033165.
LINKS
Eric Weisstein's World of Mathematics, Apery's Constant Continued Fraction
CROSSREFS
Cf. A033165 (= a(n) + 1).
Cf. A013631 (continued fraction of zeta(3)).
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Sep 16 2013
STATUS
approved
A013682 Continued fraction for zeta(6). +10
2
1, 57, 1, 1, 1, 15, 1, 6, 3, 61, 1, 5, 3, 1, 6, 1, 3, 3, 6, 1, 10, 1, 3, 2, 1, 4, 1, 1, 5, 1, 61, 1, 3, 1, 2, 1, 3, 2, 1, 3, 1, 2, 2, 28, 1, 2, 18, 53, 2, 1, 17, 11, 3, 4, 3, 5, 2, 1, 27, 9, 8, 3, 3, 3, 9, 5, 1, 3, 29, 1, 4, 1, 2, 40, 4, 8, 1, 3, 1, 2, 2, 1, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
MATHEMATICA
ContinuedFraction[Zeta[6], 100] (* Harvey P. Dale, Jul 19 2019 *)
CROSSREFS
Cf. A013664 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.
KEYWORD
nonn,cofr
AUTHOR
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 09 2024
STATUS
approved
A013683 Continued fraction for zeta(7). +10
2
1, 119, 1, 3, 2, 1, 2, 1, 39, 2, 3, 12, 3, 1, 1, 1, 2, 6, 5, 1, 5, 1, 2, 1, 23, 2, 1, 5, 34, 2, 1, 1, 3, 47, 2, 1, 8, 16, 1, 4, 1, 2, 1, 1, 1, 10, 72, 1, 1, 1, 1, 1, 2, 3, 13, 1, 2, 1, 5, 1, 27, 2, 9283, 1, 36, 1, 1, 1, 1, 3, 3, 23, 27, 5, 2, 4, 1, 3, 16, 1, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
MATHEMATICA
ContinuedFraction[Zeta[7], 100] (* Harvey P. Dale, Sep 13 2020 *)
CROSSREFS
Cf. A013665 (decimal expansion).
Cf. continued fractions for zeta(2)-zeta(20): A013679, A013631, A013680-A013696.
KEYWORD
nonn,cofr
AUTHOR
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 09 2024
STATUS
approved
page 1 2 3

Search completed in 0.022 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 23:06 EDT 2024. Contains 374727 sequences. (Running on oeis4.)