[go: nahoru, domu]

login
Search: a049508 -id:a049508
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes of form 10n+3.
+10
48
3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263, 283, 293, 313, 353, 373, 383, 433, 443, 463, 503, 523, 563, 593, 613, 643, 653, 673, 683, 733, 743, 773, 823, 853, 863, 883, 953, 983, 1013, 1033, 1063, 1093, 1103, 1123, 1153, 1163, 1193
OFFSET
1,1
COMMENTS
Also primes of form 5n+3.
Union of A132233, A132235, {3}. - Ray Chandler, Apr 07 2009
Primes p such that arithmetic mean of divisors of p^4 is an integer. There are 2 such sequences of primes, this one and A030430. - Ctibor O. Zizka, Oct 20 2009
5 is not quadratic residue of primes of this form. - Vincenzo Librandi, Jun 25 2014
Intersection of A000040 and A017305. - Iain Fox, Dec 30 2017
LINKS
A. Granville and G. Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004.
FORMULA
a(n) = 10*A102338(n) + 3.
MATHEMATICA
Select[Prime@Range[200], Mod[ #, 10] == 3 &] (* Ray Chandler, Nov 07 2006 *)
Select[10 Range[0, 150] + 3, PrimeQ] (* Harvey P. Dale, Apr 06 2011 *)
PROG
(PARI) select(n->n%10==3, primes(500)) \\ Charles R Greathouse IV, Apr 29 2015
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Extended by Ray Chandler, Nov 07 2006
STATUS
approved
Numbers k such that prime(k) == 1 (mod 10).
+10
9
5, 11, 13, 18, 20, 26, 32, 36, 42, 43, 47, 53, 54, 58, 60, 64, 67, 79, 82, 83, 89, 94, 98, 100, 105, 110, 115, 116, 121, 125, 126, 133, 135, 141, 142, 152, 156, 160, 164, 167, 172, 173, 177, 178, 182, 190, 193, 194, 197, 202, 210, 212, 216, 218, 221, 230, 233
OFFSET
1,1
COMMENTS
Also k for which prime(k) == 1 (mod 5). - Bruno Berselli, Mar 04 2016
The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021
FORMULA
a(n) = A000720(A030430(n)). - Ray Chandler, Nov 07 2006
MATHEMATICA
Select[Range[210], Mod[Prime[ # ], 10] == 1 &] (* Ray Chandler, Nov 07 2006 *)
PROG
(Sage) [n for n in (1..300) if Mod(nth_prime(n), 10) == 1] # Bruno Berselli, Mar 04 2016
(PARI) isok(n) = !((prime(n)-1) % 10); \\ Michel Marcus, Mar 04 2016
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Extended by Ray Chandler, Nov 28 2003
Formula corrected by Zak Seidov, Sep 20 2011
STATUS
approved
Numbers k such that 10k+3 is prime.
+10
9
0, 1, 2, 4, 5, 7, 8, 10, 11, 16, 17, 19, 22, 23, 26, 28, 29, 31, 35, 37, 38, 43, 44, 46, 50, 52, 56, 59, 61, 64, 65, 67, 68, 73, 74, 77, 82, 85, 86, 88, 95, 98, 101, 103, 106, 109, 110, 112, 115, 116, 119, 121, 122, 128, 130, 137, 142, 143, 145, 148, 149, 152, 154, 155
OFFSET
1,3
LINKS
EXAMPLE
For n=1, 10k+3 = 13 (prime).
For n=26, 10k+3 = 263 (prime).
For n=50, 10k+3 = 503 (prime).
MATHEMATICA
Select[Range[0, 160], PrimeQ[10# + 3] &] (* Ray Chandler, Nov 07 2006 *)
PROG
(Magma) [n: n in [0..1000]| IsPrime(10*n+3)]; // Vincenzo Librandi, Apr 06 2011
(PARI) isok(n) = isprime(10*n+3); \\ Michel Marcus, Sep 08 2016
CROSSREFS
Cf. A023238 (subsequence of primes), A030431, A049508.
KEYWORD
nonn
AUTHOR
Parthasarathy Nambi, Feb 20 2005
EXTENSIONS
Edited and extended by Ray Chandler, Nov 07 2006
STATUS
approved
Numbers k such that prime(k) == 7 (mod 10).
+10
6
4, 7, 12, 15, 19, 25, 28, 31, 33, 37, 39, 45, 49, 55, 59, 63, 66, 68, 69, 73, 78, 88, 91, 93, 101, 102, 106, 107, 111, 113, 118, 123, 129, 134, 138, 139, 144, 148, 151, 154, 155, 159, 161, 163, 165, 168, 181, 184, 187, 195, 199, 203, 206, 211, 214, 217, 219, 225
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021
FORMULA
a(n) = A000720(A030432(n)). - Ray Chandler, Nov 07 2006
MATHEMATICA
Select[Range[240], Mod[Prime[ # ], 10] == 7 &] (* Ray Chandler, Nov 07 2006 *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Extended by Ray Chandler, Nov 07 2006
STATUS
approved
Numbers k such that prime(k) == 9 (mod 10).
+10
5
8, 10, 17, 22, 24, 29, 34, 35, 41, 46, 50, 52, 57, 70, 72, 75, 77, 80, 81, 85, 87, 92, 95, 97, 104, 109, 114, 120, 127, 128, 131, 136, 140, 145, 146, 149, 157, 158, 169, 171, 175, 176, 180, 186, 189, 201, 204, 205, 207, 209, 215, 222, 223, 226, 228, 232, 237, 239
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021
FORMULA
a(n) = A000720(A030433(n)). - Ray Chandler, Nov 07 2006
MATHEMATICA
Select[Range[240], Mod[Prime[ # ], 10] == 9 &] (* Ray Chandler, Nov 07 2006 *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Extended by Ray Chandler, Nov 07 2006
STATUS
approved
Numbers k such that (prime(k) mod 5) == 0 (mod 3).
+10
4
2, 3, 6, 9, 14, 16, 21, 23, 27, 30, 38, 40, 44, 48, 51, 56, 61, 62, 65, 71, 74, 76, 84, 86, 90, 96, 99, 103, 108, 112, 117, 119, 122, 124, 130, 132, 137, 143, 147, 150, 153, 162, 166, 170, 174, 179, 183, 185, 188, 191, 192, 196, 198, 200, 208, 213, 220, 224
OFFSET
1,1
COMMENTS
Every positive integer is in exactly one of the sequences A244739, A024707, A244741.
LINKS
EXAMPLE
n ... prime(n) mod 5 mod 3
1 ..... 2 ..... 2 ... 2
2 ..... 3 ..... 3 ... 0
3 ..... 5 ..... 0 ... 0
4 ..... 7 ..... 2 ... 2
5 ..... 11 .... 1 ... 1
6 ..... 13 .... 3 ... 0
MATHEMATICA
z = 300; u = Mod[Table[Mod[Prime[n], 5], {n, 1, z}], 3] (* A244738 *)
v1 = Flatten[Position[u, 0]] (* A244739 *)
v2 = Flatten[Position[u, 1]] (* A024707 *)
v3 = Flatten[Position[u, 2]] (* A244741 *)
CROSSREFS
Cf. A039703, A244738, A024707, A244741, A244735. Essentially the same as A049508.
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jul 05 2014
STATUS
approved
Both n and prime(n) are primes congruent to 3 (mod 10).
+10
1
23, 103, 293, 503, 823, 883, 953, 983, 1033, 1163, 1213, 1223, 1433, 1453, 1493, 1523, 1723, 1733, 1933, 1993, 2113, 2203, 2803, 2833, 2903, 3023, 3203, 3343, 3433, 3733, 3823, 3833, 4003, 4243, 4373, 4483, 4513, 4733, 4813, 4903, 4943, 4993, 5333, 5503, 5743, 6143, 6343, 6833, 7013
OFFSET
1,1
COMMENTS
Intersection of A030431 and A049508.
EXAMPLE
prime(23, 103, 293, 503, 823, 883, 953, 983, 1033, 1163) = (83, 563, 1913, 3593, 6323, 6863, 7523, 7753, 8233, 9403).
MATHEMATICA
Intersection[A030431 = Select[Range[3, 1000003, 10], PrimeQ], PrimePi[A030431]] (* gives 469 terms for prime(n) up to 10^6 *)
Select[Prime[Range[50000]], Mod[#, 10]==Mod[Prime[#], 10]==3&] (* gives 3126 terms from the first 50000 primes *)(* Harvey P. Dale, Nov 29 2014 *)
PROG
(PARI) s=[]; forprime(n=2, 8000, if(n%10==3 && prime(n)%10==3, s=concat(s, n))); s \\ Colin Barker, Apr 16 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 13 2014
STATUS
approved

Search completed in 0.008 seconds