Displaying 1-7 of 7 results found.
page
1
3, 13, 23, 43, 53, 73, 83, 103, 113, 163, 173, 193, 223, 233, 263, 283, 293, 313, 353, 373, 383, 433, 443, 463, 503, 523, 563, 593, 613, 643, 653, 673, 683, 733, 743, 773, 823, 853, 863, 883, 953, 983, 1013, 1033, 1063, 1093, 1103, 1123, 1153, 1163, 1193
COMMENTS
Also primes of form 5n+3.
Primes p such that arithmetic mean of divisors of p^4 is an integer. There are 2 such sequences of primes, this one and A030430. - Ctibor O. Zizka, Oct 20 2009
MATHEMATICA
Select[Prime@Range[200], Mod[ #, 10] == 3 &] (* Ray Chandler, Nov 07 2006 *)
Select[10 Range[0, 150] + 3, PrimeQ] (* Harvey P. Dale, Apr 06 2011 *)
Numbers k such that prime(k) == 1 (mod 10).
+10
9
5, 11, 13, 18, 20, 26, 32, 36, 42, 43, 47, 53, 54, 58, 60, 64, 67, 79, 82, 83, 89, 94, 98, 100, 105, 110, 115, 116, 121, 125, 126, 133, 135, 141, 142, 152, 156, 160, 164, 167, 172, 173, 177, 178, 182, 190, 193, 194, 197, 202, 210, 212, 216, 218, 221, 230, 233
COMMENTS
The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021
MATHEMATICA
Select[Range[210], Mod[Prime[ # ], 10] == 1 &] (* Ray Chandler, Nov 07 2006 *)
PROG
(Sage) [n for n in (1..300) if Mod(nth_prime(n), 10) == 1] # Bruno Berselli, Mar 04 2016
(PARI) isok(n) = !((prime(n)-1) % 10); \\ Michel Marcus, Mar 04 2016
Numbers k such that 10k+3 is prime.
+10
9
0, 1, 2, 4, 5, 7, 8, 10, 11, 16, 17, 19, 22, 23, 26, 28, 29, 31, 35, 37, 38, 43, 44, 46, 50, 52, 56, 59, 61, 64, 65, 67, 68, 73, 74, 77, 82, 85, 86, 88, 95, 98, 101, 103, 106, 109, 110, 112, 115, 116, 119, 121, 122, 128, 130, 137, 142, 143, 145, 148, 149, 152, 154, 155
EXAMPLE
For n=1, 10k+3 = 13 (prime).
For n=26, 10k+3 = 263 (prime).
For n=50, 10k+3 = 503 (prime).
MATHEMATICA
Select[Range[0, 160], PrimeQ[10# + 3] &] (* Ray Chandler, Nov 07 2006 *)
Numbers k such that prime(k) == 7 (mod 10).
+10
6
4, 7, 12, 15, 19, 25, 28, 31, 33, 37, 39, 45, 49, 55, 59, 63, 66, 68, 69, 73, 78, 88, 91, 93, 101, 102, 106, 107, 111, 113, 118, 123, 129, 134, 138, 139, 144, 148, 151, 154, 155, 159, 161, 163, 165, 168, 181, 184, 187, 195, 199, 203, 206, 211, 214, 217, 219, 225
COMMENTS
The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021
MATHEMATICA
Select[Range[240], Mod[Prime[ # ], 10] == 7 &] (* Ray Chandler, Nov 07 2006 *)
Numbers k such that prime(k) == 9 (mod 10).
+10
5
8, 10, 17, 22, 24, 29, 34, 35, 41, 46, 50, 52, 57, 70, 72, 75, 77, 80, 81, 85, 87, 92, 95, 97, 104, 109, 114, 120, 127, 128, 131, 136, 140, 145, 146, 149, 157, 158, 169, 171, 175, 176, 180, 186, 189, 201, 204, 205, 207, 209, 215, 222, 223, 226, 228, 232, 237, 239
COMMENTS
The asymptotic density of this sequence is 1/4 (by Dirichlet's theorem). - Amiram Eldar, Mar 01 2021
MATHEMATICA
Select[Range[240], Mod[Prime[ # ], 10] == 9 &] (* Ray Chandler, Nov 07 2006 *)
Numbers k such that (prime(k) mod 5) == 0 (mod 3).
+10
4
2, 3, 6, 9, 14, 16, 21, 23, 27, 30, 38, 40, 44, 48, 51, 56, 61, 62, 65, 71, 74, 76, 84, 86, 90, 96, 99, 103, 108, 112, 117, 119, 122, 124, 130, 132, 137, 143, 147, 150, 153, 162, 166, 170, 174, 179, 183, 185, 188, 191, 192, 196, 198, 200, 208, 213, 220, 224
EXAMPLE
n ... prime(n) mod 5 mod 3
1 ..... 2 ..... 2 ... 2
2 ..... 3 ..... 3 ... 0
3 ..... 5 ..... 0 ... 0
4 ..... 7 ..... 2 ... 2
5 ..... 11 .... 1 ... 1
6 ..... 13 .... 3 ... 0
MATHEMATICA
z = 300; u = Mod[Table[Mod[Prime[n], 5], {n, 1, z}], 3] (* A244738 *)
v1 = Flatten[Position[u, 0]] (* A244739 *)
v2 = Flatten[Position[u, 1]] (* A024707 *)
v3 = Flatten[Position[u, 2]] (* A244741 *)
Both n and prime(n) are primes congruent to 3 (mod 10).
+10
1
23, 103, 293, 503, 823, 883, 953, 983, 1033, 1163, 1213, 1223, 1433, 1453, 1493, 1523, 1723, 1733, 1933, 1993, 2113, 2203, 2803, 2833, 2903, 3023, 3203, 3343, 3433, 3733, 3823, 3833, 4003, 4243, 4373, 4483, 4513, 4733, 4813, 4903, 4943, 4993, 5333, 5503, 5743, 6143, 6343, 6833, 7013
EXAMPLE
prime(23, 103, 293, 503, 823, 883, 953, 983, 1033, 1163) = (83, 563, 1913, 3593, 6323, 6863, 7523, 7753, 8233, 9403).
MATHEMATICA
Intersection[ A030431 = Select[Range[3, 1000003, 10], PrimeQ], PrimePi[ A030431]] (* gives 469 terms for prime(n) up to 10^6 *)
Select[Prime[Range[50000]], Mod[#, 10]==Mod[Prime[#], 10]==3&] (* gives 3126 terms from the first 50000 primes *)(* Harvey P. Dale, Nov 29 2014 *)
PROG
(PARI) s=[]; forprime(n=2, 8000, if(n%10==3 && prime(n)%10==3, s=concat(s, n))); s \\ Colin Barker, Apr 16 2014
Search completed in 0.008 seconds
|