[go: nahoru, domu]

login
Search: a060693 -id:a060693
     Sort: relevance | references | number | modified | created      Format: long | short | data
Large Schröder numbers (or large Schroeder numbers, or big Schroeder numbers).
(Formerly M1659)
+10
294
1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718, 5293446, 27297738, 142078746, 745387038, 3937603038, 20927156706, 111818026018, 600318853926, 3236724317174, 17518619320890, 95149655201962, 518431875418926, 2832923350929742, 15521467648875090
Triangle of Narayana (A001263) with 0 <= k <= n, read by rows.
+10
41
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0, 1, 55, 825, 4950, 13860
Triangle read by rows: T(n,k) = C(n+k,n)*C(n,k)/(k+1), for n >= 0, k = 0..n.
+10
38
1, 1, 1, 1, 3, 2, 1, 6, 10, 5, 1, 10, 30, 35, 14, 1, 15, 70, 140, 126, 42, 1, 21, 140, 420, 630, 462, 132, 1, 28, 252, 1050, 2310, 2772, 1716, 429, 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430, 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862
Triangle read by rows: T(n, k) is the number of diagonal dissections of a convex n-gon into k+1 regions.
+10
36
1, 1, 2, 1, 5, 5, 1, 9, 21, 14, 1, 14, 56, 84, 42, 1, 20, 120, 300, 330, 132, 1, 27, 225, 825, 1485, 1287, 429, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 1, 54, 936, 7644, 34398, 91728, 148512, 143208, 75582, 16796
a(n) = (1/n) * Sum_{i=0..n-1} C(n,i)*C(n,i+1)*2^i*3^(n-i), a(0)=1.
+10
24
1, 3, 15, 93, 645, 4791, 37275, 299865, 2474025, 20819307, 178003815, 1541918901, 13503125805, 119352115551, 1063366539315, 9539785668657, 86104685123025, 781343125570515, 7124072211203775, 65233526296899981, 599633539433039445, 5531156299278726663
Triangle read by rows: T(n,k) is number of Motzkin paths of length n and having k horizontal steps.
+10
22
1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 2, 0, 6, 0, 1, 0, 10, 0, 10, 0, 1, 5, 0, 30, 0, 15, 0, 1, 0, 35, 0, 70, 0, 21, 0, 1, 14, 0, 140, 0, 140, 0, 28, 0, 1, 0, 126, 0, 420, 0, 252, 0, 36, 0, 1, 42, 0, 630, 0, 1050, 0, 420, 0, 45, 0, 1, 0, 462, 0, 2310, 0, 2310, 0, 660, 0, 55, 0, 1, 132, 0, 2772, 0
a(n) = (1/n) * Sum_{i=0..n-1} C(n,i)*C(n,i+1)*3^i*4^(n-i), a(0)=1.
+10
15
1, 4, 28, 244, 2380, 24868, 272188, 3080596, 35758828, 423373636, 5092965724, 62071299892, 764811509644, 9511373563492, 119231457692284, 1505021128450516, 19112961439180588, 244028820862442116, 3130592301487969948, 40333745806536135028, 521655330655122923980
Expansion of (1-3*x-sqrt(9*x^2-10*x+1))/(2*x).
+10
13
1, 4, 20, 116, 740, 5028, 35700, 261780, 1967300, 15072836, 117297620, 924612532, 7367204260, 59240277988, 480118631220, 3917880562644, 32163325863300, 265446382860420, 2201136740855700, 18329850024033012, 153225552507991140
Triangle read by rows: T(n,k) is the number of lattice paths from (0,0) to (n,n) using steps E=(1,0), N=(0,1) and D=(1,1) (i.e., bilateral Schroeder paths), having k D=(1,1) steps.
+10
12
1, 2, 1, 6, 6, 1, 20, 30, 12, 1, 70, 140, 90, 20, 1, 252, 630, 560, 210, 30, 1, 924, 2772, 3150, 1680, 420, 42, 1, 3432, 12012, 16632, 11550, 4200, 756, 56, 1, 12870, 51480, 84084, 72072, 34650, 9240, 1260, 72, 1, 48620, 218790, 411840, 420420, 252252
a(n) = (3*n)! / ((n+1)*(n!)^3).
(Formerly M3125)
+10
7
1, 3, 30, 420, 6930, 126126, 2450448, 49884120, 1051723530, 22787343150, 504636071940, 11377249621920, 260363981732400, 6034149862347600, 141371511060715200, 3343436236585914480, 79726203788589122490, 1914992149823954412750, 46295775130831740013500

Search completed in 0.035 seconds