[go: nahoru, domu]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a072102 -id:a072102
Displaying 1-8 of 8 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A001597 Perfect powers: m^k where m > 0 and k >= 2.
(Formerly M3326 N1336)
+10
568
1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Might also be called the nontrivial powers. - N. J. A. Sloane, Mar 24 2018
See A175064 for number of ways to write a(n) as m^k (m >= 1, k >= 1). - Jaroslav Krizek, Jan 23 2010
a(1) = 1, for n >= 2: a(n) = numbers m such that sum of perfect divisors of x = m has no solution. Perfect divisor of n is divisor d such that d^k = n for some k >= 1. a(n) for n >= 2 is complement of A175082. - Jaroslav Krizek, Jan 24 2010
A075802(a(n)) = 1. - Reinhard Zumkeller, Jun 20 2011
Catalan's conjecture (now a theorem) is that 1 occurs just once as a difference, between 8 and 9.
For a proof of Catalan's conjecture, see the paper by Metsänkylä. - L. Edson Jeffery, Nov 29 2013
m^k is the largest number n such that (n^k-m)/(n-m) is an integer (for k > 1 and m > 1). - Derek Orr, May 22 2014
From Daniel Forgues, Jul 22 2014: (Start)
a(n) is asymptotic to n^2, since the density of cubes and higher powers among the squares and higher powers is 0. E.g.,
a(10^1) = 49 (49% of 10^2),
a(10^2) = 6400 (64% of 10^4),
a(10^3) = 804357 (80.4% of 10^6),
a(10^4) = 90706576 (90.7% of 10^8),
a(10^n) ~ 10^(2n) - o(10^(2n)). (End)
A proper subset of A001694. - Robert G. Wilson v, Aug 11 2014
a(10^n): 1, 49, 6400, 804357, 90706576, 9565035601, 979846576384, 99066667994176, 9956760243243489, ... . - Robert G. Wilson v, Aug 15 2014
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 66.
René Schoof, Catalan's Conjecture, Springer-Verlag, 2008, p. 1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Abdelkader Dendane, Power (Exponential) Calculator.
H. W. Gould, Problem H-170, Fib. Quart., 8 (1970), p. 268, problem H-170.
Rafael Jakimczuk, On the Distribution of Perfect Powers, Journal of Integer Sequences, Vol. 14 (2011), Article 11.8.5.
Rafael Jakimczuk, Asymptotic Formulae for the n-th Perfect Power, Journal of Integer Sequences, Vol. 15 (2012), Article 12.5.5.
Holly Krieger and Brady Haran, Catalan's Conjecture, Numberphile video (2018).
Tauno Metsänkylä, Catalan's conjecture: another old Diophantine problem solved, Bull. Amer. Math. Soc. (NS), Vol. 41, No. 1 (2004), pp. 43-57.
Preda Mihailescu, Primary Cyclotomic Units and a Proof of Catalan’s Conjecture, Journal für die Reine und Angewandte Mathematik, vol. 27 (2004), pp. 167-195.
Donald J. Newman, A Problem Seminar, Springer; see Problem #72.
M. A. Nyblom, A Counting Function for the Sequence of Perfect Powers, Austral. Math. Soc. Gaz. 33 (2006), 338-343.
Hugo Pfoertner, 1010196 perfect powers up to 10^12, compressed 7z archive, 3.3 MB (2023).
Michel Waldschmidt, Open Diophantine problems, arXiv:math/0312440 [math.NT], 2003-2004.
Michel Waldschmidt, Lecture on the abc conjecture and some of its consequences, Abdus Salam School of Mathematical Sciences (ASSMS), Lahore, 6th World Conference on 21st Century Mathematics 2013.
Eric Weisstein's World of Mathematics, Perfect Power.
FORMULA
Goldbach showed that Sum_{n >= 2} 1/(a(n)-1) = 1.
Formulas from postings to the Number Theory List by various authors, 2002:
Sum_{i >= 2} Sum_{j >= 2} 1/i^j = 1;
Sum_{k >= 2} 1/(a(k)+1) = Pi^2 / 3 - 5/2;
Sum_{k >= 2} 1/a(k) = Sum_{n >= 2} mu(n)(1- zeta(n)) approx = 0.87446436840494... See A072102.
For asymptotics see Newman.
For n > 1: gcd(exponents in prime factorization of a(n)) > 1, cf. A124010. - Reinhard Zumkeller, Apr 13 2012
a(n) ~ n^2. - Thomas Ordowski, Nov 04 2012
a(n) = n^2 - 2*n^(5/3) - 2*n^(7/5) + (13/3)*n^(4/3) - 2*n^(9/7) + 2*n^(6/5) - 2*n^(13/11) + o(n^(13/11)) (Jakimczuk, 2012). - Amiram Eldar, Jun 30 2023
MAPLE
isA001597 := proc(n)
local e ;
e := seq(op(2, p), p=ifactors(n)[2]) ;
return ( igcd(e) >=2 or n =1 ) ;
end proc:
A001597 := proc(n)
option remember;
local a;
if n = 1 then
1;
else
for a from procname(n-1)+1 do
if isA001597(a) then
return a ;
end if;
end do;
end if;
end proc:
seq(A001597(n), n=1..70) ; # R. J. Mathar, Jun 07 2011
N:= 10000: # to get all entries <= N
sort({1, seq(seq(a^b, b = 2 .. floor(log[a](N))), a = 2 .. floor(sqrt(N)))}); # Robert FERREOL, Jul 18 2023
MATHEMATICA
min = 0; max = 10^4; Union@ Flatten@ Table[ n^expo, {expo, Prime@ Range@ PrimePi@ Log2@ max}, {n, Floor[1 + min^(1/expo)], max^(1/expo)}] (* T. D. Noe, Apr 18 2011; slightly modified by Robert G. Wilson v, Aug 11 2014 *)
perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[All, 2]] > 1; Select[Range@ 1765, perfectPowerQ] (* Ant King, Jun 29 2013; slightly modified by Robert G. Wilson v, Aug 11 2014 *)
nextPerfectPower[n_] := If[n == 1, 4, Min@ Table[ (Floor[n^(1/k)] + 1)^k, {k, 2, 1 + Floor@ Log2@ n}]]; NestList[ nextPerfectPower, 1, 55] (* Robert G. Wilson v, Aug 11 2014 *)
Join[{1}, Select[Range[2000], GCD@@FactorInteger[#][[All, 2]]>1&]] (* Harvey P. Dale, Apr 30 2018 *)
PROG
(Magma) [1] cat [n : n in [2..1000] | IsPower(n) ];
(PARI) {a(n) = local(m, c); if( n<2, n==1, c=1; m=1; while( c<n, m++; if( ispower(m), c++)); m)} /* Michael Somos, Aug 05 2009 */
(PARI) is(n)=ispower(n) || n==1 \\ Charles R Greathouse IV, Sep 16 2015
(PARI) list(lim)=my(v=List(vector(sqrtint(lim\=1), n, n^2))); for(e=3, logint(lim, 2), for(n=2, sqrtnint(lim, e), listput(v, n^e))); Set(v) \\ Charles R Greathouse IV, Dec 10 2019
(Sage)
def A001597_list(n) :
return [k for k in (1..n) if k.is_perfect_power()]
A001597_list(1764) # Peter Luschny, Feb 03 2012
(Haskell)
import Data.Map (singleton, findMin, deleteMin, insert)
a001597 n = a001597_list !! (n-1)
(a001597_list, a025478_list, a025479_list) =
unzip3 $ (1, 1, 2) : f 9 (3, 2) (singleton 4 (2, 2)) where
f zz (bz, ez) m
| xx < zz = (xx, bx, ex) :
f zz (bz, ez+1) (insert (bx*xx) (bx, ex+1) $ deleteMin m)
| xx > zz = (zz, bz, 2) :
f (zz+2*bz+1) (bz+1, 2) (insert (bz*zz) (bz, 3) m)
| otherwise = f (zz+2*bz+1) (bz+1, 2) m
where (xx, (bx, ex)) = findMin m -- bx ^ ex == xx
-- Reinhard Zumkeller, Mar 28 2014, Oct 04 2012, Apr 13 2012
(Python)
from sympy import perfect_power
def ok(n): return n==1 or perfect_power(n)
print([m for m in range(1, 1765) if ok(m)]) # Michael S. Branicky, Jan 04 2021
(Python)
import sympy
class A001597() :
def __init__(self) :
self.a = [1]
def at(self, n):
if n <= len(self.a):
return self.a[n-1]
else:
cand = self.at(n-1)+1
while sympy.perfect_power(cand) == False:
cand += 1
self.a.append(cand)
return cand
a001597 = A001597()
for n in range(1, 20):
print(a001597.at(n)) # R. J. Mathar, Mar 28 2023
CROSSREFS
Complement of A007916.
Subsequence of A072103; A072777 is a subsequence.
Union of A075109 and A075090.
There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2), and which are sometimes confused with the present sequence.
First differences give A053289.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Minor corrections from N. J. A. Sloane, Jun 27 2010
STATUS
approved
A136141 Decimal expansion of Sum_{p prime} 1/(p*(p-1)). +10
36
7, 7, 3, 1, 5, 6, 6, 6, 9, 0, 4, 9, 7, 9, 5, 1, 2, 7, 8, 6, 4, 3, 6, 7, 4, 5, 9, 8, 5, 5, 9, 4, 2, 3, 9, 5, 6, 1, 8, 7, 4, 1, 3, 3, 6, 0, 8, 3, 1, 8, 6, 0, 4, 8, 3, 1, 1, 0, 0, 6, 0, 6, 7, 3, 5, 6, 7, 0, 9, 0, 2, 8, 4, 8, 9, 2, 3, 3, 3, 9, 7, 8, 3, 3, 7, 9, 8, 7, 5, 8, 8, 2, 3, 3, 2, 0, 8, 1, 8, 3, 2, 8, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Excess of prime factors with multiplicity over distinct prime factors for random (large) integers. - Charles R Greathouse IV, Sep 06 2011
Sum of reciprocals of (proper) prime powers. The sum of reciprocals of all proper powers is A072102. - Charles R Greathouse IV, Apr 24 2012
Decimal expansion of the infinite sum of the reciprocals of the prime powers which are not prime (A246547). - Robert G. Wilson v, May 13 2019
See the second 'Applications' example under the Mathematica help file for the function PrimePowerQ. - Robert G. Wilson v, May 13 2019
REFERENCES
Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
Steven R. Finch, Mathematical Constants, Cambridge Univ. Press, 2003, Meissel-Mertens constants, p. 94.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 0..10000 (first 1002 terms from Jason Kimberley).
Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
R. J. Mathar, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 [math.NT], 2008-2009. Tables 8 and 10.
FORMULA
Equals Sum_{n>=1} 1/(A001248(n) - A000040(n)).
Equals Sum_{s>=2} P(s), where P is the prime zeta function. - Charles R Greathouse IV, Sep 06 2011
Equals A083342 - A077761, that is, Sum_{n>=2} ((EulerPhi(n) - MoebiusMu(n))/n) * log(zeta(n)). - Jean-François Alcover, Sep 02 2015
Equals 2 * Sum_{k>=2} pi(k)/(k^3-k), where pi(k) = A000720(k) (Shamos, 2011, p. 8). - Amiram Eldar, Mar 12 2024
EXAMPLE
Equals 1/2 + 1/(3*2) + 1/(5*4) + 1/(7*6) + ...
= 0.7731566690497951278643674598559423956187413360831860483110060673567...
MATHEMATICA
digits = 103; sp = NSum[PrimeZetaP[n], {n, 2, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 2*digits]; RealDigits[sp, 10, digits] // First (* Jean-François Alcover, Sep 02 2015 *)
PROG
(PARI) W(x)=solve(y=log(x)/2, max(1, log(x)), y*exp(y)-x)
eps()=2. >> (32*ceil(default(realprecision)/9.63))
primezeta(s)=my(t=s*log(2), iter=W(t/eps())\t); sum(k=1, iter, moebius(k)/k*log(abs(zeta(k*s))))
a(lim, e)={ \\ choose parameters to maximize speed and precision
my(x, y=exp(W(lim)-.5));
x=lim^e*(e*log(y))^e*(y*log(y))^-e*incgam(-e, e*log(y));
forprime(p=2, lim, x+=1/((p*1.)^e*(p-1)));
x+sum(n=2, e, primezeta(n))
}; \\ Charles R Greathouse IV, Sep 07 2011
(PARI) sumeulerrat(1/(p*(p-1))) \\ Amiram Eldar, Mar 18 2021
(Magma) R := RealField(105);
c := &+[R|(EulerPhi(n)-MoebiusMu(n))/n*Log(ZetaFunction(R, n)):n in[2..360]];
Reverse(IntegerToSequence(Floor(c*10^103))); // Jason Kimberley, Jan 12 2017
CROSSREFS
Cf. A152447 (over the semiprimes), A000040, A000720, A001248, A072102, A077761, A083342, A179119, A246547.
Decimal expansion of the prime zeta function: A085548 (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).
KEYWORD
cons,easy,nonn
AUTHOR
R. J. Mathar, Mar 09 2008
EXTENSIONS
More terms from D. S. McNeil, Sep 06 2011
More digits from Jean-François Alcover, Sep 02 2015
STATUS
approved
A091050 Number of divisors of n that are perfect powers. +10
25
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 4, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
COMMENTS
Not the same as A005361: a(72)=5 <> A005361(72)=6.
LINKS
Eric Weisstein's World of Mathematics, Divisor Function.
Eric Weisstein's World of Mathematics, Perfect Power.
FORMULA
a(n) = 1 iff n is squarefree: a(A005117(n)) = 1, a(A013929(n)) > 1.
a(p^k) = k for p prime, k>0: a(A000961(n)) = A025474(n).
a(n) = Sum_{k=1..A000005(n)} A075802(A027750(n,k)). - Reinhard Zumkeller, Dec 13 2012
G.f.: Sum_{k=i^j, i>=1, j>=2, excluding duplicates} x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 20 2017
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + A072102 = 1.874464... . - Amiram Eldar, Dec 31 2023
EXAMPLE
Divisors of n=108: {1,2,3,4,6,9,12,18,27,36,54,108},
a(108) = #{1^2, 2^2, 3^2, 3^3, 6^2} = 5.
MATHEMATICA
ppQ[n_] := GCD @@ Last /@ FactorInteger@ n > 1; ppQ[1] = True; f[n_] := Length@ Select[ Divisors@ n, ppQ]; Array[f, 105] (* Robert G. Wilson v, Dec 12 2012 *)
PROG
(Haskell)
a091050 = sum . map a075802 . a027750_row
-- Reinhard Zumkeller, Dec 13 2012
(PARI) a(n) = 1+ sumdiv(n, d, ispower(d)>1); \\ Michel Marcus, Sep 21 2014
(PARI) a(n)={my(f=factor(n)[, 2]); 1 + if(#f, sum(k=2, vecmax(f), moebius(k)*(1 - prod(i=1, #f, 1 + f[i]\k))))} \\ Andrew Howroyd, Aug 30 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Dec 15 2003
EXTENSIONS
Wrong formula deleted by Amiram Eldar, Apr 29 2020
STATUS
approved
A052486 Achilles numbers - powerful but imperfect: if n = Product(p_i^e_i) then all e_i > 1 (i.e., powerful), but the highest common factor of the e_i is 1, i.e., not a perfect power. +10
20
72, 108, 200, 288, 392, 432, 500, 648, 675, 800, 864, 968, 972, 1125, 1152, 1323, 1352, 1372, 1568, 1800, 1944, 2000, 2312, 2592, 2700, 2888, 3087, 3200, 3267, 3456, 3528, 3872, 3888, 4000, 4232, 4500, 4563, 4608, 5000, 5292, 5324, 5400, 5408, 5488, 6075 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Number of terms < 10^n: 0, 1, 13, 60, 252, 916, 3158, 10553, 34561, 111891, 359340, 1148195, 3656246, 11616582, 36851965, ..., A118896(n) - A070428(n). - Robert G. Wilson v, Aug 11 2014
a(n) = (s(n))^2 * f(n), s(n) > 1, f(n) > 1, where s(n) is not a power of f(n), and f(n) is squarefree and gcd(s(n), f(n)) = f(n). - Daniel Forgues, Aug 11 2015
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Robert Israel, log-log plot of a(n).
Eric Weisstein's World of Mathematics, Achilles Number.
OEIS Wiki, Achilles numbers.
FORMULA
a(n) = O(n^2). - Daniel Forgues, Aug 11 2015
a(n) = O(n^2 / log log n). - Daniel Forgues, Aug 12 2015
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/zeta(6) - Sum_{k>=2} mu(k)*(1-zeta(k)) - 1 = A082695 - A072102 - 1 = 0.06913206841581433836... - Amiram Eldar, Oct 14 2020
EXAMPLE
a(3)=200 because 200=2^3*5^2, both 3 and 2 are greater than 1, and the highest common factor of 3 and 2 is 1.
Factorizations of a(1) to a(20):
72 = 2^3 3^2, 108 = 2^2 3^3, 200 = 2^3 5^2, 288 = 2^5 3^2,
392 = 2^3 7^2, 432 = 2^4 3^3, 500 = 2^2 5^3, 648 = 2^3 3^4,
675 = 3^3 5^2, 800 = 2^5 5^2, 864 = 2^5 3^3, 968 = 2^3 11^2,
972 = 2^2 3^5, 1125 = 3^2 5^3, 1152 = 2^7 3^2, 1323 = 3^3 7^2,
1352 = 2^3 13^2, 1372 = 2^2 7^3, 1568 = 2^5 7^2, 1800 = 2^3 3^2 5^2.
Examples for a(n) = (s(n))^2 * f(n): (see above comment)
s(n) = 6, 6, 10, 12, 14, 12, 10, 18, 15, 20, 12, 22, 18, 15, 24, 21,
f(n) = 2, 3, 2, 2, 2, 3, 5, 2, 3, 2, 6, 2, 3, 5, 2, 3,
MAPLE
filter:= proc(n) local E; E:= map(t->t[2], ifactors(n)[2]); min(E)>1 and igcd(op(E))=1 end proc:
select(filter, [$1..10000]); # Robert Israel, Aug 11 2014
MATHEMATICA
achillesQ[n_] := Block[{ls = Last /@ FactorInteger@n}, Min@ ls > 1 == GCD @@ ls]; Select[ Range@ 5500, achillesQ@# &] (* Robert G. Wilson v, Jun 10 2010 *)
PROG
(PARI) is(n)=my(f=factor(n)[, 2]); n>9 && vecmin(f)>1 && gcd(f)==1 \\ Charles R Greathouse IV, Sep 18 2015, replacing code by M. F. Hasler, Sep 23 2010
(Python)
from math import gcd
from itertools import count, islice
from sympy import factorint
def A052486_gen(startvalue=1): # generator of terms >= startvalue
return (n for n in count(max(startvalue, 1)) if (lambda x: all(e > 1 for e in x) and gcd(*x) == 1)(factorint(n).values()))
A052486_list = list(islice(A052486_gen(), 20)) # Chai Wah Wu, Feb 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, Mar 16 2000
EXTENSIONS
Example edited by Mac Coombe (mac.coombe(AT)gmail.com), Sep 18 2010
Name edited by M. F. Hasler, Jul 17 2019
STATUS
approved
A340588 Squares of perfect powers. +10
3
1, 16, 64, 81, 256, 625, 729, 1024, 1296, 2401, 4096, 6561, 10000, 14641, 15625, 16384, 20736, 28561, 38416, 46656, 50625, 59049, 65536, 83521, 104976, 117649, 130321, 160000, 194481, 234256, 262144, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
a(n) = A001597(n)^2.
a(n+1) = A062965(n) + 1. - Hugo Pfoertner, Sep 29 2020
Sum_{k>1} 1/(a(k) - 1) = 7/4 - Pi^2/6 = 7/4 - zeta(2).
Sum_{k>1} 1/a(k) = Sum_{k>=2} mu(k)*(1-zeta(2*k)).
MATHEMATICA
Join[{1}, (Select[Range[2000], GCD @@ FactorInteger[#][[All, 2]] > 1 &])^2]
CROSSREFS
KEYWORD
nonn
AUTHOR
Terry D. Grant, Sep 21 2020
STATUS
approved
A242977 Decimal expansion of Sum_{k>1} 1/(k*(k-1)*zeta(k)), a constant related to Niven's constant. +10
2
7, 6, 6, 9, 4, 4, 4, 9, 0, 5, 2, 1, 0, 8, 8, 2, 4, 1, 6, 5, 2, 4, 1, 7, 9, 2, 3, 0, 0, 3, 1, 7, 6, 9, 3, 0, 9, 7, 4, 7, 5, 7, 8, 8, 9, 9, 3, 1, 9, 0, 5, 1, 6, 9, 6, 5, 4, 1, 2, 2, 0, 8, 1, 6, 0, 7, 8, 9, 6, 8, 4, 2, 3, 7, 5, 6, 7, 9, 5, 7, 7, 5, 7, 8, 9, 3, 7, 4, 6, 2, 9, 8, 4, 0, 9, 9, 4, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The asymptotic mean of the reciprocals of the maximal exponent in prime factorization of the positive integers. - Amiram Eldar, Dec 15 2022
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6 Niven's constant, p. 113.
LINKS
Wolfgang Schwarz and Jürgen Spilker, A remark on some special arithmetical functions, in: E. Laurincikas , E. Manstavicius and V. Stakenas (eds.), Analytic and Probabilistic Methods in Number Theory, Proceedings of the Second International Conference in Honour of J. Kubilius, Palanga, Lithuania, 23-27 September 1996, New Trends in Probability and Statistics, Vol. 4, VSP BV & TEV Ltd. (1997), pp. 221-245.
D. Suryanarayana and R. Sita Rama Chandra Rao, On the maximum and minimum exponents in factoring integers, Archiv der Mathematik, Vol. 28, No. 1 (1977), pp. 261-269.
Eric Weisstein's World of Mathematics, Niven's Constant.
FORMULA
Equals lim_{n->oo} (1/n) * Sum_{k=2..n} 1/A051903(k). - Amiram Eldar, Oct 16 2020
Equals 1 + Sum_{k>=2} (1/zeta(k)-1)/(k*(k-1)). - Amiram Eldar, Dec 15 2022
EXAMPLE
0.766944490521088241652417923...
MATHEMATICA
digits = 98; m0 = 100; dm = 100; Clear[f]; f[m_] := f[m] = NSum[1/(k*(k - 1)*Zeta[k]), {k, 2, m}, WorkingPrecision -> digits + 10, NSumTerms -> m] + 1/m; f[m0]; f[m = m0 + dm]; While[RealDigits[f[m], 10, digits] != RealDigits[f[m - dm], 10, digits], Print["m = ", m ]; m = m + dm]; RealDigits[f[m], 10, digits] // First
PROG
(PARI) sumpos(k = 2, 1/(k*(k-1)*zeta(k))) \\ Amiram Eldar, Dec 15 2022
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
A340585 Noncube perfect powers. +10
2
4, 9, 16, 25, 32, 36, 49, 81, 100, 121, 128, 144, 169, 196, 225, 243, 256, 289, 324, 361, 400, 441, 484, 529, 576, 625, 676, 784, 841, 900, 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2048, 2116, 2187, 2209, 2304, 2401, 2500 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
This was the original definition of A239870. However, the true definition of that sequence seems to be slightly different.
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = 1 - zeta(3) + Sum_{k>=2} mu(k)*(1-zeta(k)) = 1 - A002117 + A072102 = 0.6724074652... - Amiram Eldar, Jan 12 2021
MAPLE
filter:= proc(n) local g;
g:= igcd(op(ifactors(n)[2][.., 2]));
g > 1 and (g mod 3 <> 0)
end proc:
select(filter, [$1..10000]); # Robert Israel, Jan 12 2021
MATHEMATICA
Select[Range[2, 2500], (g = GCD @@ FactorInteger[#][[;; , 2]]) > 1 && !Divisible[g, 3] &] (* Amiram Eldar, Jan 12 2021 *)
PROG
(PARI) for(n=2, 2500, if( ispower(n) % 3, print1(n, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Jan 12 2021
STATUS
approved
A242972 Decimal expansion of a constant related to Niven's constant. +10
0
8, 9, 2, 8, 9, 4, 5, 7, 1, 4, 5, 1, 2, 6, 6, 0, 9, 0, 4, 5, 7, 0, 0, 9, 4, 3, 0, 0, 2, 2, 4, 2, 7, 0, 9, 3, 3, 6, 0, 5, 0, 4, 0, 8, 5, 9, 4, 4, 5, 6, 8, 4, 3, 2, 6, 4, 7, 4, 9, 5, 6, 7, 9, 0, 7, 4, 3, 7, 2, 7, 3, 4, 3, 8, 7, 2, 7, 6, 5, 6, 4, 9, 4, 9, 0, 6, 6, 9, 6, 8, 8, 7, 3, 6, 9, 4, 1, 7, 8, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.6 Niven's constant, p. 113.
LINKS
Eric Weisstein's MathWorld, Niven's Constant
FORMULA
Equals Sum_(p prime) (zeta(p)-1).
Equals Sum_{k>=2} Sum_{p prime} 1/k^p. - Amiram Eldar, Aug 21 2020
EXAMPLE
0.89289457145126609045700943002242709336...
MATHEMATICA
digits = 100; k0 = 100; dk = 50; $MaxExtraPrecision = 12*digits; z[n_?NumericQ] := Zeta[Prime[n // Floor]]; Clear[s]; s[k_] := s[k] = NSum[z[n] - 1, {n, 1, k}, WorkingPrecision -> digits + 10, NSumTerms -> 10*digits]*(1 + NSum[Zeta[n] - 1, {n, k + 1, Infinity}, WorkingPrecision -> digits + 10]); s[k0] ; s[k = k0 + dk]; While[RealDigits[s[k], 10, digits] != RealDigits[s[k - dk], 10, digits], Print["k = ", k]; k = k + dk]; RealDigits[s[k], 10, digits] // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
page 1

Search completed in 0.011 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 20:51 EDT 2024. Contains 374726 sequences. (Running on oeis4.)