Displaying 1-9 of 9 results found.
page
1
Decimal expansion of cosh(EulerGamma).
+10
5
1, 1, 7, 1, 2, 6, 5, 9, 5, 0, 7, 7, 8, 5, 4, 1, 5, 7, 7, 5, 3, 0, 3, 2, 3, 6, 5, 8, 9, 4, 9, 0, 3, 0, 1, 6, 7, 9, 6, 7, 6, 7, 7, 8, 0, 0, 6, 1, 4, 2, 9, 1, 6, 8, 6, 7, 5, 5, 9, 1, 2, 4, 7, 6, 2, 7, 8, 9, 6, 4, 5, 2, 1, 9, 4, 3, 9, 3, 6, 9, 6, 5, 4, 2, 0, 2, 2, 2, 6, 8, 7, 7, 1, 1, 3, 1, 6, 3, 1, 9
EXAMPLE
1.171265950778541577530323658949030167967677800614291686755912...
MATHEMATICA
First[RealDigits[N[(Exp[EulerGamma] + Exp[ -EulerGamma])/2, 100]]]
PROG
(PARI) default(realprecision, 100); cosh(Euler) \\ G. C. Greubel, Aug 29 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Cosh(EulerGamma(R)); // G. C. Greubel, Aug 29 2018
Decimal expansion of sinh(EulerGamma).
+10
5
6, 0, 9, 8, 0, 6, 4, 6, 7, 2, 1, 1, 6, 5, 6, 4, 0, 7, 7, 0, 6, 1, 8, 0, 4, 4, 4, 1, 5, 8, 1, 4, 9, 3, 8, 1, 2, 0, 1, 9, 6, 7, 4, 1, 3, 6, 8, 9, 1, 3, 8, 5, 1, 8, 6, 0, 1, 7, 5, 3, 4, 0, 0, 2, 3, 3, 8, 7, 6, 5, 5, 4, 8, 6, 9, 6, 5, 1, 3, 2, 8, 2, 8, 7, 3, 5, 1, 5, 2, 8, 7, 7, 7, 1, 0, 1, 9, 6, 0, 7
EXAMPLE
Equals 0.6098064672116564077061804441581493812019674136891385186017534...
MATHEMATICA
First[RealDigits[N[(Exp[EulerGamma] - Exp[ -EulerGamma])/2, 100]]]
RealDigits[Sinh[EulerGamma], 10, 120][[1]] (* Harvey P. Dale, Mar 06 2013 *)
PROG
(PARI) default(realprecision, 100); (exp(Euler) - exp(-Euler))/2 \\ G. C. Greubel, Aug 29 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (Exp(EulerGamma(R)) - Exp(-EulerGamma(R)))/2; // G. C. Greubel, Aug 29 2018
EXTENSIONS
Leading zero removed, offset adjusted by R. J. Mathar, Feb 05 2009
Decimal expansion of tanh(EulerGamma).
+10
4
5, 2, 0, 6, 3, 8, 7, 7, 2, 7, 7, 9, 4, 1, 6, 5, 5, 8, 8, 2, 9, 3, 9, 4, 5, 9, 1, 6, 6, 9, 0, 2, 8, 1, 3, 4, 2, 8, 7, 6, 7, 3, 1, 9, 3, 8, 1, 0, 4, 8, 7, 6, 0, 8, 2, 6, 5, 4, 0, 3, 6, 9, 0, 1, 6, 8, 5, 5, 7, 2, 6, 4, 6, 1, 3, 1, 8, 9, 4, 4, 6, 1, 0, 4, 2, 5, 7, 5, 2, 9, 2, 0, 7, 1, 7, 1, 2, 7, 6, 4
EXAMPLE
0.52063877277941655882939459166902813428767319381048760826540...
MATHEMATICA
First[RealDigits[N[(Exp[EulerGamma] - Exp[ -EulerGamma])/(Exp[EulerGamma] + Exp[ -EulerGamma]), 100]]]
RealDigits[Tanh[EulerGamma], 10, 120][[1]] (* Harvey P. Dale, Aug 10 2020 *)
PROG
(PARI) default(realprecision, 100); tanh(Euler) \\ G. C. Greubel, Aug 29 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Tanh(EulerGamma(R)); // G. C. Greubel, Aug 29 2018
EXTENSIONS
Leading zero removed and offset adjusted by R. J. Mathar, Feb 05 2009
Decimal expansion of coth(EulerGamma).
+10
4
1, 9, 2, 0, 7, 1, 7, 4, 9, 6, 0, 5, 1, 1, 0, 2, 7, 3, 7, 9, 7, 3, 6, 4, 8, 6, 6, 3, 4, 8, 3, 2, 1, 1, 2, 5, 5, 4, 7, 9, 1, 0, 6, 1, 9, 4, 0, 2, 4, 9, 7, 6, 1, 5, 5, 4, 4, 1, 2, 6, 4, 9, 1, 8, 9, 0, 1, 9, 9, 7, 8, 5, 5, 8, 7, 1, 2, 2, 5, 2, 1, 0, 5, 2, 1, 7, 0, 8, 1, 1, 9, 0, 9, 9, 6, 2, 1, 1, 5, 7
EXAMPLE
1.920717496051102737973648663483211255479106194024976155441...
MATHEMATICA
First[RealDigits[N[(Exp[EulerGamma] + Exp[ -EulerGamma])/(Exp[EulerGamma] - Exp[ -EulerGamma]), 100]]]
PROG
(PARI) default(realprecision, 100); (exp(Euler) + exp(-Euler))/(exp(Euler) - exp(-Euler)) \\ G. C. Greubel, Aug 29 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (Exp(EulerGamma(R)) + Exp(-EulerGamma(R)))/(Exp(EulerGamma(R)) - Exp(-EulerGamma(R))); // G. C. Greubel, Aug 29 2018
Beatty sequence for 1 + 1/gamma^2.
+10
3
4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228
COMMENTS
The first term where this sequence breaks the progression a(n) = a(n-1) + 4 is a(715) = 2861. - Max Alekseyev, Mar 03 2007
FORMULA
a(n) = floor(n*(1+1/gamma^2)) where 1+1/gamma^2= 1+ A098907^2 = 4.00139933... - R. J. Mathar, Sep 29 2023
MATHEMATICA
Floor[Range[100]*(1 + 1/EulerGamma^2)] (* Paolo Xausa, Jul 05 2024 *)
PROG
(PARI) { default(realprecision, 100); b=1 + 1/Euler^2; for (n = 1, 2000, write("b059558.txt", n, " ", floor(n*b)); ) } \\ Harry J. Smith, Jun 28 2009
Engel expansion of 1/gamma, (gamma is the Euler-Mascheroni constant A001620) = 1.73245.
+10
1
1, 2, 3, 3, 6, 10, 20, 46, 226, 1836, 3719, 14308, 17262, 129530, 945152, 1535786, 2229882, 3560447, 9434930, 20957352, 102311436, 312567415, 449243761, 4362956254, 12000988888, 22909186976, 29969826721
COMMENTS
Cf. A006784 for definition of Engel expansion.
REFERENCES
F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.
LINKS
F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission.
MATHEMATICA
EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
EngelExp[N[EulerGamma^2, 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)
a(n) = the smallest prime > (1/EulerGamma)^n.
+10
0
2, 5, 7, 11, 17, 29, 47, 83, 149, 251, 431, 733, 1277, 2203, 3803, 6599, 11411, 19777, 34253, 59333, 102793, 178067, 308489, 534431, 925891, 1604021, 2778901, 4814321, 8340593, 14449651, 25033357, 43369111, 75135077, 130168021, 225510203
COMMENTS
EulerGamma is Euler's constant (or the Euler-Mascheroni constant) gamma ( A001620).
1/EulerGamma = 1.7324547146006... ( A098907).
EXAMPLE
The first prime > (1/EulerGamma)^6 = 27.03779975... is 29, so a(6) = 29.
MATHEMATICA
Table[Prime[PrimePi[1/EulerGamma^n] + 1], {n, 1, 40}]
NextPrime/@Table[1/EulerGamma^n, {n, 40}] (* Harvey P. Dale, May 10 2020 *)
Primes found in decimal expansion of 1/EulerGamma.
+10
0
17, 173, 173245471460063, 1732454714600633
EXAMPLE
1/EulerGamma =1.732454714600633473583... so a(1)=17 ; a(2) =173,...
MAPLE
Digits := 100; n0 := evalf(1/gamma); for i from 1 to 500 do x := trunc(10^i*n0):
if isprime(x) then printf(`%d, `, x): fi: od:
Decimal expansion of gamma^(1/gamma), where gamma is the Euler-Mascheroni constant.
+10
0
3, 8, 5, 9, 4, 8, 2, 5, 4, 7, 1, 9, 8, 4, 1, 0, 5, 8, 0, 3, 7, 3, 6, 5, 0, 0, 8, 1, 1, 7, 5, 3, 7, 2, 0, 8, 4, 5, 3, 5, 7, 1, 5, 6, 2, 5, 0, 1, 4, 0, 5, 9, 6, 5, 4, 6, 7, 6, 9, 4, 0, 5, 4, 1, 8, 1, 9, 6, 6, 5, 7, 5, 1, 5, 6, 3, 4, 3, 2, 0, 8, 8, 5, 2, 9, 2, 3, 5, 9, 9
EXAMPLE
0.385948254719841058037365008117537208453571562501405965467694054181966575...
MAPLE
Digits := 100; evalf(gamma^(1/gamma));
MATHEMATICA
RealDigits[EulerGamme^(1/EulerGamma), 10, 100][[1]]
Search completed in 0.009 seconds
|