[go: nahoru, domu]

login
Search: a107841 -id:a107841
     Sort: relevance | references | number | modified | created      Format: long | short | data
Chebyshev transform of A107841.
+20
2
1, 2, 11, 66, 461, 3448, 27061, 219702, 1829851, 15547142, 134224361, 1174119120, 10383783641, 92691197962, 834047700091, 7557110252538, 68890745834341, 631392034936040, 5814520777199261, 53776065007163886, 499275423496447211
OFFSET
0,2
FORMULA
G.f.: (1+x-x^2-sqrt(1-10*x-x^2+10*x^3+x^4))/(6*x*(1-x^2)).
G.f.: 1/(1-2x-x^2-6x^2/(1-5x-x^2-6x^2/(1-5x-x^2-6x^2/(1-5-x^2-6x^2/(1-... (continued fraction).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*A107841(n-2*k).
Recurrence: (n+1)*a(n) = (n-5)*a(n-6) + 5*(2*n-7)*a(n-5) - (2*n-7)*a(n-4) - 20*(n-2)*a(n-3) + (2*n-1)*a(n-2) + 5*(2*n-1)*a(n-1). - R. J. Mathar, Jul 24 2012, simplified by Fung Lam, Jan 27 2014
a(n) ~ r*(r+10) * sqrt(10*r^3-2*r^2-30*r+4) / (12 * sqrt(Pi) * n^(3/2) * r^(n+1)), where r = 1 / (5/2 + sqrt(6) + 1/2*sqrt(53+20*sqrt(6))) = 0.100010105114224353... - Vaclav Kotesovec, Feb 27 2014
MATHEMATICA
CoefficientList[Series[(1+x-x^2-Sqrt[1-10x-x^2+10x^3+x^4])/(6x(1-x^2)), {x, 0, 20}], x] (* Harvey P. Dale, Aug 12 2011 *)
PROG
(PARI) x='x+O('x^30); Vec((1+x-x^2-sqrt(1-10*x-x^2+10*x^3+x^4))/(6*x*(1-x^2))) \\ G. C. Greubel, Apr 30 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1+x-x^2-Sqrt(1-10*x-x^2+10*x^3+x^4))/(6*x*(1-x^2)))) // G. C. Greubel, Apr 30 2018
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 28 2009
STATUS
approved
Second convolution of A107841.
+20
2
1, 4, 24, 164, 1208, 9348, 74920, 616420, 5176296, 44182916, 382205048, 3343343268, 29523386968, 262826367748, 2356256046216, 21254326842596, 192766180154120, 1756758963727620, 16079466335134168, 147748236828875428, 1362397741935948024, 12603116216808465284, 116929440001191010664
OFFSET
0,2
FORMULA
G.f.: (G.f. of A107841)^2.
Recurrence: (n+2)*a(n) = (4-n)*a(n-4) + 4*(2*n-5)*a(n-3) + 18*(n-1)*a(n-2) + 4*(2*n+1)*a(n-1), n>=4.
Recurrence (of order 2): (n+2)*(2*n-1)*a(n) = 4*(5*n^2-2)*a(n-1) - (n-2)*(2*n+1)*a(n-2). - Vaclav Kotesovec, Feb 27 2014
a(n) ~ sqrt(360+147*sqrt(6)) * (5+2*sqrt(6))^n / (9 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 27 2014
MATHEMATICA
CoefficientList[Series[((1 + x - Sqrt[1 - 10*x + x^2])/(6*x))^2, {x, 0, 100}], x] (* Vaclav Kotesovec, Feb 27 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Fung Lam, Feb 25 2014
STATUS
approved
Fourth convolution of A107841.
+20
2
1, 8, 64, 520, 4304, 36232, 309504, 2677128, 23405520, 206522888, 1836913216, 16452907016, 148274884688, 1343569891720, 12233903203328, 111883174439304, 1027244073375312, 9465236716896264, 87498251217286720, 811252609543727624, 7542152541765899728, 70294794046928531848
OFFSET
0,2
FORMULA
G.f.: (G.f. of A107841)^4.
Recurrence: (n+4)*a(n) = (8-n)*a(n-8) + 4*(4*n-26)*a(n-7) + 64*(5-n)*a(n-6) + 8*(2*n-7)*a(n-5) + 194*(n-2)*a(n-4) + 8*(2*n-1)*a(n-3) - 64*(n+1)*a(n-2) + 8*(2*n+5)*a(n-1), n>=8.
Recurrence (of order 2): n*(n+4)*(2*n+1)*a(n) = 20*n*(n+1)*(n+2)*a(n-1) - (n-2)*(n+2)*(2*n+3)*a(n-2). - Vaclav Kotesovec, Feb 27 2014
a(n) ~ 2*sqrt(35280+14403*sqrt(6)) * (5+2*sqrt(6))^n / (27 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 27 2014
MATHEMATICA
CoefficientList[Series[((1+x-Sqrt[1-10*x+x^2])/(6*x))^4, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 27 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Fung Lam, Feb 25 2014
STATUS
approved
Chebyshev transform of A107841.
+20
1
1, 2, 9, 58, 401, 2952, 22759, 181358, 1481751, 12346102, 104505959, 896170608, 7768885801, 67972510202, 599449125609, 5323095489058, 47555513297801, 427127946025752, 3854618439044959, 34934658168463958, 317834095671077751, 2901725605879035502, 26575914921615695759
OFFSET
0,2
COMMENTS
This is the Chebyshev transform over the positive strip 0<=x<=1. A160852 may be viewed as the Chebyshev transform over the negative strip -1<=x<=0.
FORMULA
G.f.: (1+x+x^2 - sqrt(1-10*x+3*x^2-10*x^3+x^4))/(6*x*(1+x^2)).
G.f.: F(x/(1+x^2)), where F(x) is the g.f. of A107841.
Recurrence: (n+1)*a(n) = (5-n)*a(n-6) + 5*(2*n-7)*a(n-5) + (11-4*n)*a(n-4)
+ 20*(n-2)*a(n-3) + (5-4*n)*a(n-2) + 5*(2*n-1)*a(n-1), n>=6.
a(n) ~ (sqrt(45+20*sqrt(6))/2+sqrt(6)+5/2)^n*sqrt(120-30*sqrt(6)+2*sqrt(30*(6196*sqrt(6)-15159)))/(12*sqrt(Pi*n^3)).
MATHEMATICA
CoefficientList[Series[(1+x+x^2 - Sqrt[1-10*x+3*x^2-10*x^3+x^4])/(6*x*(1+x^2)), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 30 2014 *)
PROG
(PARI) x='x+O('x^50); Vec((1+x+x^2 - sqrt(1-10*x+3*x^2-10*x^3+x^4))/(6*x*(1+x^2))) \\ G. C. Greubel, Apr 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Fung Lam, Apr 29 2014
STATUS
approved
Triangle read by rows: T(n,k) = C(n+k,n)*C(n,k)/(k+1), for n >= 0, k = 0..n.
+10
38
1, 1, 1, 1, 3, 2, 1, 6, 10, 5, 1, 10, 30, 35, 14, 1, 15, 70, 140, 126, 42, 1, 21, 140, 420, 630, 462, 132, 1, 28, 252, 1050, 2310, 2772, 1716, 429, 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430, 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862
OFFSET
0,5
COMMENTS
Row sums: A006318 (Schroeder numbers). Essentially same as triangle A060693 transposed.
T(n,k) is number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k U's. E.g., T(2,1)=3 because we have UHD, UDH and HUD. - Emeric Deutsch, Dec 06 2003
Little Schroeder numbers A001003 have a(n) = Sum_{k=0..n} A088617(n,k)*(-1)^(n-k)*2^k. - Paul Barry, May 24 2005
Conjecture: The expected number of U's in a Schroeder n-path is asymptotically Sqrt[1/2]*n for large n. - David Callan, Jul 25 2008
T(n, k) is also the number of order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
The antidiagonals of this lower triangular matrix are the rows of A055151. - Tom Copeland, Jun 17 2015
REFERENCES
Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150)
Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
Manosij Ghosh Dastidar and Michael Wallner, Bijections and congruences involving lattice paths and integer compositions, arXiv:2402.17849 [math.CO], 2024. See p. 16.
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
Hsien-Kuei Hwang and Satoshi Kuriki, Integrated empirical measures and generalizations of classical goodness-of-fit statistics, arXiv:2404.06040 [math.ST], 2024. See p. 11.
C. Jordan, Calculus of Finite Differences, Budapest, 1939. [Annotated scans of pages 448-450 only]
M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
Paul W. Lapey and Aaron Williams, A Shift Gray Code for Fixed-Content Łukasiewicz Words, Williams College, 2022.
A. Laradji and A. Umar, A. Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278, (2004), 342-359.
A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq. 7 (2004), 04.3.8.
Jason P. Smith, The poset of graphs ordered by induced containment, arXiv:1806.01821 [math.CO], 2018.
FORMULA
Triangle T(n, k) read by rows; given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
T(n, k) = A085478(n, k)*A000108(k); A000108 = Catalan numbers. - Philippe Deléham, Dec 05 2003
Sum_{k=0..n} T(n, k)*x^k*(1-x)^(n-k) = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Aug 18 2005
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Oct 18 2007
O.g.f. (with initial 1 excluded) is the series reversion with respect to x of (1-t*x)*x/(1+x). Cf. A062991 and A089434. - Peter Bala, Jul 31 2012
G.f.: 1 + (1 - x - T(0))/y, where T(k) = 1 - x*(1+y)/( 1 - x*y/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 03 2013
From Peter Bala, Jul 20 2015: (Start)
O.g.f. A(x,t) = ( 1 - x - sqrt((1 - x)^2 - 4*x*t) )/(2*x*t) = 1 + (1 + t)*x + (1 + 3*t + 2*t^2)*x^2 + ....
1 + x*(dA(x,t)/dx)/A(x,t) = 1 + (1 + t)*x + (1 + 4*t + 3*t^2)*x^2 + ... is the o.g.f. for A123160.
For n >= 1, the n-th row polynomial equals (1 + t)/(n+1)*Jacobi_P(n-1,1,1,2*t+1). Removing a factor of 1 + t from the row polynomials gives the row polynomials of A033282. (End)
From Tom Copeland, Jan 22 2016: (Start)
The o.g.f. G(x,t) = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/2x = (t + t^2) x + (t + 3t^2 + 2t^3) x^2 + (t + 6t^2 + 10t^3 + 5t^3) x^3 + ... generating shifted rows of this entry, excluding the first, was given in my 2008 formulas for A033282 with an o.g.f. f1(x,t) = G(x,t)/(1+t) for A033282. Simple transformations presented there of f1(x,t) are related to A060693 and A001263, the Narayana numbers. See also A086810.
The inverse of G(x,t) is essentially given in A033282 by x1, the inverse of f1(x,t): Ginv(x,t) = x [1/(t+x) - 1/(1+t+x)] = [((1+t) - t) / (t(1+t))] x - [((1+t)^2 - t^2) / (t(1+t))^2] x^2 + [((1+t)^3 - t^3) / (t(1+t))^3] x^3 - ... . The coefficients in t of Ginv(xt,t) are the o.g.f.s of the diagonals of the Pascal triangle A007318 with signed rows and an extra initial column of ones. The numerators give the row o.g.f.s of signed A074909.
Rows of A088617 are shifted columns of A107131, whose reversed rows are the Motzkin polynomials of A055151, related to A011973. The diagonals of A055151 give the rows of A088671, and the antidiagonals (top to bottom) of A088617 give the rows of A107131 and reversed rows of A055151. The diagonals of A107131 give the columns of A055151. The antidiagonals of A088617 (bottom to top) give the rows of A055151.
(End)
T(n, k) = [x^k] hypergeom([-n, 1 + n], [2], -x). - Peter Luschny, Apr 26 2022
EXAMPLE
Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 3, 2;
[3] 1, 6, 10, 5;
[4] 1, 10, 30, 35, 14;
[5] 1, 15, 70, 140, 126, 42;
[6] 1, 21, 140, 420, 630, 462, 132;
[7] 1, 28, 252, 1050, 2310, 2772, 1716, 429;
[8] 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430;
[9] 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862;
MAPLE
R := n -> simplify(hypergeom([-n, n + 1], [2], -x)):
Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
MATHEMATICA
Table[Binomial[n+k, n] Binomial[n, k]/(k+1), {n, 0, 10}, {k, 0, n}]//Flatten (* Michael De Vlieger, Aug 10 2017 *)
PROG
(PARI) {T(n, k)= if(k+1, binomial(n+k, n)*binomial(n, k)/(k+1))}
(Magma) [[Binomial(n+k, n)*Binomial(n, k)/(k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 18 2015
(SageMath) flatten([[binomial(n+k, 2*k)*catalan_number(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Nov 23 2003
STATUS
approved
Triangle obtained by adding a leading diagonal 1,0,0,0,... to A033282.
+10
26
1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 9, 21, 14, 0, 1, 14, 56, 84, 42, 0, 1, 20, 120, 300, 330, 132, 0, 1, 27, 225, 825, 1485, 1287, 429, 0, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 0, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 0, 1, 54, 936, 7644, 34398, 91728
OFFSET
0,6
COMMENTS
Mirror image of triangle A133336. - Philippe Deléham, Dec 10 2008
From Tom Copeland, Oct 09 2011: (Start)
With polynomials
P(0,t) = 0
P(1,t) = 1
P(2,t) = t
P(3,t) = t + 2 t^2
P(4,t) = t + 5 t^2 + 5 t^3
P(5,t) = t + 9 t^2 + 21 t^3 + 14 t^4
The o.g.f. A(x,t) = {1+x-sqrt[(1-x)^2-4xt]}/[2(1+t)] (see Drake et al.).
B(x,t)= x-t x^2/(1-x)= x-t(x^2+x^3+x^4+...) is the comp. inverse in x.
Let h(x,t) = 1/(dB/dx) = (1-x)^2/(1+(1+t)*x*(x-2)) = 1/(1-t(2x+3x^2+4x^3+...)), an o.g.f. in x for row polynomials in t of A181289. Then P(n,t) is given by (1/n!)(h(x,t)*d/dx)^n x, evaluated at x=0, A = exp(x*h(y,t)*d/dy) y, eval. at y=0, and dA/dx = h(A(x,t),t). These results are a special case of A133437 with u(x,t) = B(x,t), i.e., u_1=1 and (u_n)=-t for n > 1. See A001003 for t = 1. (End)
Let U(x,t) = [A(x,t)-x]/t, then U(x,0) = -dB(x,t)/dt and U satisfies dU/dt = UdU/dx, the inviscid Burgers' equation (Wikipedia), also called the Hopf equation (see Buchstaber et al.). Also U(x,t) = U(A(x,t),0) = U(x+tU,0) since U(x,0) = [x-B(x,t)]/t. - Tom Copeland, Mar 12 2012
Diagonals of A132081 are essentially rows of this sequence. - Tom Copeland, May 08 2012
T(r, s) is the number of [0,r]-covering hierarchies with s segments (see Kreweras). - Michel Marcus, Nov 22 2014
From Yu Hin Au, Dec 07 2019: (Start)
T(n,k) is the number of small Schröder n-paths (lattice paths from (0,0) to (2n,0) using steps U=(1,1), F=(2,0), D=(1,-1) with no F step on the x-axis) that has exactly k U steps.
T(n,k) is the number of Schröder trees (plane rooted tree where each internal node has at least two children) with exactly n+1 leaves and k internal nodes. (End)
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
V. Buchstaber and E. Bunkova,Elliptic formal group laws, integral Hirzebruch genera and Kirchever genera,, arXiv:1010.0944 [math-ph], 2010 (see p. 19).
V. Buchstaber and T. Panov, Toric Topology. Chapter 1: Geometry and Combinatorics of Polytopes,, arXiv:1102.1079 [math.CO], 2011-2012 (see p. 41).
G. Chatel, V. Pilaud, Cambrian Hopf Algebras, arXiv:1411.3704 [math.CO], 2014-2015.
T. Copeland, Lagrange a la Lah, 2011.
B. Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), Article 07.3.7.
G. Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973, p. 21-22.
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
J. Zhou, Quantum deformation theory of the Airy curve and the mirror symmetry of a point, arXiv preprint arXiv:1405.5296 [math.AG], 2014.
FORMULA
Triangle T(n, k) read by rows; given by [0, 1, 0, 1, 0, 1, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
For k>0, T(n, k) = binomial(n-1, k-1)*binomial(n+k, k)/(n+1); T(0, 0) = 1 and T(n, 0) = 0 if n > 0. [corrected by Marko Riedel, May 04 2023]
Sum_{k>=0} T(n, k)*2^k = A107841(n). - Philippe Deléham, May 26 2005
Sum_{k>=0} T(n-k, k) = A005043(n). - Philippe Deléham, May 30 2005
T(n, k) = A108263(n+k, k). - Philippe Deléham, May 30 2005
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*5^k*(-2)^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
Sum_{k=0..n} T(n,k)*(-1)^k*3^(n-k) = A154825(n). - Philippe Deléham, Jan 17 2009
Umbrally, P(n,t) = Lah[n-1,-t*a.]/n! = (1/n)*Sum_{k=1..n-1} binomial(n-2,k-1)a_k t^k/k!, where (a.)^k = a_k = (n-1+k)!/(n-1)!, the rising factorial, and Lah(n,t) = n!*Laguerre(n,-1,t) are the Lah polynomials A008297 related to the Laguerre polynomials of order -1. - Tom Copeland, Oct 04 2014
T(n, k) = binomial(n, k)*binomial(n+k, k-1)/n, for k >= 0; T(0, 0) = 1 (see Kreweras, p. 21). - Michel Marcus, Nov 22 2014
P(n,t) = Lah[n-1,-:Dt:]/n! t^(n-1) with (:Dt:)^k = (d/dt)^k t^k = k! Laguerre(k,0,-:tD:) with (:tD:)^j = t^j D^j. The normalized Laguerre polynomials of 0 order are given in A021009. - Tom Copeland, Aug 22 2016
EXAMPLE
Triangle starts:
1;
0, 1;
0, 1, 2;
0, 1, 5, 5;
0, 1, 9, 21, 14;
...
MATHEMATICA
Table[Boole[n == 2] + If[# == -1, 0, Binomial[n - 3, #] Binomial[n + # - 1, #]/(# + 1)] &[k - 1], {n, 2, 12}, {k, 0, n - 2}] // Flatten (* after Jean-François Alcover at A033282, or *)
Table[If[n == 0, 1, Binomial[n, k] Binomial[n + k, k - 1]/n], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2016 *)
PROG
(PARI) t(n, k) = if (n==0, 1, binomial(n, k)*binomial(n+k, k-1)/n);
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n, k), ", "); ); print(); ); } \\ Michel Marcus, Nov 22 2014
CROSSREFS
The diagonals (except for A000007) are also the diagonals of A033282.
Row sums: A001003 (Schroeder numbers).
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Aug 05 2003
EXTENSIONS
Typo in a(60) corrected by Michael De Vlieger, Nov 21 2019
STATUS
approved
Triangle (0 <= k <= n) read by rows: T(n, k) is the number of Schröder paths from (0,0) to (2n,0) having k peaks.
+10
25
1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 14, 35, 30, 10, 1, 42, 126, 140, 70, 15, 1, 132, 462, 630, 420, 140, 21, 1, 429, 1716, 2772, 2310, 1050, 252, 28, 1, 1430, 6435, 12012, 12012, 6930, 2310, 420, 36, 1, 4862, 24310, 51480, 60060, 42042, 18018, 4620, 660, 45, 1, 16796
OFFSET
0,4
COMMENTS
The rows sum to A006318 (Schroeder numbers), the left column is A000108 (Catalan numbers); the next-to-left column is A001700, the alternating sum in each row but the first is 0.
T(n,k) is the number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k peaks. Example: T(2,1)=3 because we have UU*DD, U*DH and HU*D, the peaks being shown by *. E.g., T(n,k) = binomial(n,k)*binomial(2n-k,n-1)/n for n>0. - Emeric Deutsch, Dec 06 2003
A090181*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 14 2008
T(n,k) is also the number of rooted plane trees with maximal degree 3 and k vertices of degree 2 (a node may have at most 2 children, and there are exactly k nodes with 1 child). Equivalently, T(n,k) is the number of syntactically different expressions that can be formed that use a unary operation k times, a binary operation n-k times, and nothing else (sequence of operands is fixed). - Lars Hellstrom (Lars.Hellstrom(AT)residenset.net), Dec 08 2009
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
J. Agapito, A. Mestre, P. Petrullo, and M. Torres, Counting noncrossing partitions via Catalan triangles, CEAFEL Seminar, June 30, 2015
Jean-Christophe Aval and François Bergeron, Rectangular Schröder Parking Functions Combinatorics, arXiv:1603.09487 [math.CO], 2016.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
David Callan and Toufik Mansour, Five subsets of permutations enumerated as weak sorting permutations, arXiv:1602.05182 [math.CO], 2016.
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
Krishna Menon and Anurag Singh, Grassmannian permutations avoiding identity, arXiv:2212.13794 [math.CO], 2022.
Jean-Christophe Novelli and Jean-Yves Thibon, Duplicial algebras and Lagrange inversion, arXiv preprint arXiv:1209.5959 [math.CO], 2012.
FORMULA
Triangle T(n, k) (0 <= k <= n) read by rows; given by [1, 1, 1, 1, 1, ...] DELTA [1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 12 2003
If C_n(x) is the g.f. of row n of the Narayana numbers (A001263), C_n(x) = Sum_{k=1..n} binomial(n,k-1)*(binomial(n-1,k-1)/k) * x^k and T_n(x) is the g.f. of row n of T(n,k), then T_n(x) = C_n(x+1), or T(n,k) = [x^n]Sum_{k=1..n}(A001263(n,k)*(x+1)^k). - Mitch Harris, Jan 16 2007, Jan 31 2007
G.f.: (1 - t*y - sqrt((1-y*t)^2 - 4*y)) / 2.
T(n, k) = binomial(2n-k, n)*binomial(n, k)/(n-k+1). - Philippe Deléham, Dec 07 2003
A060693(n, k) = binomial(2*n-k, k)*A000108(n-k); A000108: Catalan numbers. - Philippe Deléham, Dec 30 2003
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n), for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Apr 01 2007
T(n,k) = Sum_{j>=0} A090181(n,j)*binomial(j,k). - Philippe Deléham, May 04 2007
Sum_{k=0..n} T(n,k)*x^(n-k) = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Oct 18 2007
From Paul Barry, Jan 29 2009: (Start)
G.f.: 1/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x/(1-.... (continued fraction);
G.f.: 1/(1-(x+xy)/(1-x/(1-(x+xy)/(1-x/(1-(x+xy)/(1-.... (continued fraction). (End)
T(n,k) = [k<=n]*(Sum_{j=0..n} binomial(n,j)^2*binomial(j,k))/(n-k+1). - Paul Barry, May 28 2009
T(n,k) = A104684(n,k)/(n-k+1). - Peter Luschny, May 17 2011
From Tom Copeland, Sep 21 2011: (Start)
With F(x,t) = (1-(2+t)*x-sqrt(1-2*(2+t)*x+(t*x)^2))/(2*x) an o.g.f. (nulling the n=0 term) in x for the A060693 polynomials in t,
G(x,t) = x/(1+t+(2+t)*x+x^2) is the compositional inverse in x.
Consequently, with H(x,t) = 1/(dG(x,t)/dx) = (1+t+(2+t)*x+x^2)^2 / (1+t-x^2), the n-th A060693 polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n) x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/d) u, evaluated at u = 0.
Also, dF(x,t)/dx = H(F(x,t),t). (End)
See my 2008 formulas in A033282 to relate this entry to A088617, A001263, A086810, and other matrices. - Tom Copeland, Jan 22 2016
Rows of this entry are non-vanishing antidiagonals of A097610. See p. 14 of Agapito et al. for a bivariate generating function and its inverse. - Tom Copeland, Feb 03 2016
From Werner Schulte, Jan 09 2017: (Start)
T(n,k) = A126216(n,k-1) + A126216(n,k) for 0 < k < n;
Sum_{k=0..n} (-1)^k*(1+x*(n-k))*T(n,k) = x + (1-x)*A000007(n).
(End)
Conjecture: Sum_{k=0..n} (-1)^k*T(n,k)*(n+1-k)^2 = 1+n+n^2. - Werner Schulte, Jan 11 2017
EXAMPLE
Triangle begins:
00: [ 1]
01: [ 1, 1]
02: [ 2, 3, 1]
03: [ 5, 10, 6, 1]
04: [ 14, 35, 30, 10, 1]
05: [ 42, 126, 140, 70, 15, 1]
06: [ 132, 462, 630, 420, 140, 21, 1]
07: [ 429, 1716, 2772, 2310, 1050, 252, 28, 1]
08: [ 1430, 6435, 12012, 12012, 6930, 2310, 420, 36, 1]
09: [ 4862, 24310, 51480, 60060, 42042, 18018, 4620, 660, 45, 1]
10: [16796, 92378, 218790, 291720, 240240, 126126, 42042, 8580, 990, 55, 1]
...
MAPLE
A060693 := (n, k) -> binomial(n, k)*binomial(2*n-k, n)/(n-k+1); # Peter Luschny, May 17 2011
MATHEMATICA
t[n_, k_] := Binomial[n, k]*Binomial[2 n - k, n]/(n - k + 1); Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]] (* Robert G. Wilson v, May 30 2011 *)
PROG
(PARI) T(n, k) = binomial(n, k)*binomial(2*n - k, n)/(n - k + 1);
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Indranil Ghosh, Jul 28 2017
(Python)
from sympy import binomial
def T(n, k): return binomial(n, k) * binomial(2 * n - k, n) / (n - k + 1)
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Jul 28 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
F. Chapoton, Apr 20 2001
EXTENSIONS
More terms from Vladeta Jovovic, Apr 21 2001
New description from Philippe Deléham, Aug 12 2003
New name using a comment by Emeric Deutsch from Peter Luschny, Jul 26 2017
STATUS
approved
a(n) = (1/n) * Sum_{i=0..n-1} C(n,i)*C(n,i+1)*2^i*3^(n-i), a(0)=1.
+10
24
1, 3, 15, 93, 645, 4791, 37275, 299865, 2474025, 20819307, 178003815, 1541918901, 13503125805, 119352115551, 1063366539315, 9539785668657, 86104685123025, 781343125570515, 7124072211203775, 65233526296899981, 599633539433039445, 5531156299278726663
OFFSET
0,2
COMMENTS
The Hankel transform of this sequence is 6^C(n+1,2). - Philippe Deléham, Oct 28 2007
The Hankel transform of the sequence starting 1, 1, 3, 15, ... is A081955. - Paul Barry, Dec 09 2008
Number of Schroeder paths from (0,0) to (0,2n) allowing two colors for the down steps (or alternatively for the rise steps). - Paul Barry, Feb 01 2009
Essentially, reversion of x*(1-2*x)/(1+x). - Paul Barry, Apr 28 2009
a(n) is also the number of infix expressions with n variables and operators +, - and * (or +, * and /) such that there are no redundant parentheses. - Vjeran Crnjak, Apr 25 2020
LINKS
Joseph Abate and Ward Whitt, Integer Sequences from Queueing Theory , J. Int. Seq. 13 (2010), 10.5.5. b_n(2).
Eyal Ackerman, Gill Barequet, Ron Y. Pinter, and Dan Romik, The number of guillotine partitions in d dimensions, Inf. Proc. Lett. (2006) Vol. 98, No. 4, 162-167.
Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
Zhi Chen and Hao Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 [math.CO], 2016, eq. (1.13), a=3, b=2.
Robert Dickau, 3D Guillotine Partitions, figures for 3D slices.
Samuele Giraudo, Operads from posets and Koszul duality, arXiv preprint arXiv:1504.04529 [math.CO], 2015.
Samuele Giraudo, Pluriassociative algebras II: The polydendriform operad and related operads, arXiv:1603.01394 [math.CO], 2016.
Luis Verde-Star, A Matrix Approach to Generalized Delannoy and Schröder Arrays, J. Int. Seq., Vol. 24 (2021), Article 21.4.1.
FORMULA
G.f.: (1 - z - sqrt(1 -10*z +z^2))/(4*z).
a(n) = Sum_{k=0..n} C(n+k, 2k) * 2^k * C(k), C(n) given by A000108. - Paul Barry, May 21 2005
a(n) = Sum_{k=0..n} A060693(n,k)*2^(n-k). - Philippe Deléham, Apr 02 2007
a(0) = 1, a(n) = a(n-1) + 2*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
a(n) = (3/2)*A107841(n) for n > 0. - Philippe Deléham, Oct 28 2007
G.f.: 1/(1-x-2*x/(1-x-2*x/(1-x-2*x/(1-.... (continued fraction). - Paul Barry, Feb 01 2009
G.f.: 1/(1-3*x-6*x^2/(1-5*x-6*x^2/(1-5*x-6*x^2/(1-... (continued fraction). - Paul Barry, Apr 28 2009
G.f.: 1/(1-3*x/(1-2*x/(1-3*x/(1-2*x/(1-3*x/(1-... (continued fraction). - Paul Barry, May 14 2009
a(n) = Hypergeometric2F1(-n,n+1;2;-2) = Sum_{k=0..n} C(n+k,k) * C(n,k) * 2^k/(k+1). - Paul Barry, Feb 08 2011
G.f.: A(x) = (1-x-(x^2-10*x+1)^(1/2))/(4*x) = 1/(G(0)-x); G(k)= 1 + x - 3*x/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 05 2012
D-finite with recurrence: (n+1)*a(n) = 5*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(12+5*sqrt(6))*(5+2*sqrt(6))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
G.f. A(x) satisfies: A(x) = (1 + 2*x*A(x)^2) / (1 - x). - Ilya Gutkovskiy, Jun 30 2020
MAPLE
A103210 := proc(n)
if n = 0 then
1;
else
add(binomial(n, i)*binomial(n, i+1)*2^i*3^(n-i), i=0..n-1)/n ;
end if;
end proc: # R. J. Mathar, Feb 10 2015
A103210_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
for w from 1 to n do a[w] := 3*a[w-1] + 2*add(a[j]*a[w-j-1], j=1..w-1) od;
convert(a, list) end: A103210_list(21); # Peter Luschny, Feb 29 2016
MATHEMATICA
CoefficientList[Series[(1-x-Sqrt[x^2-10*x+1])/(4*x), {x, 0, 25}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
A103210[n_]:= Hypergeometric2F1[-n, n+1, 2, -2]; Table[A103210[n], {n, 0, 25}] (* Peter Luschny, Jan 07 2018 *)
PROG
(PARI) my(x='x+O('x^25)); Vec((1-x-sqrt(x^2-10*x+1))/(4*x)) \\ G. C. Greubel, Feb 10 2018
(Magma) R<x>:=PowerSeriesRing(Rationals(), 25); Coefficients(R!((1-x-Sqrt(x^2-10*x+1))/(4*x))); // G. C. Greubel, Feb 10 2018
(Sage) [1]+[(3^n/n)*sum( binomial(n, j)*binomial(n, j+1)*(2/3)^j for j in (0..n-1)) for n in (1..25)] # G. C. Greubel, Jun 08 2020
CROSSREFS
Third column of array A103209.
KEYWORD
nonn
AUTHOR
Ralf Stephan, Jan 27 2005
EXTENSIONS
Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010
STATUS
approved
Series reversion of x*(1-3*x^2)/(1-x^2) in odd-order powers.
+10
8
1, 2, 14, 130, 1382, 15906, 192894, 2427522, 31405430, 415086658, 5580629870, 76080887042, 1049295082630, 14613980359010, 205246677882078, 2903566870820610, 41337029956899222, 591796707042765954, 8514525059135909070, 123048063153362454402
OFFSET
0,2
COMMENTS
This sequence is implied in the solutions of magnetohydrodynamics equations in R^3 for incompressible, electrically-conducting fluids in the presence of a strong Lorentz force. a(n) = numbers of allowable magneto-vortical eddies in terms of initial conditions.
LINKS
Georg Fischer, Table of n, a(n) for n = 0..1000 (first 940 terms from Fung Lam)
FORMULA
G.f.: (exp(4*Pi*i/3)*u + exp(2*Pi*i/3)*v + x/9)/x, where i=sqrt(-1),
u = (1/9)*(x^3 - 108 *x + 9*sqrt(-9 + 141*x^2 - 3*x^4))^(1/3), and
v = (1/9)*(x^3 - 108 *x - 9*sqrt(-9 + 141*x^2 - 3*x^4))^(1/3).
a(n) = [x^n] 2*Sum_{j = 1..n} ((Sum_{k = 1..n} a(k)*x^(2*k-1))^(2*j+1)), a(1) = 1, with offset by 1.
D-finite with recurrence 12*n*(2*n+1)*a(n) +(-382*n^2+391*n-90)*a(n-1) +3*(34*n^2-132*n+125)*a(n-2) -(2*n-5)*(n-3)*a(n-3)=0. - R. J. Mathar, Mar 24 2023
From Seiichi Manyama, Aug 09 2023: (Start)
a(n) = (-1)^n * Sum_{k=0..n} (-3)^k * binomial(n,k) * binomial(2*n+k+1,n) / (2*n+k+1).
a(n) = (1/n) * Sum_{k=0..n-1} 2^(n-k) * binomial(n,k) * binomial(3*n-k,n-1-k) for n > 0.
a(n) = (1/n) * Sum_{k=1..n} 2^k * 3^(n-k) * binomial(n,k) * binomial(2*n,k-1) for n > 0. (End)
From Peter Bala, Sep 08 2024: (Start)
a(n) = 2*Jacobi_P(n-1, 1, n+1, 5)/n for n >= 1.
Second-order recurrence: 3*n*(2*n + 1)*(13*n - 17)*a(n) = (1222*n^3 - 2820*n^2 + 1877*n - 360)*a(n-1) - (n - 2)*(13*n - 4)*(2*n - 3)*a(n-2) with a(0) = 1 and a(1) = 2. (End)
MAPLE
Order := 60 ;
solve(series(x*(1-3*x^2)/(1-x^2), x)=y, x) ;
convert(%, polynom) ;
seq(coeff(%, y, 2*i+1), i=0..Order/2) ; # R. J. Mathar, Jul 20 2023
MATHEMATICA
Table[(CoefficientList[InverseSeries[Series[x*(1-3*x^2)/(1-x^2), {x, 0, 40}], x], x])[[n]], {n, 2, 40, 2}] (* Vaclav Kotesovec, Jan 29 2014 *)
PROG
(PARI) v=Vec( serreverse(x*(1-3*x^2)/(1-x^2) +O(x^66) ) ); vector(#v\2, j, v[2*j-1]) \\ Joerg Arndt, Jan 14 2014
CROSSREFS
Cf. A027307, A107841, A235352 (same except for signs).
KEYWORD
nonn,easy
AUTHOR
Fung Lam, Jan 10 2014
STATUS
approved
Series reversion of x*(1-4*x)/(1-x) is x*A(x) where A(x) is the generating function.
+10
7
1, 3, 21, 183, 1785, 18651, 204141, 2310447, 26819121, 317530227, 3819724293, 46553474919, 573608632233, 7133530172619, 89423593269213, 1128765846337887, 14334721079385441, 183021615646831587, 2347944226115977461, 30250309354902101271, 391241497991342192985
OFFSET
0,2
COMMENTS
The Hankel transform of this sequence is 12^C(n+1,2).
Number of Dyck n-paths with two colors of up (U,u) and two colors of down (D,d) avoiding UD. - David Scambler, Jun 24 2013
Number of small Schröder n-paths with 3 types of up steps (i.e., lattice paths from (0,0) to (2n,0) using steps U1=U2=U3=(1,1), F=(2,0), D=(1,-1), with no F steps on the x-axis). - Yu Hin Au, Dec 05 2019
LINKS
J. Abate and W. Whitt, Integer Sequences from Queueing Theory , J. Int. Seq. 13 (2010), 10.5.5, p_n(3).
Z. Chen and H. Pan, Identities involving weighted Catalan-Schroder and Motzkin Paths, arXiv:1608.02448 [math.CO], (2016), eq. (1.13), a=3, b=4.
FORMULA
a(n) = Sum_{0<=k<=n} A086810(n,k)*3^k.
a(n) = (3/4)*A103211(n) for n>0.
a(n) = -a(n-1)+4*Sum_{i=0..n-1} a(i)*a(n-i-1), a(0)=1. - Vladimir Kruchinin, Mar 30 2015
D-finite with recurrence: (n+1)*a(n) +7*(-2*n+1)*a(n-1) +(n-2)*a(n-2)=0. - R. J. Mathar, Aug 16 2015
a(n) = (-1)^n*hypergeom([-n, n + 1], [2], 4). - Peter Luschny, Jan 08 2018
G.f.: (1 + x - sqrt(1 - 14*x + x^2))/(8*x). - Michael Somos, Jul 27 2022
From Michael Somos, Mar 15 2024: (Start)
Given g.f. A(x) and y = 2*x*A(-x^2), then y-1/y = (x-1/x)/2.
If a(n) := -a(-1-n) for n<0, then 0 = a(n)*(+a(n+1) -35*a(n+2) +4*a(n+3)) +a(n+1)*(+7*a(n+1) +194*a(n+2) -35*a(n+3)) +a(n+2)*(+7*a(n+2) +a(n+3)) for all n in Z. (End)
EXAMPLE
G.f. = 1 + 3*x + 21*x^2 + 183*x^3 + 1785*x^4 + 18651*x^5 + ... - Michael Somos, Jul 27 2022
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x*(1-4*x)/(1-x), {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Mar 30 2015 *)
Table[(-1)^n Hypergeometric2F1[-n, n + 1, 2, 4], {n, 0, 20}] (* Peter Luschny, Jan 08 2018 *)
a[ n_] := SeriesCoefficient[(1 + x - Sqrt[1 - 14*x + x^2])/(8*x), {x, 0, n}]; (* Michael Somos, Jul 27 2022 *)
a[ n_] := (-1)^n * Hypergeometric2F1[ -n, n+1, 2, 4]; (* Michael Somos, Mar 15 2024 *)
PROG
(PARI) Vec(serreverse(x*(1-4*x)/(1-x)+ O(x^30))) \\ Michel Marcus, Mar 30 2015
(PARI) {a(n) = if(n<0, 0, n++; polcoeff(serreverse(x*(1-4*x)/(1-x) + x*O(x^n)), n))}; /* Michael Somos, Jul 27 2022 */
(PARI) {a(n) = if(n<0, -a(-1-n), polcoeff(2/(1 + x + sqrt(1 - 14*x + x^2 + x*O(x^n))), n))}; /* Michael Somos, Mar 15 2024 */
CROSSREFS
Cf. (for series reversion of x*(1-r*x)/(1-x): A001003 (r=2), A107841 (r=3), this sequence (r=4), A131765 (r=5), A131846 (r=6), A131926 (r=7), A131869 (r=8), A131927 (r=9).
KEYWORD
nonn
AUTHOR
Philippe Deléham, Oct 29 2007, Nov 06 2007
EXTENSIONS
a(17) corrected by Mark van Hoeij, Jul 01 2010
STATUS
approved

Search completed in 0.020 seconds