[go: nahoru, domu]

login
Search: a133305 -id:a133305
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle of Narayana (A001263) with 0 <= k <= n, read by rows.
+10
41
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0, 1, 55, 825, 4950, 13860
OFFSET
0,9
COMMENTS
Number of Dyck n-paths with exactly k peaks. - Peter Luschny, May 10 2014
FORMULA
Triangle T(n, k), read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938. T(0, 0) = 1, T(n, 0) = 0 for n>0, T(n, k) = C(n-1, k-1)*C(n, k-1)/k for k>0.
Sum_{j>=0} T(n,j)*binomial(j,k) = A060693(n,k). - Philippe Deléham, May 04 2007
Sum_{k=0..n} T(n,k)*10^k = A143749(n+1). - Philippe Deléham, Oct 14 2008
From Paul Barry, Nov 10 2008: (Start)
Coefficient array of the polynomials P(n,x) = x^n*2F1(-n,-n+1;2;1/x).
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*C(2n-j,j)*C(j,k)*A000108(n-j). (End)
Sum_{k=0..n} T(n,k)*5^k*3^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
Sum_{k=0..n} T(n,k)*(-2)^k = A152681(n); Sum_{k=0..n} T(n,k)*(-1)^k = A105523(n). - Philippe Deléham, Feb 03 2009
Sum_{k=0..n} T(n,k)*2^(n+k) = A156017(n). - Philippe Deléham, Nov 27 2011
T(n, k) = C(n,n-k)*C(n-1,n-k)/(n-k+1). - Peter Luschny, May 10 2014
E.g.f.: 1+Integral((sqrt(t)*exp((1+t)*x)*BesselI(1,2*sqrt(t)*x))/x dx). - Peter Luschny, Oct 30 2014
G.f.: (1+x-x*y-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x). - Alois P. Heinz, Nov 28 2021, edited by Ron L.J. van den Burg, Dec 19 2021
T(n, k) = [x^k] (((2*n - 1)*(1 + x)*p(n-1, x) - (n - 2)*(x - 1)^2*p(n-2, x))/(n + 1)) with p(0, x) = 1 and p(1, x) = x. - Peter Luschny, Apr 26 2022
Recursion based on rows (see the Python program):
T(n, k) = (((B(k) + B(k-1))*(2*n - 1) - (A(k) - 2*A(k-1) + A(k-2))*(n-2))/(n+1)), where A(k) = T(n-2, k) and B(k) = T(n-1, k), for n >= 3. # Peter Luschny, May 02 2022
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 1, 3, 1;
[4] 0, 1, 6, 6, 1;
[5] 0, 1, 10, 20, 10, 1;
[6] 0, 1, 15, 50, 50, 15, 1;
[7] 0, 1, 21, 105, 175, 105, 21, 1;
[8] 0, 1, 28, 196, 490, 490, 196, 28, 1;
[9] 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
MAPLE
A090181 := (n, k) -> binomial(n, n-k)*binomial(n-1, n-k)/(n-k+1): seq(print( seq(A090181(n, k), k=0..n)), n=0..5); # Peter Luschny, May 10 2014
# Alternatively:
egf := 1+int((sqrt(t)*exp((1+t)*x)*BesselI(1, 2*sqrt(t)*x))/x, x);
s := n -> n!*coeff(series(egf, x, n+2), x, n); seq(print(seq(coeff(s(n), t, j), j=0..n)), n=0..9); # Peter Luschny, Oct 30 2014
MATHEMATICA
Flatten[Table[Sum[(-1)^(j-k) * Binomial[2n-j, j] * Binomial[j, k] * CatalanNumber[n-j], {j, 0, n}], {n, 0, 11}, {k, 0, n}]] (* Indranil Ghosh, Mar 05 2017 *)
p[0, _] := 1; p[1, x_] := x; p[n_, x_] := ((2 n - 1) (1 + x) p[n - 1, x] - (n - 2) (x - 1)^2 p[n - 2, x]) / (n + 1);
Table[CoefficientList[p[n, x], x], {n, 0, 9}] // TableForm (* Peter Luschny, Apr 26 2022 *)
PROG
(Sage)
def A090181_row(n):
U = [0]*(n+1)
for d in DyckWords(n):
U[d.number_of_peaks()] +=1
return U
for n in range(8): A090181_row(n) # Peter Luschny, May 10 2014
(Python) from functools import cache
@cache
def Trow(n):
if n == 0: return [1]
if n == 1: return [0, 1]
if n == 2: return [0, 1, 1]
A = Trow(n - 2) + [0, 0]
B = Trow(n - 1) + [1]
for k in range(n - 1, 1, -1):
B[k] = (((B[k] + B[k - 1]) * (2 * n - 1)
- (A[k] - 2 * A[k - 1] + A[k - 2]) * (n - 2)) // (n + 1))
return B
for n in range(10): print(Trow(n)) # Peter Luschny, May 02 2022
(PARI)
c(n) = binomial(2*n, n)/ (n+1);
tabl(nn) = {for(n=0, nn, for(k=0, n, print1(sum(j=0, n, (-1)^(j-k) * binomial(2*n-j, j) * binomial(j, k) * c(n-j)), ", "); ); print(); ); };
tabl(11); \\ Indranil Ghosh, Mar 05 2017
(Magma) [[(&+[(-1)^(j-k)*Binomial(2*n-j, j)*Binomial(j, k)*Binomial(2*n-2*j, n-j)/(n-j+1): j in [0..n]]): k in [0..n]]: n in [0..10]];
CROSSREFS
Mirror image of triangle A131198. A000108 (row sums, Catalan).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n) for x=0,1,2,3,4,5,6,7,8,9. - Philippe Deléham, Aug 10 2006
Sum_{k=0..n} x^(n-k)*T(n,k) = A090192(n+1), A000012(n), A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Oct 21 2006
Sum_{k=0..n} T(n,k)*x^k*(x-1)^(n-k) = A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Oct 20 2007
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Jan 19 2004
STATUS
approved
Triangle read by rows: T(n,k) = C(n+k,n)*C(n,k)/(k+1), for n >= 0, k = 0..n.
+10
38
1, 1, 1, 1, 3, 2, 1, 6, 10, 5, 1, 10, 30, 35, 14, 1, 15, 70, 140, 126, 42, 1, 21, 140, 420, 630, 462, 132, 1, 28, 252, 1050, 2310, 2772, 1716, 429, 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430, 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862
OFFSET
0,5
COMMENTS
Row sums: A006318 (Schroeder numbers). Essentially same as triangle A060693 transposed.
T(n,k) is number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k U's. E.g., T(2,1)=3 because we have UHD, UDH and HUD. - Emeric Deutsch, Dec 06 2003
Little Schroeder numbers A001003 have a(n) = Sum_{k=0..n} A088617(n,k)*(-1)^(n-k)*2^k. - Paul Barry, May 24 2005
Conjecture: The expected number of U's in a Schroeder n-path is asymptotically Sqrt[1/2]*n for large n. - David Callan, Jul 25 2008
T(n, k) is also the number of order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
The antidiagonals of this lower triangular matrix are the rows of A055151. - Tom Copeland, Jun 17 2015
REFERENCES
Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150)
Anwar Al Ghabra, K. Gopala Krishna, Patrick Labelle, and Vasilisa Shramchenko, Enumeration of multi-rooted plane trees, arXiv:2301.09765 [math.CO], 2023.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
Manosij Ghosh Dastidar and Michael Wallner, Bijections and congruences involving lattice paths and integer compositions, arXiv:2402.17849 [math.CO], 2024. See p. 16.
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
Hsien-Kuei Hwang and Satoshi Kuriki, Integrated empirical measures and generalizations of classical goodness-of-fit statistics, arXiv:2404.06040 [math.ST], 2024. See p. 11.
C. Jordan, Calculus of Finite Differences, Budapest, 1939. [Annotated scans of pages 448-450 only]
M. Klazar, On numbers of Davenport-Schinzel sequences, Discr. Math., 185 (1998), 77-87.
Paul W. Lapey and Aaron Williams, A Shift Gray Code for Fixed-Content Łukasiewicz Words, Williams College, 2022.
A. Laradji and A. Umar, A. Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra 278, (2004), 342-359.
A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq. 7 (2004), 04.3.8.
Jason P. Smith, The poset of graphs ordered by induced containment, arXiv:1806.01821 [math.CO], 2018.
FORMULA
Triangle T(n, k) read by rows; given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
T(n, k) = A085478(n, k)*A000108(k); A000108 = Catalan numbers. - Philippe Deléham, Dec 05 2003
Sum_{k=0..n} T(n, k)*x^k*(1-x)^(n-k) = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Aug 18 2005
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Oct 18 2007
O.g.f. (with initial 1 excluded) is the series reversion with respect to x of (1-t*x)*x/(1+x). Cf. A062991 and A089434. - Peter Bala, Jul 31 2012
G.f.: 1 + (1 - x - T(0))/y, where T(k) = 1 - x*(1+y)/( 1 - x*y/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 03 2013
From Peter Bala, Jul 20 2015: (Start)
O.g.f. A(x,t) = ( 1 - x - sqrt((1 - x)^2 - 4*x*t) )/(2*x*t) = 1 + (1 + t)*x + (1 + 3*t + 2*t^2)*x^2 + ....
1 + x*(dA(x,t)/dx)/A(x,t) = 1 + (1 + t)*x + (1 + 4*t + 3*t^2)*x^2 + ... is the o.g.f. for A123160.
For n >= 1, the n-th row polynomial equals (1 + t)/(n+1)*Jacobi_P(n-1,1,1,2*t+1). Removing a factor of 1 + t from the row polynomials gives the row polynomials of A033282. (End)
From Tom Copeland, Jan 22 2016: (Start)
The o.g.f. G(x,t) = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/2x = (t + t^2) x + (t + 3t^2 + 2t^3) x^2 + (t + 6t^2 + 10t^3 + 5t^3) x^3 + ... generating shifted rows of this entry, excluding the first, was given in my 2008 formulas for A033282 with an o.g.f. f1(x,t) = G(x,t)/(1+t) for A033282. Simple transformations presented there of f1(x,t) are related to A060693 and A001263, the Narayana numbers. See also A086810.
The inverse of G(x,t) is essentially given in A033282 by x1, the inverse of f1(x,t): Ginv(x,t) = x [1/(t+x) - 1/(1+t+x)] = [((1+t) - t) / (t(1+t))] x - [((1+t)^2 - t^2) / (t(1+t))^2] x^2 + [((1+t)^3 - t^3) / (t(1+t))^3] x^3 - ... . The coefficients in t of Ginv(xt,t) are the o.g.f.s of the diagonals of the Pascal triangle A007318 with signed rows and an extra initial column of ones. The numerators give the row o.g.f.s of signed A074909.
Rows of A088617 are shifted columns of A107131, whose reversed rows are the Motzkin polynomials of A055151, related to A011973. The diagonals of A055151 give the rows of A088671, and the antidiagonals (top to bottom) of A088617 give the rows of A107131 and reversed rows of A055151. The diagonals of A107131 give the columns of A055151. The antidiagonals of A088617 (bottom to top) give the rows of A055151.
(End)
T(n, k) = [x^k] hypergeom([-n, 1 + n], [2], -x). - Peter Luschny, Apr 26 2022
EXAMPLE
Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 3, 2;
[3] 1, 6, 10, 5;
[4] 1, 10, 30, 35, 14;
[5] 1, 15, 70, 140, 126, 42;
[6] 1, 21, 140, 420, 630, 462, 132;
[7] 1, 28, 252, 1050, 2310, 2772, 1716, 429;
[8] 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430;
[9] 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862;
MAPLE
R := n -> simplify(hypergeom([-n, n + 1], [2], -x)):
Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
MATHEMATICA
Table[Binomial[n+k, n] Binomial[n, k]/(k+1), {n, 0, 10}, {k, 0, n}]//Flatten (* Michael De Vlieger, Aug 10 2017 *)
PROG
(PARI) {T(n, k)= if(k+1, binomial(n+k, n)*binomial(n, k)/(k+1))}
(Magma) [[Binomial(n+k, n)*Binomial(n, k)/(k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 18 2015
(SageMath) flatten([[binomial(n+k, 2*k)*catalan_number(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Nov 23 2003
STATUS
approved
Triangle (0 <= k <= n) read by rows: T(n, k) is the number of Schröder paths from (0,0) to (2n,0) having k peaks.
+10
25
1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 14, 35, 30, 10, 1, 42, 126, 140, 70, 15, 1, 132, 462, 630, 420, 140, 21, 1, 429, 1716, 2772, 2310, 1050, 252, 28, 1, 1430, 6435, 12012, 12012, 6930, 2310, 420, 36, 1, 4862, 24310, 51480, 60060, 42042, 18018, 4620, 660, 45, 1, 16796
OFFSET
0,4
COMMENTS
The rows sum to A006318 (Schroeder numbers), the left column is A000108 (Catalan numbers); the next-to-left column is A001700, the alternating sum in each row but the first is 0.
T(n,k) is the number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k peaks. Example: T(2,1)=3 because we have UU*DD, U*DH and HU*D, the peaks being shown by *. E.g., T(n,k) = binomial(n,k)*binomial(2n-k,n-1)/n for n>0. - Emeric Deutsch, Dec 06 2003
A090181*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 14 2008
T(n,k) is also the number of rooted plane trees with maximal degree 3 and k vertices of degree 2 (a node may have at most 2 children, and there are exactly k nodes with 1 child). Equivalently, T(n,k) is the number of syntactically different expressions that can be formed that use a unary operation k times, a binary operation n-k times, and nothing else (sequence of operands is fixed). - Lars Hellstrom (Lars.Hellstrom(AT)residenset.net), Dec 08 2009
LINKS
Vincenzo Librandi, Rows n = 0..100, flattened
J. Agapito, A. Mestre, P. Petrullo, and M. Torres, Counting noncrossing partitions via Catalan triangles, CEAFEL Seminar, June 30, 2015
Jean-Christophe Aval and François Bergeron, Rectangular Schröder Parking Functions Combinatorics, arXiv:1603.09487 [math.CO], 2016.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.
Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
David Callan and Toufik Mansour, Five subsets of permutations enumerated as weak sorting permutations, arXiv:1602.05182 [math.CO], 2016.
Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
Krishna Menon and Anurag Singh, Grassmannian permutations avoiding identity, arXiv:2212.13794 [math.CO], 2022.
Jean-Christophe Novelli and Jean-Yves Thibon, Duplicial algebras and Lagrange inversion, arXiv preprint arXiv:1209.5959 [math.CO], 2012.
FORMULA
Triangle T(n, k) (0 <= k <= n) read by rows; given by [1, 1, 1, 1, 1, ...] DELTA [1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 12 2003
If C_n(x) is the g.f. of row n of the Narayana numbers (A001263), C_n(x) = Sum_{k=1..n} binomial(n,k-1)*(binomial(n-1,k-1)/k) * x^k and T_n(x) is the g.f. of row n of T(n,k), then T_n(x) = C_n(x+1), or T(n,k) = [x^n]Sum_{k=1..n}(A001263(n,k)*(x+1)^k). - Mitch Harris, Jan 16 2007, Jan 31 2007
G.f.: (1 - t*y - sqrt((1-y*t)^2 - 4*y)) / 2.
T(n, k) = binomial(2n-k, n)*binomial(n, k)/(n-k+1). - Philippe Deléham, Dec 07 2003
A060693(n, k) = binomial(2*n-k, k)*A000108(n-k); A000108: Catalan numbers. - Philippe Deléham, Dec 30 2003
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n), for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Apr 01 2007
T(n,k) = Sum_{j>=0} A090181(n,j)*binomial(j,k). - Philippe Deléham, May 04 2007
Sum_{k=0..n} T(n,k)*x^(n-k) = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Oct 18 2007
From Paul Barry, Jan 29 2009: (Start)
G.f.: 1/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x/(1-.... (continued fraction);
G.f.: 1/(1-(x+xy)/(1-x/(1-(x+xy)/(1-x/(1-(x+xy)/(1-.... (continued fraction). (End)
T(n,k) = [k<=n]*(Sum_{j=0..n} binomial(n,j)^2*binomial(j,k))/(n-k+1). - Paul Barry, May 28 2009
T(n,k) = A104684(n,k)/(n-k+1). - Peter Luschny, May 17 2011
From Tom Copeland, Sep 21 2011: (Start)
With F(x,t) = (1-(2+t)*x-sqrt(1-2*(2+t)*x+(t*x)^2))/(2*x) an o.g.f. (nulling the n=0 term) in x for the A060693 polynomials in t,
G(x,t) = x/(1+t+(2+t)*x+x^2) is the compositional inverse in x.
Consequently, with H(x,t) = 1/(dG(x,t)/dx) = (1+t+(2+t)*x+x^2)^2 / (1+t-x^2), the n-th A060693 polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n) x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/d) u, evaluated at u = 0.
Also, dF(x,t)/dx = H(F(x,t),t). (End)
See my 2008 formulas in A033282 to relate this entry to A088617, A001263, A086810, and other matrices. - Tom Copeland, Jan 22 2016
Rows of this entry are non-vanishing antidiagonals of A097610. See p. 14 of Agapito et al. for a bivariate generating function and its inverse. - Tom Copeland, Feb 03 2016
From Werner Schulte, Jan 09 2017: (Start)
T(n,k) = A126216(n,k-1) + A126216(n,k) for 0 < k < n;
Sum_{k=0..n} (-1)^k*(1+x*(n-k))*T(n,k) = x + (1-x)*A000007(n).
(End)
Conjecture: Sum_{k=0..n} (-1)^k*T(n,k)*(n+1-k)^2 = 1+n+n^2. - Werner Schulte, Jan 11 2017
EXAMPLE
Triangle begins:
00: [ 1]
01: [ 1, 1]
02: [ 2, 3, 1]
03: [ 5, 10, 6, 1]
04: [ 14, 35, 30, 10, 1]
05: [ 42, 126, 140, 70, 15, 1]
06: [ 132, 462, 630, 420, 140, 21, 1]
07: [ 429, 1716, 2772, 2310, 1050, 252, 28, 1]
08: [ 1430, 6435, 12012, 12012, 6930, 2310, 420, 36, 1]
09: [ 4862, 24310, 51480, 60060, 42042, 18018, 4620, 660, 45, 1]
10: [16796, 92378, 218790, 291720, 240240, 126126, 42042, 8580, 990, 55, 1]
...
MAPLE
A060693 := (n, k) -> binomial(n, k)*binomial(2*n-k, n)/(n-k+1); # Peter Luschny, May 17 2011
MATHEMATICA
t[n_, k_] := Binomial[n, k]*Binomial[2 n - k, n]/(n - k + 1); Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]] (* Robert G. Wilson v, May 30 2011 *)
PROG
(PARI) T(n, k) = binomial(n, k)*binomial(2*n - k, n)/(n - k + 1);
for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print); \\ Indranil Ghosh, Jul 28 2017
(Python)
from sympy import binomial
def T(n, k): return binomial(n, k) * binomial(2 * n - k, n) / (n - k + 1)
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Jul 28 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
F. Chapoton, Apr 20 2001
EXTENSIONS
More terms from Vladeta Jovovic, Apr 21 2001
New description from Philippe Deléham, Aug 12 2003
New name using a comment by Emeric Deutsch from Peter Luschny, Jul 26 2017
STATUS
approved
Triangle related to guillotine partitions of a k-dimensional box by n hyperplanes.
+10
2
1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 15, 22, 1, 1, 5, 28, 93, 90, 1, 1, 6, 45, 244, 645, 394, 1, 1, 7, 66, 505, 2380, 4791, 1806, 1, 1, 8, 91, 906, 6345, 24868, 37275, 8558, 1, 1, 9, 120, 1477, 13926, 85405, 272188, 299865, 41586, 1, 1, 10, 153, 2248, 26845, 229326, 1204245, 3080596, 2474025, 206098, 1
OFFSET
0,5
COMMENTS
Row sums are A107703. Transpose of square array A103209, read by antidiagonals.
LINKS
E. Ackerman, G. Barequet, R. Y. Pinter and D. Romik, The number of guillotine partitions in d dimensions, Inf. Proc. Lett 98 (4) (2006) 162-167.
FORMULA
Number triangle T(n, k)=if(k<=n, sum{j=0..k, C(k+j, 2j)(n-k)^j*C(j)}, 0), C(n) given by A000108.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 1;
1, 3, 6, 1;
1, 4, 15, 22, 1;
1, 5, 28, 93, 90, 1;
1, 6, 45, 244, 645, 394, 1;
1, 7, 66, 505, 2380, 4791, 1806, 1;
1, 8, 91, 906, 6345, 24868, 37275, 8558, 1;
...
PROG
(PARI) T(n, k) = sum(j=0, k, (n-k)^j*binomial(k+j, 2*j)*binomial(2*j, j)/(j+1)); \\ Seiichi Manyama, Oct 02 2023
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 21 2005
STATUS
approved
Triangle read by rows, T(n, k) = binomial(n, k)*hypergeom([k-n, n+1], [k+2], -4), for n >= 0 and 0 <= k <= n.
+10
1
1, 5, 1, 45, 10, 1, 505, 115, 15, 1, 6345, 1460, 210, 20, 1, 85405, 19765, 2990, 330, 25, 1, 1204245, 279710, 43635, 5220, 475, 30, 1, 17558705, 4088615, 651165, 81955, 8275, 645, 35, 1, 262577745, 61254760, 9901860, 1290520, 139350, 12280, 840, 40, 1
OFFSET
0,2
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
FORMULA
T(n, k) = Sum_{j = k..n} 4^(j - k)*(k + 1)*binomial(n + j - k, 2*j - k)* binomial(2*j - k, j - k)/(j + 1). - Detlef Meya, Jan 15 2024
EXAMPLE
Triangle starts:
[0] 1
[1] 5, 1
[2] 45, 10, 1
[3] 505, 115, 15, 1
[4] 6345, 1460, 210, 20, 1
[5] 85405, 19765, 2990, 330, 25, 1
[6] 1204245, 279710, 43635, 5220, 475, 30, 1
MATHEMATICA
T[n_, k_] := Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, -4];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten
T[n_, k_] := Sum[4^(j - k)*(k + 1)*Binomial[n + j - k, 2*j - k]*Binomial[2*j - k, j - k]/(j + 1), {j, k, n}];
Flatten[Table[T[n, k], {n, 0, 8}, {k, 0, n}]] (* Detlef Meya, Jan 15 2024 *)
PROG
(PARI) T(n, k) = sum(j = k, n, 4^(j - k)*(k + 1)*binomial(n + j - k, 2*j - k)* binomial(2*j - k, j - k)/(j + 1)) \\ Andrew Howroyd, Jan 15 2024
CROSSREFS
T(n, 0) = A133305(n). Row sums are A297705, alternating row sums are A131765.
Cf. A103209.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jan 08 2018
STATUS
approved
G.f. A(x) satisfies: A(x) = (1 + 4 * x * A(x)^3) / (1 - x).
+10
1
1, 5, 65, 1145, 23185, 509005, 11782465, 283138545, 6996125985, 176633573205, 4536739406465, 118166489152745, 3113854691067185, 82864654201672605, 2223776891616904065, 60113561634017675745, 1635364503704652830785, 44739382956328846263205, 1230059816693141938275265
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = a(n-1) + 4 * Sum_{i=0..n-1} Sum_{j=0..n-i-1} a(i) * a(j) * a(n-i-j-1).
a(n) = Sum_{k=0..n} binomial(n+2*k,3*k) * binomial(3*k,k) * 4^k / (2*k+1).
a(n) ~ sqrt((1 + (1 + 1/phi^(2/3) + phi^(2/3))^3/2) / (2*Pi)) / (6 * n^(3/2) * (1 + 3/phi^(1/3) - 3*phi^(1/3))^n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Nov 21 2021
MATHEMATICA
nmax = 18; A[_] = 0; Do[A[x_] = (1 + 4 x A[x]^3)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = a[n - 1] + 4 Sum[Sum[a[i] a[j] a[n - i - j - 1], {j, 0, n - i - 1}], {i, 0, n - 1}]; Table[a[n], {n, 0, 18}]
Table[Sum[Binomial[n + 2 k, 3 k] Binomial[3 k, k] 4^k/(2 k + 1), {k, 0, n}], {n, 0, 18}]
PROG
(PARI) a(n) = sum(k=0, n, binomial(n+2*k, 3*k) * binomial(3*k, k) * 4^k / (2*k+1)) \\ Andrew Howroyd, Nov 20 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 20 2021
STATUS
approved

Search completed in 0.032 seconds