[go: nahoru, domu]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a244644 -id:a244644
Displaying 1-10 of 13 results found. page 1 2
     Sort: relevance | references | number | modified | created      Format: long | short | data
A093954 Decimal expansion of Pi/(2*sqrt(2)). +10
32
1, 1, 1, 0, 7, 2, 0, 7, 3, 4, 5, 3, 9, 5, 9, 1, 5, 6, 1, 7, 5, 3, 9, 7, 0, 2, 4, 7, 5, 1, 5, 1, 7, 3, 4, 2, 4, 6, 5, 3, 6, 5, 5, 4, 2, 2, 3, 4, 3, 9, 2, 2, 5, 5, 5, 7, 7, 1, 3, 4, 8, 9, 0, 1, 7, 3, 9, 1, 0, 8, 6, 9, 8, 2, 7, 4, 8, 6, 8, 4, 7, 7, 6, 4, 3, 8, 3, 1, 7, 3, 3, 6, 9, 1, 1, 9, 1, 3, 0, 9, 3, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
The value is the length Pi*sqrt(2)/4 of the diagonal in the square with side length Pi/4 = Sum_{n>=0} (-1)^n/(2n+1) = A003881. The area of the circumcircle of this square is Pi*(Pi*sqrt(2)/8)^2 = Pi^3/32 = A153071. - Eric Desbiaux, Jan 18 2009
This is the value of the Dirichlet L-function of modulus m=8 at argument s=1 for the non-principal character (1,0,1,0,-1,0,-1,0). See arXiv:1008.2547. - R. J. Mathar, Mar 22 2011
Archimedes's-like scheme: set p(0) = sqrt(2), q(0) = 1; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (harmonic mean, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
The area of a circle circumscribing a unit-area regular octagon. - Amiram Eldar, Nov 05 2020
REFERENCES
J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, 1993, Exercice 5, p. 240.
George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), p. 149.
L. B. W. Jolley, Summation of Series, Dover (1961), eq 76 page 16.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 53.
LINKS
J. M. Borwein, P. B. Borwein, and K. Dilcher, Pi, Euler numbers and asymptotic expansions, Amer. Math. Monthly, 96 (1989), 681-687.
R. J. Mathar, Table of Dirichlet L-series and prime zeta modulo functions for small moduli, arXiv:1008.2547 [math.NT], 2010-2015, table 7 and section 2.2, value of L(m=8,r=4,s=1).
Michael Penn, Newton's sum (2023), YouTube video.
Eric Weisstein's World of Mathematics, Bifoliate.
FORMULA
Equals 1/A112628.
Equals Integral_{x=0..oo} 1/(x^4+1) dx. - Jean-François Alcover, Apr 29 2013
From Peter Bala, Feb 05 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k.
The integer sequences A(n) := 2^n*(2*n + 1)! and B(n) := A(n)*( Sum {k = 0..n} binomial(2*k,k)*1/(2*k + 1)*(1/8)^k ) both satisfy the second order recurrence equation u(n) = (12*n^2 + 1)*u(n-1) - 4*(n - 1)*(2*n - 1)^3*u(n-2). From this observation we can obtain the continued fraction expansion Pi/(2*sqrt(2)) = 1 + 1/(12 - 4*3^3/(49 - 4*2*5^3/(109 - 4*3*7^3/(193 - ... - 4*(n - 1)*(2*n - 1)^3/((12*n^2 + 1) - ... ))))). Cf. A002388 and A019670. (End)
From Peter Bala, Mar 03 2015: (Start)
Pi/(2*sqrt(2)) = Sum_{k >= 0} (-1)^floor(k/2)/(2*k + 1) = limit (n -> infinity) Sum_{k = -n .. n - 1} (-1)^k/(4*k + 1). See Wells.
We conjecture the asymptotic expansion Pi/(2*sqrt(2)) - Sum {k = 0..n - 1} (-1)^floor(k/2)/(2*k + 1) ~ 1/(2*n) - 3/(2*n)^3 + 57/(2*n)^5 - 2763/(2*n)^7 + ..., where n is a multiple of 4 and the sequence of unsigned coefficients [1, 3, 57, 2763, ...] is A000281. An example with n = 5000 is given below. (End)
From Peter Bala, Sep 21 2016: (Start)
c = 2 * Sum_{k >= 0} (-1)^k * (4*k + 2)/((4*k + 1)*(4*k + 3)) = A181048 + A181049. The asymptotic expansion conjectured above follows from the asymptotic expansions given in A181048 and A181049.
c = 1/2 * Integral_{x = 0..Pi/2} sqrt(tan(x)) dx. (End)
From Peter Bala, Nov 24 2016: (Start)
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 2^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 2*m*j). Cf. A003881.
In the particular case m = 1 the result has the equivalent form: for n a nonnegative integer, Pi/(2*sqrt(2)) = 2^n*(2*n)!*Sum_{k >= 0} (-1)^(n+k)*(8*k + 4)* 1/Product_{j = -n..n+1} (4*k + 2*j + 1). The case m = 1, n = 1 is considered in the Example section below.
Let m be an odd integer and n a nonnegative integer. Then Pi/(2*sqrt(2)) = 4^n*m^(2*n)*(2*n)!*Sum_{k >= 0} (-1)^(n+floor(k/2)) * 1/Product_{j = -n..n} (2*k + 1 + 4*m*j). (End)
Equals Integral_{x = 0..oo} cosh(x)/cosh(2*x) dx. - Peter Bala, Nov 01 2019
Equals Sum_{k>=1} A188510(k)/k = Sum_{k>=1} Kronecker(-8,k)/k = 1 + 1/3 - 1/5 - 1/7 + 1/9 + 1/11 - 1/13 - 1/15 + ... - Jianing Song, Nov 16 2019
From Amiram Eldar, Jul 16 2020: (Start)
Equals Product_{k>=1} (1 - (-1)^k/(2*k+1)).
Equals Integral_{x=0..oo} dx/(x^2 + 2).
Equals Integral_{x=0..Pi/2} dx/(sin(x)^2 + 1). (End)
Equals Integral_{x=0..oo} x^2/(x^4 + 1) dx (Arnaudiès). - Bernard Schott, May 19 2022
Equals Integral_{x = 0..1} 1/(2*x^2 + (1 - x)^2) dx. - Peter Bala, Jul 22 2022
Equals Integral_{x = 0..1} 1/(1 - x^4)^(1/4) dx. - Terry D. Grant, Mar 17 2023
Equals 1/Product_{p prime} (1 - Kronecker(-8,p)/p), where Kronecker(-8,p) = 0 if p = 2, 1 if p == 1 or 3 (mod 8) or -1 if p == 5 or 7 (mod 8). - Amiram Eldar, Dec 17 2023
Equals A068465*A068467. - R. J. Mathar, Jun 27 2024
EXAMPLE
1.11072073453959156175397...
From Peter Bala, Mar 03 2015: (Start)
Asymptotic expansion at n = 5000.
The truncated series Sum_{k = 0..5000 - 1} (-1)^floor(k/2)/(2*k + 1) = 1.110(6)207345(42)591561(18)3970(5238)1.... The bracketed digits show where this decimal expansion differs from that of Pi/(2*sqrt(2)). The numbers 1, -3, 57, -2763 must be added to the bracketed numbers to give the correct decimal expansion to 30 digits: Pi/(2*sqrt(2)) = 1.110(7)207345(39)591561(75)3970 (2475)1.... (End)
From Peter Bala, Nov 24 2016: (Start)
Case m = 1, n = 1:
Pi/(2*sqrt(2)) = 4*Sum_{k >= 0} (-1)^(1 + floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)).
We appear to have the following asymptotic expansion for the tails of this series: for N divisible by 4, Sum_{k >= N/2} (-1)^floor(k/2)/((2*k - 1)*(2*k + 1)*(2*k + 3)) ~ 1/N^3 - 14/N^5 + 691/N^7 - 62684/N^9 - ..., where the coefficient sequence [1, 0, -14, 0, 691, 0, -62684, ...] appears to come from the e.g.f. (1/2!)*cosh(x)/cosh(2*x)*sinh(x)^2 = x^2/2! - 14*x^4/4! + 691*x^6/6! - 62684*x^8/8! + .... Cf. A019670.
For example, take N = 10^5. The truncated series Sum_{k = 0..N/2 -1} (-1)^(1+floor(k/2))/((2*k - 1)*(2*k + 1)*(2*k + 3)) = 0.27768018363489(8)89043849(11)61878(80026)6163(351171)58.... The bracketed digits show where this decimal expansion differs from that of (1/4)*Pi/(2*sqrt(2)). The numbers -1, 14, -691, 62684 must be added to the bracketed numbers to give the correct decimal expansion: (1/4)*Pi/(2*sqrt(2)) = 0.27768018363489(7) 89043849(25)61878(79335)6163(413855)58... (End)
MAPLE
simplify( sum((cos((1/2)*k*Pi)+sin((1/2)*k*Pi))/(2*k+1), k = 0 .. infinity) ); # Peter Bala, Mar 09 2015
MATHEMATICA
RealDigits[Pi/Sqrt@8, 10, 111][[1]] (* Michael De Vlieger, Sep 23 2016 and slightly modified by Robert G. Wilson v, Jul 23 2018 *)
PROG
(PARI) default(realprecision, 20080); x=Pi*sqrt(2)/4; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093954.txt", n, " ", d)); \\ Harry J. Smith, Jun 17 2009
CROSSREFS
Cf. A161684 (continued fraction).
KEYWORD
nonn,cons,easy,changed
AUTHOR
Eric W. Weisstein, Apr 19 2004
STATUS
approved
A014549 Decimal expansion of 1 / M(1,sqrt(2)) (Gauss's constant). +10
17
8, 3, 4, 6, 2, 6, 8, 4, 1, 6, 7, 4, 0, 7, 3, 1, 8, 6, 2, 8, 1, 4, 2, 9, 7, 3, 2, 7, 9, 9, 0, 4, 6, 8, 0, 8, 9, 9, 3, 9, 9, 3, 0, 1, 3, 4, 9, 0, 3, 4, 7, 0, 0, 2, 4, 4, 9, 8, 2, 7, 3, 7, 0, 1, 0, 3, 6, 8, 1, 9, 9, 2, 7, 0, 9, 5, 2, 6, 4, 1, 1, 8, 6, 9, 6, 9, 1, 1, 6, 0, 3, 5, 1, 2, 7, 5, 3, 2, 4, 1, 2, 9, 0, 6, 7, 8, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
On May 30, 1799, Gauss discovered that this number is also equal to (2/Pi)*Integral_{t=0..1} 1/sqrt(1-t^4).
M(a,b) is the limit of the arithmetic-geometric mean iteration applied repeatedly starting with a and b: a_0 = a, b_0 = b, a_{n+1} = (a_n + b_n)/2, b_{n+1} = sqrt(a_n*b_n).
REFERENCES
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, page 5.
J. R. Goldman, The Queen of Mathematics, 1998, p. 92.
LINKS
Markus Faulhuber, Anupam Gumber, and Irina Shafkulovska, The AGM of Gauss, Ramanujan's corresponding theory, and spectral bounds of self-adjoint operators, arXiv:2209.04202 [math.CA], 2022, p. 2.
Alessandro Languasco and Pieter Moree, Euler constants from primes in arithmetic progression, arXiv:2406.16547 [math.NT], 2024. See p. 10.
Eric Weisstein's World of Mathematics, Gauss's Constant.
Eric Weisstein's World of Mathematics, Arithmetic-Geometric Mean.
FORMULA
Equals (lim_{k->oo} p(k))/(1+i) and (lim_{k->oo} q(k))/(1+i), where i is the imaginary unit, p(0) = 1, q(0) = i, p(k+1) = 2*p(k)*q(k)/(p(k)+q(k)) and q(k+1) = sqrt(p(k)*q(k)) for k >= 0. - A.H.M. Smeets, Jul 26 2018
Equals the infinite quotient product (3/4)*(6/5)*(7/8)*(10/9)*(11/12)*(14/13)*(15/16)*... . - James Maclachlan, Jul 28 2019
Equals (9/15)*hypergeom([1/2, 3/4], [9/4], 1). - Peter Bala, Mar 03 2022
Equals A062539 / Pi. - Amiram Eldar, May 04 2022
From Stefano Spezia, Sep 29 2022: (Start)
Equals theta4(exp(-Pi))^2.
Equals sqrt(2)*A093341/Pi. (End)
Equals Sum_{k>=0} (-1)^k * binomial(2*k,k)^2/16^k. - Amiram Eldar, Jul 04 2023
From Gerry Martens, Jul 31 2023: (Start)
Equals 2*Gamma(5/4)/(sqrt(Pi)*Gamma(3/4)).
Equals hypergeom([1/4, -2/4], [1], 1). (End)
Equals A248557^2. - Hugo Pfoertner, Jun 28 2024
EXAMPLE
0.8346268416740731862814297327990468...
MAPLE
evalf(1/GaussAGM(1, sqrt(2)), 144); # Alois P. Heinz, Jul 05 2023
MATHEMATICA
RealDigits[Gamma[1/4]^2/(2*Pi^(3/2)*Sqrt[2]), 10, 105][[1]] (* or: *)
RealDigits[1/ArithmeticGeometricMean[1, Sqrt[2]], 10, 105][[1]] (* Jean-François Alcover, Dec 13 2011, updated Nov 11 2016, after Eric W. Weisstein *)
First[RealDigits[N[EllipticTheta[4, Exp[-Pi]]^2, 90]]] (* Stefano Spezia, Sep 29 2022 *)
PROG
(PARI) default(realprecision, 20080); x=10*agm(1, sqrt(2))^-1; for (n=0, 20000, d=floor(x); x=(x-d)*10; write("b014549.txt", n, " ", d)); \\ Harry J. Smith, Apr 20 2009
(PARI) 1/agm(sqrt(2), 1) \\ Charles R Greathouse IV, Feb 04 2015
(PARI) sqrt(Pi/2)/gamma(3/4)^2 \\ Charles R Greathouse IV, Feb 04 2015
(Python)
from mpmath import mp, agm, sqrt
mp.dps=105
print([int(z) for z in list(str(1/agm(sqrt(2)))[2:-1])]) # Indranil Ghosh, Jul 11 2017
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); Sqrt(Pi(R)/2)/Gamma(3/4)^2; // G. C. Greubel, Aug 17 2018
CROSSREFS
KEYWORD
nonn,cons,nice
AUTHOR
EXTENSIONS
Extended to 105 terms by Jean-François Alcover, Dec 13 2011
a(104) corrected by Andrew Howroyd, Feb 23 2018
STATUS
approved
A188615 Decimal expansion of Brocard angle of side-silver right triangle. +10
9
3, 3, 9, 8, 3, 6, 9, 0, 9, 4, 5, 4, 1, 2, 1, 9, 3, 7, 0, 9, 6, 3, 9, 2, 5, 1, 3, 3, 9, 1, 7, 6, 4, 0, 6, 6, 3, 8, 8, 2, 4, 4, 6, 9, 0, 3, 3, 2, 4, 5, 8, 0, 7, 1, 4, 3, 1, 9, 2, 3, 9, 6, 2, 4, 8, 9, 9, 1, 5, 8, 8, 8, 6, 6, 4, 8, 4, 8, 4, 1, 1, 4, 6, 0, 7, 6, 5, 7, 9, 2, 5, 0, 0, 1, 9, 7, 6, 1, 2, 8, 5, 2, 1, 2, 9, 7, 6, 3, 8, 0, 7, 4, 0, 2, 2, 9, 4, 4, 7, 4, 1, 5, 2, 3, 9, 3, 5, 7, 5, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The Brocard angle is invariant of the size of the side-silver right triangle ABC. The shape of ABC is given by sidelengths a,b,c, where a=r*b, and c=sqrt(a^2+b^2), where r=(silver ratio)=(1+sqrt(2)). This is the unique right triangle matching the continued fraction [2,2,2,...] of r; i.e, under the side-partitioning procedure described in the 2007 reference, there are exactly 2 removable subtriangles at each stage. (This is analogous to the removal of 2 squares at each stage of the partitioning of the silver rectangle as a nest of squares.)
Archimedes's-like scheme: set p(0) = 1/(2*sqrt(2)), q(0) = 1/3; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (harmonic mean, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
This angle is also the half-angle at the summit of the Kelvin wake pattern traced by a boat. - Robert FERREOL, Sep 27 2019
LINKS
Clark Kimberling, Two kinds of golden triangles, generalized to match continued fractions, Journal for Geometry and Graphics, 11 (2007) 165-171.
FORMULA
(Brocard angle) = arccot((a^2+b^2+c^2)/(4*area(ABC))) = arccot(sqrt(8)).
Also equals arcsin(1/3) or arccsc(3). - Jean-François Alcover, May 29 2013
EXAMPLE
Brocard angle: 0.3398369094541219370963925133917640663882 approx.
Brocard angle: 19.471220634490691369245999 degrees, approx.
MATHEMATICA
r=1+2^(1/2);
b=1; a=r*b; c=(a^2+b^2)^(1/2);
area=(1/4)((a+b+c)(b+c-a)(c+a-b)(a+b-c))^(1/2);
brocard=ArcCot[(a^2+b^2+c^2)/(4area)];
N[brocard, 130]
RealDigits[N[brocard, 130]][[1]]
N[180 brocard/Pi, 130] (* degrees *)
RealDigits[ArcCos[Sqrt[8/9]], 10, 50][[1]] (* G. C. Greubel, Nov 18 2017 *)
PROG
(PARI) acos(sqrt(8/9)) \\ Charles R Greathouse IV, May 02 2013
(Magma) [Arccos(Sqrt(8/9))]; // G. C. Greubel, Nov 18 2017
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Apr 05 2011
STATUS
approved
A244645 Decimal expansion of the sum of the reciprocals of the octagonal numbers (A000567). +10
8
1, 2, 7, 7, 4, 0, 9, 0, 5, 7, 5, 5, 9, 6, 3, 6, 7, 3, 1, 1, 9, 4, 9, 5, 3, 4, 9, 2, 1, 0, 2, 4, 3, 3, 2, 1, 1, 5, 5, 6, 6, 3, 4, 4, 8, 0, 3, 9, 0, 2, 4, 7, 2, 3, 2, 6, 9, 3, 4, 9, 1, 9, 8, 4, 0, 7, 5, 1, 5, 1, 5, 1, 5, 1, 9, 5, 5, 4, 5, 1, 9, 6, 0, 7, 6, 2, 4, 3, 0, 6, 3, 1, 6, 3, 3, 1, 4, 1, 0, 8, 8, 0, 5, 0, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
Lawrence Downey, Boon W. Ong, and James A. Sellers, Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers, Coll. Math. J., 39, no. 5 (2008), 391-394.
Wikipedia, Polygonal number
FORMULA
Equals Sum_{n>=1} 1/(3*n^2 - 2*n).
Equals Pi/(4*sqrt(3)) + 3*log(3)/4. - Vaclav Kotesovec, Jul 05 2014
EXAMPLE
1.2774090575596367311949534921024332115566344803902472326934919840751515151955452...
MATHEMATICA
RealDigits[ Sum[1/(3n^2 - 2n), {n, 1 , Infinity}], 10, 111][[1]]
PROG
(PARI) sumpos(n=1, 1/(3*n^2 - 2*n)) \\ Michel Marcus, Sep 12 2016
(PARI) sumnumrat(1/(3*n-2)/n, 1) \\ Charles R Greathouse IV, Feb 08 2023
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Robert G. Wilson v, Jul 03 2014
STATUS
approved
A244646 Decimal expansion of the sum of the reciprocals of the 9-gonal (or enneagonal or nonagonal) numbers (A001106). +10
7
1, 2, 4, 3, 3, 2, 0, 9, 2, 6, 1, 5, 3, 7, 1, 2, 9, 8, 9, 2, 0, 6, 6, 0, 7, 7, 3, 9, 6, 3, 1, 0, 1, 4, 2, 8, 2, 1, 3, 5, 8, 4, 4, 1, 0, 1, 0, 3, 0, 0, 9, 9, 6, 2, 4, 4, 1, 5, 2, 8, 1, 7, 5, 2, 5, 3, 8, 6, 6, 0, 7, 4, 3, 8, 4, 4, 0, 8, 5, 1, 9, 7, 8, 6, 9, 0, 0, 1, 3, 2, 3, 2, 5, 8, 8, 3, 2, 8, 6, 0, 0, 7, 3, 6, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
Ravi P. Agarwal, Pythagoreans Figurative Numbers: The Beginning of Number Theory and Summation of Series, Journal of Applied Mathematics and Physics, Vol.9, No.8 (2021), pp. 2038-2113. See p. 2076.
Wikipedia, Polygonal number.
FORMULA
Equals Sum_{n>=1} 2/(7n^2 - 5n).
Equals (2*log(14) + 4*(cos(Pi/7)*log(cos(3*Pi/14)) + log(sin(Pi/7))*sin(Pi/14) - log(cos(Pi/14)) * sin(3*Pi/14)) + Pi*tan(3*Pi/14))/5. - Vaclav Kotesovec, Jul 04 2014
Equals 14/25 - (2/5)*(gamma + psi(-5/7)), where gamma is Euler's constant (A001620) and psi(x) is the digamma function (Agarwal, 2021), psi(-5/7) = psi(2/7)+7/5 = -2.285517..., see A354628. - Amiram Eldar, Nov 12 2021
EXAMPLE
1.2433209261537129892066077396310142821358441010300996244152817525...
MATHEMATICA
RealDigits[ Sum[2/(7n^2 - 5n), {n, 1 , Infinity}], 10, 111][[1]]
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Robert G. Wilson v, Jul 03 2014
STATUS
approved
A244649 Decimal expansion of the sum of the reciprocals of the Dodecagonal numbers (A051624). +10
7
1, 1, 7, 7, 9, 5, 6, 0, 5, 7, 9, 2, 2, 6, 6, 3, 8, 5, 8, 7, 3, 5, 1, 7, 3, 9, 6, 8, 0, 9, 1, 8, 8, 7, 4, 1, 8, 4, 4, 5, 8, 5, 7, 2, 3, 4, 5, 6, 6, 6, 7, 9, 8, 0, 2, 8, 4, 2, 5, 2, 2, 8, 5, 7, 3, 2, 6, 6, 8, 9, 2, 5, 6, 8, 2, 8, 4, 8, 8, 7, 4, 5, 4, 0, 2, 4, 0, 7, 6, 9, 0, 2, 5, 6, 9, 5, 5, 9, 0, 3, 2, 2, 4, 4, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
From Wolfdieter Lang, Nov 09 2017: (Start)
In the Downey et al. link this is the instance k = 5 of the formula given there for S_{2*k+2}. A simpler formula is given in the Koecher reference as (5/4)*v_5(1) on p. 192. See the Kotesovec formula given below.
The partial sums are given in A294520/A294521. (End)
REFERENCES
Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, pp. 189 - 193.
LINKS
Lawrence Downey, Boon W. Ong, and James A. Sellers, Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers, Coll. Math. J., 39, no. 5 (2008), 391-394.
Wikipedia, Polygonal number
FORMULA
Equals Sum_{n>=1} 1/(5n^2 - 4n).
Equals Pi/8*sqrt(1+2/sqrt(5)) + (5*log(5) + sqrt(5)*log((3+sqrt(5))/2))/16. - Vaclav Kotesovec, Jul 04 2014
This is the value given in the Koecher reference (see a comment above), and rewritten with the golden section phi = (1 + sqrt(5))/2 this becomes
((5/2)*log(5) + (2*phi - 1)*(log(phi) + (Pi/5)*sqrt(3 + 4*phi)))/8. - Wolfdieter Lang, Nov 09 2017
EXAMPLE
1.1779560579226638587351739680918874184458572345666798028425228573...
MATHEMATICA
RealDigits[ Sum[1/(5n^2 - 4n), {n, 1 , Infinity}], 10, 111][[1]]
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Robert G. Wilson v, Jul 03 2014
STATUS
approved
A244648 Decimal expansion of the sum of the reciprocals of the hendecagonal numbers (A051682). +10
5
1, 1, 9, 5, 4, 3, 4, 1, 1, 6, 5, 2, 9, 6, 2, 7, 9, 7, 4, 3, 5, 2, 4, 9, 9, 2, 3, 4, 6, 9, 8, 4, 9, 9, 3, 5, 4, 8, 8, 4, 6, 8, 2, 6, 2, 7, 0, 8, 4, 6, 5, 8, 0, 6, 2, 3, 8, 6, 0, 2, 1, 6, 0, 3, 0, 1, 7, 3, 5, 8, 4, 7, 3, 3, 7, 0, 3, 1, 7, 6, 0, 1, 4, 6, 4, 4, 8, 4, 1, 7, 5, 4, 8, 5, 5, 1, 1, 2, 3, 1, 8, 5, 5, 4, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
Wikipedia, Polygonal number
FORMULA
Sum_{n=1..infinity} 2/(9n^2 - 7n).
Equals (5*log(3) + Pi*cot(2*Pi/9) - 4*cos(2*Pi/9)*log(cos(Pi/18)) + 4*cos(Pi/9)*log(sin(2*Pi/9)) - 4*log(sin(Pi/9))*sin(Pi/18))/7. - Vaclav Kotesovec, Jul 04 2014
EXAMPLE
1.195434116529627974352499234698499354884682627084658062386021603017...
MATHEMATICA
RealDigits[ Sum[2/(9n^2 - 7n), {n, 1 , Infinity}], 10, 111][[1]]
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Robert G. Wilson v, Jul 03 2014
STATUS
approved
A129200 Decimal expansion of arcsinh(1/4). +10
4
2, 4, 7, 4, 6, 6, 4, 6, 1, 5, 4, 7, 2, 6, 3, 4, 5, 2, 9, 4, 4, 7, 8, 1, 5, 4, 9, 7, 8, 8, 3, 5, 9, 2, 8, 9, 2, 5, 3, 7, 6, 6, 9, 0, 3, 0, 9, 8, 5, 6, 7, 6, 9, 6, 4, 6, 9, 1, 1, 7, 3, 5, 7, 9, 4, 4, 3, 6, 5, 1, 7, 9, 4, 4, 3, 6, 6, 6, 3, 6, 4, 9, 7, 4, 7, 5, 4, 8, 8, 3, 3, 2, 9, 3, 9, 8, 5, 9, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Archimedes's-like scheme: set p(0) = 1/sqrt(17), q(0) = 1/4; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (arithmetic mean of reciprocals, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
LINKS
FORMULA
Equals log((1 + sqrt(17))/4). - Jianing Song, Jul 12 2018
EXAMPLE
.24746646154726345294478154978835928925376690309856769646911...
MATHEMATICA
RealDigits[ArcSinh[1/4], 10, 111][[1]] (* Robert G. Wilson v, Jul 23 2018 *)
PROG
(PARI) asinh(1/4) \\ Michel Marcus, Jul 12 2018
(Magma) SetDefaultRealField(RealField(100)); Argsinh(1/4); // G. C. Greubel, Nov 11 2018
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Jul 27 2008
STATUS
approved
A195621 Decimal expansion of arccsc(4). +10
4
2, 5, 2, 6, 8, 0, 2, 5, 5, 1, 4, 2, 0, 7, 8, 6, 5, 3, 4, 8, 5, 6, 5, 7, 4, 3, 6, 9, 9, 3, 7, 1, 0, 9, 7, 2, 2, 5, 2, 1, 9, 3, 7, 3, 3, 0, 9, 6, 8, 3, 8, 1, 9, 3, 6, 3, 3, 9, 2, 3, 7, 7, 8, 7, 4, 0, 5, 7, 5, 0, 6, 0, 4, 8, 1, 0, 2, 1, 2, 2, 2, 4, 1, 1, 7, 4, 8, 7, 4, 2, 2, 2, 8, 0, 1, 4, 6, 0, 1, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Archimedes's-like scheme: set p(0) = 1/sqrt(15), q(0) = 1/4; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (harmonic mean, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
LINKS
FORMULA
Equals arccos(sqrt(15)/4) = arctan(1/sqrt(15)). - Amiram Eldar, Jul 11 2023
EXAMPLE
arccsc(4) = arcsin(1/4) = 0.25268025514207865...
MATHEMATICA
(See A195628.)
RealDigits[ ArcCsc@4, 10, 111][[1]] (* Robert G. Wilson v, Jul 23 2018 *)
PROG
(PARI) asin(1/4) \\ Michel Marcus, Jul 12 2018
(Magma) SetDefaultRealField(RealField(100)); Arcsin(1/4); // G. C. Greubel, Nov 11 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Sep 23 2011
STATUS
approved
A129187 Decimal expansion of arcsinh(1/3). +10
3
3, 2, 7, 4, 5, 0, 1, 5, 0, 2, 3, 7, 2, 5, 8, 4, 4, 3, 3, 2, 2, 5, 3, 5, 2, 5, 9, 9, 8, 8, 2, 5, 8, 1, 2, 7, 7, 0, 0, 5, 2, 4, 5, 2, 8, 9, 9, 0, 7, 6, 7, 4, 5, 1, 2, 7, 5, 6, 2, 9, 5, 1, 5, 4, 2, 7, 1, 7, 6, 5, 6, 2, 9, 4, 9, 3, 2, 7, 2, 1, 4, 1, 1, 9, 8, 2, 4, 7, 7, 3, 0, 6, 3, 2, 3, 1, 9, 5, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Archimedes's-like scheme: set p(0) = 1/sqrt(10), q(0) = 1/3; p(n+1) = 2*p(n)*q(n)/(p(n)+q(n)) (arithmetic mean of reciprocals, i.e., 1/p(n+1) = (1/p(n) + 1/q(n))/2), q(n+1) = sqrt(p(n+1)*q(n)) (geometric mean, i.e., log(q(n+1)) = (log(p(n+1)) + log(q(n)))/2), for n >= 0. The error of p(n) and q(n) decreases by a factor of approximately 4 each iteration, i.e., approximately 2 bits are gained by each iteration. Set r(n) = (2*q(n) + p(n))/3, the error decreases by a factor of approximately 16 for each iteration, i.e., approximately 4 bits are gained by each iteration. For a similar scheme see also A244644. - A.H.M. Smeets, Jul 12 2018
LINKS
FORMULA
Equals log((1 + sqrt(10))/3). - Jianing Song, Jul 12 2018
Equals arccoth(sqrt(10)). - Amiram Eldar, Feb 09 2024
EXAMPLE
0.32745015023725844332253525998825812770052452899076745127562...
MATHEMATICA
RealDigits[ArcSinh[1/3], 10, 111][[1]] (* Robert G. Wilson v, Jul 23 2018 *)
PROG
(PARI) asinh(1/3) \\ Charles R Greathouse IV, Mar 25 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Jul 27 2008
STATUS
approved
page 1 2

Search completed in 0.012 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 10:21 EDT 2024. Contains 375753 sequences. (Running on oeis4.)