# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a001899 Showing 1-1 of 1 %I A001899 #28 Nov 25 2023 04:34:57 %S A001899 0,0,0,0,1,0,0,0,1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,0,2,0,0,1,2,1,0,0,1,0, %T A001899 1,0,2,0,1,1,1,0,1,0,2,1,0,0,2,1,0,0,1,0,2,0,2,1,1,1,1,0,0,1,2,0,0,0, %U A001899 2,1,1,0,3,0,1,0,2,0,1,1,1,1,0,0,3,0,0 %N A001899 Number of divisors of n of the form 5k+4; a(0) = 0. %H A001899 T. D. Noe, Table of n, a(n) for n = 0..10000 %H A001899 R. A. Smith and M. V. Subbarao, The average number of divisors in an arithmetic progression, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41. %F A001899 G.f.: Sum_{n>=0} x^(5*n+4)/(1 - x^(5*n+4)). %F A001899 G.f.: Sum_{k>=1} x^(4*k)/(1 - x^(5*k)). - _Ilya Gutkovskiy_, Sep 11 2019 %F A001899 Sum_{k=1..n} a(k) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(4,5) - (1 - gamma)/5 = A256849 - (1 - A001620)/5 = -0.213442... (Smith and Subbarao, 1981). - _Amiram Eldar_, Nov 25 2023 %t A001899 Join[{0}, Table[d = Divisors[n]; Length[Select[d, Mod[#, 5] == 4 &]], {n, 100}]] (* _T. D. Noe_, Aug 10 2012 *) %o A001899 (PARI) a(n) = if (n==0, 0, sumdiv(n, d, (d % 5)==4)); \\ _Michel Marcus_, Feb 28 2021 %Y A001899 Cf. A001876, A001877, A001878. %Y A001899 Cf. A001620, A256849. %K A001899 nonn,easy %O A001899 0,25 %A A001899 _N. J. A. Sloane_ %E A001899 Better definition from _Michael Somos_, Aug 31 2004 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE