# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a079586 Showing 1-1 of 1 %I A079586 #117 Nov 15 2023 14:38:59 %S A079586 3,3,5,9,8,8,5,6,6,6,2,4,3,1,7,7,5,5,3,1,7,2,0,1,1,3,0,2,9,1,8,9,2,7, %T A079586 1,7,9,6,8,8,9,0,5,1,3,3,7,3,1,9,6,8,4,8,6,4,9,5,5,5,3,8,1,5,3,2,5,1, %U A079586 3,0,3,1,8,9,9,6,6,8,3,3,8,3,6,1,5,4,1,6,2,1,6,4,5,6,7,9,0,0,8,7,2,9,7,0,4 %N A079586 Decimal expansion of Sum_{k>=1} 1/F(k) where F(k) is the k-th Fibonacci number A000045(k). %C A079586 André-Jeannin proved that this constant is irrational. %C A079586 This constant does not belong to the quadratic number field Q(sqrt(5)) (Bundschuh and Väänänen, 1994). - _Amiram Eldar_, Oct 30 2020 %D A079586 Daniel Duverney, Number Theory, World Scientific, 2010, 5.22, pp.75-76. %D A079586 Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 358. %H A079586 Kenny Lau, Table of n, a(n) for n = 1..10000 (First 1000 terms computed by Joerg Arndt) %H A079586 Richard André-Jeannin, Irrationalité de la somme des inverses de certaines suites récurrentes, Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 308:19 (1989), pp. 539-541. %H A079586 Richard André-Jeannin, Problem H-450, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 29, No. 1 (1991), p. 89; Comparable, Solution to Problem H-450 by Paul S. Bruckman, ibid., Vol. 30, No. 2 (1992), p. 191-192. %H A079586 Richard André-Jeannin, Sequences of Integers Satisfying Recurrence Relations, The Fibonacci Quarterly, Vol. 29, No. 3 (1991), pp. 205-208; %H A079586 Joerg Arndt, On computing the generalized Lambert series, arXiv:1202.6525v3 [math.CA], (2012). %H A079586 Paul S. Bruckman, Problem B-602, Elementary Problems and Solutions, The Fibonacci Quarterly, Vol. 25, No. 3 (1987), p. 279; Fibonacci Infinite Series, Solution to Problem B-602 by C. Georghiou, ibid., Vol. 26, No. 3 (1988), pp. 281-282. %H A079586 Peter Bundschuh and Keijo Väänänen, Arithmetical investigations of a certain infinite product, Compositio Mathematica, Vol. 91, No. 2 (1994), pp. 175-199. %H A079586 Daniel Duverney, Irrationalité de la somme des inverses de la suite Fibonacci, Elemente der Mathematik, Vol. 52, No. 1 (1997), pp. 31-36. %H A079586 William Gosper, Acceleration of Series, Artificial Intelligence Memo #304 (1974). %H A079586 W. E. Greig, Sums of Fibonacci reciprocals, The Fibonacci Quarterly, Vol. 15, No. 1 (1977), pp. 46-48. %H A079586 Peter Griffin, Acceleration of the Sum of Fibonacci Reciprocals, The Fibonacci Quarterly, Vol. 30, No. 2 (1992), pp. 179-181. %H A079586 Sarah H. Holliday and Takao Komatsu, On the sum of reciprocal generalized Fibonacci numbers, Integers 11A (2011), Article 11. Alternate link. %H A079586 A. F. Horadam, Elliptic functions and Lambert series in the summation of reciprocals in certain recurrence-generated sequences, The Fibonacci Quarterly, Vol. 26, No.2 (May-1988), pp. 98-114. %H A079586 Fredrik Johansson, The reciprocal Fibonacci constant. %H A079586 Paul Kinlaw, Michael Morris, and Samanthak Thiagarajan, Sums related to the Fibonacci sequence, Husson University (2021). %H A079586 Tapani Matala-Aho and Marc Prévost, Quantitative irrationality for sums of reciprocals of Fibonacci and Lucas numbers, Ramanujan J., Vol. 11 (2006), pp. 249-261. %H A079586 Eric Weisstein's World of Mathematics, Reciprocal Fibonacci Constant. %H A079586 Wikipedia, Reciprocal Fibonacci constant. %F A079586 Alternating series representation: 3 + Sum_{k >= 1} (-1)^(k+1)/(F(k)*F(k+1)*F(k+2)). - _Peter Bala_, Nov 30 2013 %F A079586 From _Amiram Eldar_, Oct 04 2020: (Start) %F A079586 Equals sqrt(5) * Sum_{k>=0} (1/(phi^(2*k+1) - 1) - 2*phi^(2*k+1)/(phi^(4*(2*k+1)) - 1)), where phi is the golden ratio (A001622) (Greig, 1977). %F A079586 Equals sqrt(5) * Sum_{k>=0} (-1)^k/(phi^(2*k+1) - (-1)^k) (Griffin, 1992). %F A079586 Equals A153386 + A153387. (End) %F A079586 From _Gleb Koloskov_, Sep 14 2021: (Start) %F A079586 Equals 1 + c1*(c2 + 32*Integral_{x=0..infinity} f(x) dx), %F A079586 where c1 = sqrt(5)/(8*log(phi)) = A002163/(8*A002390), %F A079586 c2 = 2*arctan(2)+log(5) = 2*A105199+A016628, %F A079586 phi = (1+sqrt(5))/2 = A001622, %F A079586 f(x) = sin(x)*(4+cos(2*x))/((exp(Pi*x/log(phi))-1)*(2*cos(2*x)+3)*(7-2*cos(2*x))) (End) %F A079586 From _Amiram Eldar_, Jan 27 2022: (Start) %F A079586 Equals 3 + 2 * Sum_{k>=1} 1/(F(2*k-1)*F(2*k+1)*F(2*k+2)) (Bruckman, 1987). %F A079586 Equals 2 + Sum_{k>=1} 1/A350901(k) (André-Jeannin, Problem H-450, 1991). %F A079586 Equals lim_{n->oo} A350903(n)/(A350904(n)*A350902(n)) (André-Jeannin, 1991). (End) %F A079586 Equals sqrt(5/4)*Sum_{j>=1} i^(1-j)/sin(j*c) where c = Pi/2 + i*arccsch(2). - _Peter Luschny_, Nov 15 2023 %e A079586 3.35988566624317755317201130291892717968890513373... %p A079586 Digits := 120: c := Pi/2 + I*arccsch(2): %p A079586 Jeannin := n -> sqrt(5/4)*add(I^(1-j)/sin(j*c), j = 1..n): %p A079586 evalf(Jeannin(1000)); # _Peter Luschny_, Nov 15 2023 %t A079586 digits = 105; Sqrt[5]*NSum[(-1)^n/(GoldenRatio^(2*n + 1) - (-1)^n), {n, 0, Infinity}, WorkingPrecision -> digits, NSumTerms -> digits] // RealDigits[#, 10, digits] & // First (* _Jean-François Alcover_, Apr 09 2013 *) %t A079586 First@RealDigits[Sqrt[5]/4 ((Log[5] + 2 QPolyGamma[1, 1/GoldenRatio^4] - 4 QPolyGamma[1, 1/GoldenRatio^2])/(2 Log[GoldenRatio]) + EllipticTheta[2, 0, 1/GoldenRatio^2]^2), 10, 105] (* _Vladimir Reshetnikov_, Nov 18 2015 *) %o A079586 (PARI) /* Fast computation without splitting into even and odd indices, see the Arndt reference */ %o A079586 lambert2(x, a, S)= %o A079586 { %o A079586 /* Return G(x,a) = Sum_{n>=1} a*x^n/(1-a*x^n) (generalized Lambert series) %o A079586 computed as Sum_{n=1..S} x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) ) %o A079586 As series in x correct up to order S^2. %o A079586 We also have G(x,a) = Sum_{n>=1} a^n*x^n/(1-x^n) */ %o A079586 return( sum(n=1,S, x^(n^2)*a^n*( 1/(1-x^n) + a*x^n/(1-a*x^n) ) ) ); %o A079586 } %o A079586 inv_fib_sum(p=1, q=1, S)= %o A079586 { %o A079586 /* Return Sum_{n>=1} 1/f(n) where f(0)=0, f(1)=1, f(n) = p*f(n-1) + q*f(n-1) %o A079586 computed using generalized Lambert series. %o A079586 Must have p^2+4*q > 0 */ %o A079586 my(al,be); %o A079586 \\ Note: the q here is -q in the Horadam paper. %o A079586 \\ The following numerical examples are for p=q=1: %o A079586 al=1/2*(p+sqrt(p^2+4*q)); \\ == +1.6180339887498... %o A079586 be=1/2*(p-sqrt(p^2+4*q)); \\ == -0.6180339887498... %o A079586 return( (al-be)*( 1/(al-1) + lambert2(be/al, 1/al, S) ) ); \\ == 3.3598856... %o A079586 } %o A079586 default(realprecision,100); %o A079586 S = 1000; /* (be/al)^S == -0.381966^S == -1.05856*10^418 << 10^-100 */ %o A079586 inv_fib_sum(1,1,S) /* 3.3598856... */ /* _Joerg Arndt_, Jan 30 2011 */ %o A079586 (PARI) suminf(k=1, 1/(fibonacci(k))) \\ _Michel Marcus_, Feb 19 2019 %o A079586 (Sage) m=120; numerical_approx(sum(1/fibonacci(k) for k in (1..10*m)), digits=m) # _G. C. Greubel_, Feb 20 2019 %Y A079586 Cf. A000045, A000796, A001622, A002163, A002390, A084119, A093540, A016628, A105199, A153386, A153387. %Y A079586 Cf. A350901, A350902, A350903, A350904. %K A079586 cons,nonn %O A079586 1,1 %A A079586 _Benoit Cloitre_, Jan 26 2003 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE