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Abstract. In this paper, we propose a novel training method to improve
the precision of facial landmark localization. When a facial landmark lo-
calization method is applied to a facial video, the detected landmarks
occasionally jitter, whereas the face apparently does not move. We hy-
pothesize that there are two causes that induce the unstable detection:
(1) small changes in input images and (2) inconsistent annotations. Cor-
responding to the causes, we propose (1) two loss terms to make a model
robust to changes in the input images and (2) self-distillation training
to reduce the effect of the annotation noise. We show that our method
can improve the precision of facial landmark localization by reducing the
variance using public facial landmark datasets, 300-W and 300-VW. We
also show that our method can reduce jitter of predicted landmarks when
applied to a video.

1 Introduction

Facial landmark localization is widely used as a pre-process of many computer vi-
sion tasks, such as face recognition [1], face reconstruction [2], and measurement
of biometrics from face, such as gaze estimation [3] and heart rate estimation [4].
High precision of the facial landmark localization is required for the reproducible
results of these methods.

Although recent studies on facial landmark localization have significantly
improved its accuracy, less attention has been paid to its precision. In fact,
many landmark detectors output jittering landmarks when applied to a video
(Figure 4). Our assumption is that the imprecise detection is caused by two
factors: (1) small changes in the input images and (2) inconsistent annotations
of facial landmark datasets.

Consider when landmark localization is carried out on a face in a video.
Generally facial images in consecutive frames are similar but slightly different.
If a landmark detector is not trained to be robust to such a small change, the
exact position of the predicted landmarks will be different among the frames
and the difference appears as jitter of the landmarks. We found that a loss term
called Equivalent Landmark Transform (ELT), which is used in semi-supervised
training, can make the model robust to the changes in the input images in
supervised training.
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Fig. 1. In the 300-W dataset, some faces have two different annotations. An example
of the two annotations are shown in the figure as the white and green circles. There are
large differences between the two annotations at some landmarks (e.g., facial contours).
Even at discriminative landmarks such as the tail of the eye, small differences are
observed.

Inconsistent annotations are another cause of the unstable localization. We
found that in the 300-W dataset, some faces are annotated twice and the a clear
difference can be observed between the two annotations (Figure 1). Such noisy
annotations will confuse a trained model and lead to unstable landmark local-
ization. To reduce the effect of the noise contained in the annotated landmarks,
we propose training a model in an unsupervised fashion using its output as a
supervision instead of the annotated landmarks after the model is trained in a
supervised way.

Our contributions are: (1) present a novel training method on the basis of
iterative self-distillation and two loss terms to improve the precision of the facial
landmark localization, (2) show that our method can reduce the variance of
the detection result in a facial dataset 300-W and actually suppress jitter of
predicted landmarks on a facial video dataset 300-VW.

2 Related Works

2.1 Facial Landmark Localization

Facial landmark localization has been intensively studied for over two decades.
Active Appearance Models (AAM) is an early successful method [5]. The method
solves the facial landmark localization problem by modeling a whole facial shape
consistent with the appearance. More recently, Cao et al. used cascaded regres-
sors that map facial appearances to the landmark coordinates [6]. Ren et al. used
local binary features to improve the performance up to 3000 FPS [7].

Since convolutional neural networks (CNNs) were introduced in this field,
significant progress has been achieved [8-10]. Sun et al. used three cascaded
networks to gradually improve landmark prediction [8]. Zhang et al. improved
localization robustness with a multi-task learning framework, in which landmark
coordinates, facial attributes and head poses are predicted simultaneously [9].
Merget et al. proposed a global context network to complement local features
extracted by fully CNN [10].

Most of these studies focused on localizing facial landmarks on static images.
When these detectors are applied to a video in a tracking-by-detection fashion,
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the detected landmarks occasionally jitter. Although some studies used video
datasets to train their models [11-14], they focused on difficulties specific to
faces on video, such as the change of the illumination and large changes in facial
pose. The jittering problem is often ignored.

To overcome the unstable detection, Dong et al. uses a temporal constraint
among successive frames in an unsupervised way to track landmarks [15]. Al-
though this method effectively reduces the jitter of the detected landmarks, it
requires a video dataset to train a network. Our training framework requires
only static images, showing that the temporal information is not required for
precise landmark localization.

2.2 Self-Distillation

Knowledge distillation (KD) is commonly used to train a smaller student network
effectively by using information acquired by a larger teacher network. Hinton et
al. uses the final output of a teacher network as a soft target to train a student
network [16]. Recently, Gao et al. applied the technique to facial landmark lo-
calization by transferring intermediate features of a teacher network to a smaller
student network [17].

Whereas KD is used to train a small network by transferring knowledge from
a larger network, student and teacher networks have the same architecture in
self-distillation (SD). Furlanello et al. trained a series of students iteratively [18].
The output of a trained network in the previous iteration is used as a supervision
to a student model in the next iteration. Finally, an ensemble of the students
is used to obtain additional gains [18]. Interestingly, SD has been used to refine
erroneous ground-truth labels [19, 20]. Bagherinezhad et al. iteratively trained a
student model one-by-one and observed the knowledge from the previous itera-
tion can help to refine the noisy labels [19]. Kato et al. used the output of the
trained model to recover erroneous labels or missing labels in multi-person pose
estimation [20]. Similar to these studies, we used the output of a trained model
to remove the annotation noise.

3 Method

We assume that the unstable landmark localization is caused by two factors:
small changes in input images and the annotation noise. Corresponding to the
factors, our method consists of two components: (1) two loss terms and (2)
iterative self-distillation. The loss terms are introduced to make a model robust
to small changes of the input images. The self-distillation technique is used to
reduce the effect of the annotation noise contained in ground-truth labels.

3.1 Loss terms

Equivariant Landmark Transformation (ELT) loss. When a landmark
localization method is applied to a video, most successive frames are very similar
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Fig. 2. An input image is transformed by an affine transformation T. The output to
the transformed image is then transformed by the inverse transformation T '. The
ELT loss is defined as a distance between the inversely transformed output and the
output of the original image.

but not the same. The small difference in the input images is caused by some
reasons and one of them is small facial movements. If a landmark detector cannot
perfectly follow the movement, a slight difference occurs between the predicted
and actual landmarks. The difference will appear as jittering landmarks. We
believe that this is one of the main causes of unstable landmark localization.

To address the problem, we directly force the model to follow the movement of
input images by adding a loss term. Let T be an arbitrary affine transformation,
and the loss is expressed as below:

loss®LT = %Zg(f([n), T'® f(T® I,)) (1)

where f is a trained model, I,, € R"*®>3 is the n th input image, N is the

number of training images in a batch, and g is a loss function.

The loss means that if an input image is transformed by an affine transforma-
tion, the output should be equally transformed (Figure 2). This loss is proposed
by Honari et al. as Equivariant Landmark Transformation (ELT) [21]. The ELT
loss is first introduced for images without annotations in semi-supervised train-
ing because the loss does not require any annotation. In this paper we found that
the loss effectively reduces the variance of the detected landmarks as described
in Section 4.

Scale Compensation Term (SCT). The ELT loss works well for making
a model robust to small changes of input images. However, we found that the
model’s output slightly moves towards the center of images when the ELT loss is
used. This may be because points near to the center of the image move less than
points far from the center by affine transformation induced in calculation of the
ELT loss, especially by rotation and resize transformation. Therefore, it may be
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easier for the model to track points near to the center. To overcome the shrinking
effect of the ELT loss, we introduce a second loss term, scale compensation term
(SCT). The SCT loss penalizes the change of the scale of the output landmarks
through training. The SCT loss is defined as

loss®CT = %Z lo(f(I)) — o(ln)] (2)

where 1,, € R?L is the ground-truth landmarks of the n th sample and o is a
scale function that measures a scale of predicted landmarks defined as

o4 (ln) = Z t,i = Tnlls 3)

where I, ; € R? is a 4 th landmark in I,, and I,, is the average of I, ; (i.e. the
centroid of the landmarks).

Overall Loss. In addition to the two loss terms, we also use a standard loss
term:

1

GT _
loss " = Zn:g(f(fn), In) (4)
The overall loss is the weighted sum of the loss terms:
loss = 10ssCT 4+ wFLT10ssPLT 4 59T ]05s5¢T (5)
where wPET and w¥¢T are fixed coefficients. In this paper, we use wZr? =1
and w3l = 1.

3.2 Self-distillation (SD).

We found that the ground-truth labels may contain noise (Figure 1). One source
of the noise is a variance among annotators. It is common to hire multiple an-
notators to make a large dataset. The definition of landmarks is usually shared
among the annotators, but it is difficult for the annotators to point the exactly
same position in a facial image [15]. In fact, we found two different annotations
to the same image in the 300-W dataset and the difference between the anno-
tations can be observed (Figure 1). The inconsistency of the annotation may
confuse a trained model and lead to unstable detection.

We observed that a trained model with the above loss terms output land-
marks more consistently than the ground-truth (Supplementary Figure 1) and
we hypothesize that the outputs of the model can be used as a ground-truth
with less noise. Thus, we use a self-distillation (SD) method iteratively to re-
duce the effect of the annotation noise. In SD, a student model in an iteration
is trained to fit the output of a teacher model trained in the previous iteration,
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where the student and the teacher have the same architecture. Specifically, the
student model in the 7 th iteration is trained to minimize loss” defined as

loss;—qD = %Zg(fi(-[n)a fic1(In)) (6)

where f; is a trained model in i th iteration and f;_; is a model trained in the
previous iteration. The parameters of f; 1 are fixed in the i th iteration.

The ELT loss and the SCT loss are also used in the SD part. The ELT loss
in the SD is the same as the one in the supervised training part except for using
fi instead of f in Equation 1. The SCT loss has more important role in the SD
because the shrinking effect of the ELT loss becomes more significant with longer
epochs by iterative training. To keep the scale of output landmarks through the
iteration, we used the output of the model trained in the supervised training as
a reference and is fixed throughout the SD training (Figure 3):

10ss9°T = = 3" lo (7 (1)) ~ o (fo(7)) 7)

where fj is the model trained in the supervised training part. The parameters
of the model fy are fixed during the SD training.

The training process in the 4 th iteration is shown in Figure 3. The overall
loss in the 4 th iteration is

loss; = loss?P + wFT10ssPLT 4w Tloss?CT (8)

where waT and wiSCT are coeflicients and fixed during each iteration. We use

wFET = wPCT = j 4 1 for i th iteration (i = 1 at the first iteration).

4 Result

4.1 Dataset

We used 300-W facial landmark datasets [22-24] to train our models. The 300-W
dataset re-annotated various datasets, including LFPW [25], AFW [26], HELEN
[27], and XM2VTS [28] with 68 landmarks. We split the dataset into four subsets
following [29]: training, common testing, challenging testing, and full testing. For
facial landmark localization in video, we used the 300-VW dataset [30-32], which
contains video clips of training subjects and testing subjects. We used the dataset
only to evaluate our trained models. Therefore, we used only the testing clips in
this paper. The test dataset contains 64 clips with 123,405 frames in total.

4.2 Model

We tested our method with two kinds of neural networks. One is based on residual
networks [33]. We removed an average pooling layer and a softmax layer at the
end of the network because the average pooling removes positional information
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Fig. 3. Overview of our training method in the ¢ th iteration. First, the base model is
trained to minimize loss in Equation 5. The ¢ — 1 th model is a model trained in the
previous iteration. Both models are fixed and only the ¢ th model is trained in the i th
iteration. Outputs from the ¢ — 1 th model are used instead of a ground truth and are
compared with outputs from the ¢ th model (losst). Outputs from the base model are
used to keep the scale of the outputs among iterations unchanged (losstT). The input
image is transformed with an affine transformation and fed into the 7 th model. The
output is inversely transformed and compared with the output of the original image

(lossPZET).

and the softmax operation is not appropriate with our regression tasks. We also
change the output dimension of the last fully connected layer from 1,000 to 2L.
We denote the model as "ResNet18”. The other is based on the Face Alignment
Network (FAN) [34]. Although the FAN has four Hour-Glass (HG) modules, we
used two HG modules to reduce the computational burden and we observed little
effect on the accuracy by reducing the HG modules. We denote the models with
two HG as "FAN2HG”.

We used different loss function g for the two kinds of models because the
outputs from the models are different. Whereas ResNet18 outputs landmark
coordinates I, € RE*2 FAN2HG outputs a heatmap of the same size with
the input image for each landmark. Therefore, the total output dimension of
FAN2HG is h x w X L where h and w is the height and the width of input
images. We calculated the landmark coordinates as the centroids of the heatmaps
as below:
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o pH;(p)
loi = Epj S HW) 9)

where H; is the output heatmap for the i th landmark, I, ; € R? is the coordinate
of the landmark and p, p’ € R? is iterated over all the pixels in H;.

We used a L2 loss function as the loss function for ResNet18. For FAN2HG,
we have two kinds of output: landmark coordinates and heatmaps. We applied
the L2 loss function to the both outputs. The overall loss is the sum of the values.
The ground-truth heatmaps are not provided by the datasets, so we generated
them from the ground-truth landmarks as below:

HE™(p) = Acap(— 12— HlE) (10)

3 0_2
where A and o are constants and l; is the ¢ th landmark position of ground-truth.
We used A = 4096 and o = 1 in this paper.

The ResNet18 and FAN2HG models were trained with the 300-W training set
for experiments using 300-W and 300-VW. First, the models were trained using
ground-truth landmarks. Then six and three iterations of self-distillation were
carried out for ResNet18 and FAN2HG, respectively. Note that at the beginning
of each SD iteration, parameters of the student network were initialized with
the parameters of the teacher network (i.e. the same parameters at the end of
the previous iteration were used), because we found that initializing the student

network with random values leads to worse result.

4.3 Implementation Detail

We used Chainer as a deep learning framework [35-37]. We cropped faces and
resized to 256 x 256. The crop size is determined by 1.4 X the size of a bounding
box of the landmarks. They were then normalized by the mean and the variance
of 300-W and augmented by random flips and scaling (0.5-1.1). For the affine
transformation of the ELT loss, we used a combination of random translation
(£8 pixels), scaling (0.8-1.0) and rotation (+30 degree). The Adam optimizer
was used for training with a weight decay of 5.0 x 104, 8; of 0.9, and S35 of 0.999
with a mini-batch size of 12. The initial learning rate was 10~2 and decreased by
one tenth at 150 and 230 epochs. The training ended at 250 epochs. In subsequent
SD iterations, the learning rate was reset to 10~2 and decreased by one tenth at
100 and 130 epochs. The training in each SD iteration ended at 150 epochs.

4.4 Experimental Result

Evaluation Metric. To analyze the variance of detected landmarks, we calcu-
lated normalized root mean square error (NRMSE) and decomposed it into bias



Iterative Self-distillation for Precise Facial Landmark Localization 9

and standard deviation (std). Bias, std, and NRMSE are calculated as below:

Lo — 1

dimn, = %m’m (11)
. 1

bias = W” Zdim||2 (12)

1 . 12
std = \/LM Z [ dim — dim|[3 (13)

1
NRMSE = [+ Z | dim |3 (14)

where L is the number of landmarks, M is the number of test samples, Iy im € R?
is the i th predicted landmark of the m th sample, l;,,, € R? is the ground-truth
landmark, D,, is a normalized factor (i.e., distance between outer corners of the
eye) of the m th sample, and d;,, is the normalized displacement between the
predicted and the ground-truth landmarks.

Mislocalized landmarks generally have large errors and dominant effects on
the NRMSE. We are interested in measuring the small vibrations of correctly
localized landmarks, so we removed such incorrect detections by rejecting land-
marks with a large error. Specifically, if an error of a predicted landmark ||d;p, [|2 >
«, the landmark is not used in calculating bias, std and NRMSE. We used
a = 0.05 in this paper but qualitatively the same results were obtained with
other values of a.

Result on 300-W. We trained ResNet18 and FAN2HG models with the 300-
W training set and calculated bias, std and NRMSE on the full test set. The
results are shown in Table 1. In both models, our loss terms reduced the std. The
iterative SD further improves the std and achieved the lowest value compared
with the recent models, indicating that the FAN2HG with our method was most
precise among the compared models. Although we did not observe a consistent
effect of the loss terms on the bias, SD iterations decreased the bias in both
cases. The loss terms and the SD decreased NRMSE in both models, indicating
that our method also improves the accuracy in addition to the precision.

Result on 300-VW. To evaluate whether our method can actually reduce the
jitter of landmarks, we used a video dataset, 300-VW. The FAN2HG trained
with 300-W with or without our method was used as landmark detectors. An
example of the detected landmarks is shown in Figure 4. In the figure, detected
landmarks during one second (25 frames) are plotted to show how the detected
landmarks move during the period. Figure 4(a) and (b) shows the movement
of detected landmarks was actually smaller with our method than without it.
Figure 4(c) and (d) shows that the movement of the landmark is not directional,
indicating that the movement is not driven by a movement of the face.
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Table 1. Bias, standard deviation (std) and NRMSE of landmark localization by
ResNet18 and FAN2HG on 300-W. ’+ loss’ means that the model was trained with the
ELT and the SCT losses. '+ SD’ means that SD iterations were carried out. All the
values in the table are scaled by 103.

Method bias | std [NRMSE
SAN [38] 0.87/20.8| 22.6
SBR [15] 0.50/19.1| 19.1
HRNet [39] 5.14|23.7| 24.3
ResNet18 5.92|125.4| 26.1

ResNet18 + loss 7.28(20.3| 21.6
ResNet18 + loss + SD|7.07[20.1| 21.3
FAN2HG 6.41(20.0| 21.0
FAN2HG + loss 5.64[19.2| 20.0
FAN2HG + loss + SD|4.00|18.7| 19.1

Table 2. Bias, standard deviation (std) and NRMSE of landmark localization on 300-
VW by FAN2HG trained with 300-W. '+ loss’ means that the model was trained with
the ELT and the SCT losses. '+ SD’ means that SD iterations were carried out. All
the values in the table are scaled by 10°.

Method bias | std INRMSE
SAN [38] 9.20(28.0| 29.5
SBR [15] 5.51(26.9| 27.4
HRNet [39] 17.9(26.5| 32.0
FAN2HG 4.86(26.9| 27.3
FAN2HG + loss 7.62(25.6| 26.7
FAN2HG + loss + SD|[4.49|25.3| 25.7

The bias, standard deviation, and NRMSE on 300-VW with FAN2HG are
shown in Table 2. The proposed loss terms reduces the std but increases the
bias. Iterative SD cancelled the decrease of the bias and further improved the
std, indicating that our method can improve the precision of the model. As in
the case of 300-W, the FAN2HG with our method achieved the lowest std.

Ablation Study. We showed that our method decreased the variance of the
localization result and reduced the jitter of predicted landmarks. Our method
has three key components: iterative self-distillation, ELT loss and SCT loss. To
clarify the effect of each component, we trained the FAN2HG model with the
300-W dataset with four conditions of loss terms:

— only loss®T

— 108sST and loss®LT
10ss€T and loss®CT

all losses
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(a) Only GT loss (no iteration) (b) All losses (2 iterations)

(¢} Trajectory of landmark A (d) Trajectory of landmark B
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Fig. 4. An example of localization result in 300-VW. (a, b) Detected landmarks around
the nose and the left eye during one second (25 frames) are plotted. The detector was
FAN2HG trained with 300-W without (a) or with (b) SD iterations, ELT loss and SCT
loss. (c) Trajectories of a representative landmark (specified as A in (a) and (b)). (d)
Trajectories of other representative landmark (specified as B in (a) and (b)).

The result is shown in Figure 5. When loss®LT was used ('GT + ELT loss’
and ’all losses’ in Figure 5), the bias was initially high but rapidly decreased to
values comparable to other conditions when SD is applied. In contrast, the stan-
dard deviation (std) consistently decreased by using loss®LT. loss3CT slightly
improves the std but we did not observe a consistent effect on the bias. SD im-

proved the std and also the bias, but more than two iterations was harmful in
the case of FAN2HG.

In conclusion:

— loss®LT

SCT

can decrease the variance but may increases the bias.
— loss slightly improves the variance.

— SD improves the variance. It also improves the bias with small iterations.
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Fig. 5. Bias, standard deviation and NRMSE on 300-VW was measured. The detector
was FAN2HG trained on 300-W with some combination of loss functions.

4.5 Conclusion

In this paper, we propose a novel training method to improve the stability of
landmark localization. We assume that there are two causes of the instability:
(1) the small changes in input images and (2) annotation noise. Corresponding
to the causes, we proposed a training method using (1) ELT and SCT losses and
(2) self-distillation to stabilize the localization result. We showed our method
successfully reduces the variance of the localization result and suppresses the
jitter of the predicted landmarks in videos.

We introduced the ELT loss to make a model robust to the small changes
in input images. In calculation of the ELT loss, The affine transformation is
used to mimic the small changes in input images. However, the changes in input
images are caused by various reasons, such as camera noises and local facial
movements, which are not considered in this paper. Incorporating these reasons
to our framework might lead to a better training method and it is an interesting
future direction.
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