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Abstract. Multiview similarity learning aims to measure the neighbor
relationship between each pair of samples, which has been widely used in
data mining and presents encouraging performance on lots of application-
s. Nevertheless, the recent existing multiview similarity learning methods
have two main drawbacks. On one hand, the comprehensive consensus
similarity is learned based on previous fixed graphs learned from all views
separately, which ignores the latent cues hidden in graphs from different
views. On the other hand, when the data are contaminated with noise
or outlier, the performance of existing methods will decline greatly be-
cause the original true data distribution is destroyed. To address the
two problems, a Robust Multiview Similarity Learning(RMvSL) method
is proposed in this paper. The contributions of RMvSL includes three
aspects. Firstly, the recent low-rank representation shows some advan-
tage in removing noise and outliers, which motivates us to introduce the
data representation via low-rank constraint in order to generate clean
reconstructed data for robust graph learning in each view. Secondly,
a multiview scheme is established to learn the consensus similarity by
dynamically learned graphs from all views. Meanwhile, the consensus
similarity can be used to propagate the latent relationship information
from other views to learn each view graph in turn. Finally, the above
two processes are put into a unified objective function to optimize the
data reconstruction, view graphs learning and consensus similarity graph
learning alternatingly, which can help to obtain overall optimal solutions.
Experimental results on several visual data clustering demonstrates that
RMvSL outperforms the most existing methods on similarity learning
and presents great robustness on noisy data.

1 Introduction

Similarity learning is a key and fundamental issue in data mining and ma-
chine learning, which not only is used to measure the data neighbor relationship,
but also plays an important role in constructing the graph from data. Graph is
a significant structure for presenting the relationships among large amount of
objects, which is consist of nodes and their edges. Each node of graph corre-
sponds to a object, and the edges represent the linkage among objects. By the
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graph, the global and local data structure can be obtained simultaneously, which
is widely used in many data analysis based applications. Thanks for the distin-
guished ability in relationship measurement, a good partition will be produced
by the learned graph, which shows encouraging performance on clustering task.
Therefore, graph-based clustering approaches attract increased attention and are
widely studied in recent years. It is worth noting that similarity structure is at
the core of graph-based clustering, so the quality of graph learning is crucial to
final performance. In a direct way, the gaussian kernel can be used to construct a
graph by computing exponential Euclidean distance between instances, such as
k nearest neighbor graph. Nevertheless, the direct way would be failed because
the data within similar distribution may suffer large gap in Euclidean space due
to external outlier. To considered structural similarity on distribution, a l1-graph
learning method is proposed in [1] with the help of data representation model,
where each weight edge of graph is learned by the l1-norm based reconstruc-
tion from instances. Motivated by l1-graph, Fang et al [2] seek the non-negative
low-rank representation from data for subspace clustering, which can be used
to explore the more meaningful similarity relationship by exploiting subspace
structure. From the viewpoint of probability, Nie et al [3] propose a probabilis-
tic graph learning approach based on adaptive neighbors. In their method, all
the instances are connected to each other as a neighbor with a probability sij ,
which should be large if the distance between instance xi and xj is small while
verse vice. So, the obtained sij can be utilized as a well similarity measurement.
To earn extra robustness, Kang et al [4] introduces the robust principle compo-
nent analysis(RPCA) to probabilistic graph, where the similarity probability is
assigned based on latent data component.

Nevertheless, the above graph learning methods are designed in a single
view. More recently, multiview learning breeds a new paradigm in machine learn-
ing, which aims to establish the learning model from different views. In essence,
multiview data often presents in our life. For example, an image can be char-
acterized by different types of features, a piece of news can be described by
different languages, et al. Hence, thanks for the ability in utilizing the redun-
dant and complementary information across views, multiview learning has been
widely studied in many literatures [5–11]. Specially, many multiview graph learn-
ing approaches are proposed and applied to clustering problem. Multiview graph
learning aims to seek a more accurate fusion similarity graph from the cues in all
views. And then, the corresponding clustering algorithm can be implemented on
the learned fusion graph to obtain low-dimensional data representation for final
cluster results. In [12], a multiple graph learning method is presented to share a
same cluster indicator matrix. Also, a auto-weighted scheme is adopt to assign
the optimal parameter-free weight for each view graph. Nie et al [13] supposes
that graphs from all views are closed to each other, and they would like to seek
the centroid of graphs by exploring the Laplacian rank constraint as the fusion
graph. Meanwhile, the self-weighted scenario with hyperparameter is deisgned
to compute the confidences for different graphs. Inspired by it, to further make
full use of data correlation among views, Zhan et al [14] proposes a concept
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Factorization-based multivew clustering. In this approach, affinity weights from
different views are correlated to jointly learn the unified graph matrix. Assuming
that the underlying cluster structure is shared across multiple views, a common
graph is learned by minimizing the disagreement between each pair of views in
[15]. Moreover, the rank constraints are also imposed on each Laplacian ma-
trix for further improving the graph consensus. Similarly, a multi-graph fusion
scheme is proposed in [16] for multiview clustering, which enforces the fusion
graph to be approximated to original graph from each view but with an explicit
cluster structure. Although these multiview graph learning methods have shown
promising results and proved to be effective in clustering, they are still limited in
two aspects. Firstly, the noise and outlier influence are ignored when individual
graph is learned from each view, by which the true similarity structure in graph
might be damaged. Secondly, the graphs from each view are isolated pre-learned
and fixed when multiview learning is implemented, which leads that the comple-
mentary information cross views is not considered sufficiently. Finally, the robust
modeling, individual view graph learning and common graph learning are not
be well unified to improve each other. Hence, the correlations among these three
aspects are not utilized efficiently.

Towards the mentioned problems, in this paper, we proposes a robust mul-
tiview similarity learning method for visual data clustering, which can be used
in many practical applications, such as image annotation, visual pattern analysis
and so on. Thanks for the help of robust representation and multiview learning,
RMvSL can learn an effective graph with reliable similarity relationship from
robust multiple graphs. The contributions of RMvSL are summaried as follows.

1) Data representation model is introduced to seek a robust space via low-
rank constraint, by which the corrupted data can be recovered with linear com-
bination of instances. That is, what we want is to learn the view graphs from
the robust compensated counterpart of corrupted data.

2) A consensus similarity graph learning scheme will be designed in a multi-
vew way to cover multiple cues from all views, in which the latent true similarity
can be well explored in the learned consensus graph. Meanwhile, the complemen-
tary information can be propagated among views by common graph when the
individual view graph is constructed.

3) We put the data compensation model, view graphs and consensus graph
learning into a unified framework where variables can be jointly optimized to
benefit each other and obtain the overall optimal solutions with a developed
numerical algorithm.

The comprehensive idea of our proposed approach is shown in Fig.1. The
joint learning framework is presented, in which the iterations are conducted
among the data reconstruction, view graph and consensus graph learning. And
then, the spectral clustering will be implemented on the learned consensus graph
to get the final cluster structures.
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Fig. 1. The joint learning framework of RMvSL.

2 Related works

2.1 Graph learning revisited

As illustrated in [3] , learning similarity with adaptive neighbors is a kind of
easy and elegant graph constructed method. In this branch, it emphasizes that
the connectivity of neighbor is a useful strategy for similarity learning. Inspired
by it, the neighbors of instance can be connected to each other with a probability.
Assuming sij denotes the probabilistic similarity between two instance xi and xj

respectively, the similarity with adaptive neighbors can be formulated as follows.

min
sT
i
1=1,0≤sij≤1

n
∑

j=1

‖xi − xj‖22sij (1)

where ‖·‖2 denotes the l2-norm. The Eq.(1) is established with an intuitive as-
sumptions that samples closed to each other should have a large connected prob-
ability sij . In other words, the sij has a negative correlation to the distance of
each pair of instances. In addition, to avoid the trivial solution, an additional
l2-norm based constraint is imposed on the similarity matrix in Eq.(1) as follows.

min
si∈Rn×1

n
∑

i,j

Tr(XLXT ) + λ‖S‖2F

s.t.∀i, sTi 1 = 1, 0 ≤ sij ≤ 1

(2)

where L = D − S denotes the graph Laplacian matrix, and D is a diagonal
matrix with Dii = 0.5 (

∑

Si∗ +
∑

S∗i)
By Eq.(2), the larger probability will be assigned to the closed instances pair,

and the obtained S can be used as the similarity matrix to present the neighbor
relationship among data. Next, the spectral clustering can be implemented on
S to obtain the final cluster result. Moreover, many other applications based on
the above graph learning model are further studied in literatures[17–19].

Nevertheless, from Eq.(2), we can see that the similarity probability is
learned from raw data directly. It means that the true similarity relationship
may be damaged when the data are contaminated with noise or outlier, which
will destroy the latent distribution property belongs to clean data. Meanwhile,
in practice, it is easy to collect more noisy data while few clean data in the open
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visual environment. So, a more robust learning method is urgently expected to
obtain high quality graph with noisy data recently.

2.2 Self-representation via low-rank constraint

Low-rank representation(LRR) is a typical representation model to learn
subspace structure hidden among data, which attracts much attention and has
shown promising performance in data recovery problem [20]. In general, the LRR
can be formulated as

min
Z

‖Z‖∗ + τ‖E‖l
s.t.X = DZ + E

(3)

where X ∈ Rd×n denotes the data matrix including n instances with d dimen-
sions, D is the dictionary used to span the space for X, and Z is the represen-
tation coefficient matrix. E denotes the residual matrix for modeling kinds of
typical noise with different norm, such as Frobenius norm for Gaussian noise, l1
norm for random corruptions, et al. ‖·‖∗ and ‖·‖l indicate the nuclear norm and
l norm respectively.

Specially, if the dictionary is replaced by data matrix X itself, the above
formulation are changed into a self-representation based LRR problem as follows.

min
Z

‖Z‖∗ + τ‖E‖l
s.t.X = XZ + E

(4)

With the Eq.(4), the intrinsic subspace structure of data is uncovered, and
the robust recovered data may be reconstructed from two aspects. On one hand,
thank for Z, a nearly clean counterpart of raw data are recovered by the linear
combination of all the data as XZ, and much useful detail can be reconstructed
by the instances mainly drawn from the same subspace due to the block diagonal
character of Z. Meanwhile, the damaged latent distribution hidden in data would
be complementary with the help of combination of other instances. On the other
hand, the error matrix E can also remove extra noise influence existed in the
noisy raw data. So, if the LRR is introduced into the neighbor graph learning
model to form a unified framework that learns the recovered data and similarity
probability alternately, a more robustness similarity graph will be constructed
to improve the subsequent clustering results.

3 The proposed framework of RMvSL

Multiview graph learning aims to learn a fusion graph from the differen-
t views, which can cover all the useful cues from all views and obtain further
performance improvement. For the most existing multiview graph learning ap-
proaches, they generally focus on the elegant graphs construction model and
their corresponding multiview learning mechanism but ignore the data them-
selves, especially for uncertain noisy data. In the open environment, the data
are easily contaminated with kinds of noise, which will damage the original data
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distribution greatly and lead to awful similarity measurement obviously. How-
ever, the data quality restoration are not sufficiently and especially considered
in the most existing multiview graph learning approaches.

Motivated by the above considerations, the details of our proposed RMvSL
will be discussed in this section. Firstly, we will talk about how to learn the
similarity probability with the cleaning recovered data to earn a reliable graph
matrix from the noisy raw data in each view. And then, a multiview scheme is
designed to not only learn the consensus fusion graph but also propagate the
cues from other views for each single view graph learning.

For each view v, the robust graph learning method is formulated as

min
Zv,Ev,Sv

‖Zv‖∗ + α‖Ev‖l + β
∑

i,j

‖XvZv
i −XvZv

j ‖22Sv
ij + γ‖Sv‖2F

s.t.Xv = XvZv + Ev, Sv1 = 1, 0 ≤ Sv
ij ≤ 1

(5)

where Xv ∈ Rd×n denotes the data in v-th view, Zv ∈ Rn×n and Zv
i present

the low-rank representation matrix and its i-th column. α, β and γ are the pos-
itive parameters to balance the constrained terms. By our proposed framework
in Eq.(5), the view graph Sv ∈ Rn×n is learned from the compensated data
XvZv

i with LRR model instead of the noisy raw data Xv
i , which can further

preserve true data distribution when the similarity probability Sv
ij is assigned.

In turn, the learned similarity graph Sv
ij can also be used to guide representa-

tion matrix(Zv) learning, which helps to obtain more rational recovered data.
The two mutual parts will benefit each other during the iterations. Furthermore,
different from the direct two-stage operation that separates the data recovery
and graph learning, we put them into a unified framework. It should be noted
that graph presents the neighbor relationship between pair of instances, which
is believed to be capable of providing useful correlation information when the
subspace representation is learned. Hence, the unified framework will improve
the two variables each other effectively. That is, in this framework, the more
accurate subspace structure will be learned for better data recovering, and it
helps to obtain a higher quality view graph with nearly clean compensated data
in turn.

As mentioned above, to fuse cues from other views, a consensus graph learn-
ing scheme is designed in a multivew manner, which makes the view graphs and
their consensus fusion version to be mutually optimized by jointly learning. As-
suming G is the consensus fusion graph, which can be solved with the following
weighted learning model as

min
G

m
∑

v=1

wv‖G− Sv‖2F

s.t.∀i, gij ≥ 0,1Tgi = 1

(6)

where m denotes the total number of views, and gi presents the i-th row of G.
Similarly, to keep the probability property, the nonnegative and normalization
constraints are enforced on G in Eq.(6). wv is the weighted constraint coefficient
for the v-th view, which is computed automatically in our designed multiview
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graph learning scheme. Naturally, a compact form is set to be the reciprocal of
distance between pair of graphs as wv = 1

2
√

‖G−Sv‖2
F

. In practice, the weighted

coefficient for each view is determined during the iteration dynamically to present
stronger adaption than the fixed situation.

Incorporating Eq.(6) into Eq.(5), our proposed RMvSL model is turned into

min
Z,E,S,G

m
∑

v=1

(

‖Zv‖∗ + α‖Ev‖l + β
∑

i,j

‖XvZv
i −XvZv

j ‖22Sv
ij

+ γ‖Sv‖2F + wv‖G− Sv‖2F
)

s.t.Xv = XvZv + Ev, Sv1 = 1, 0 ≤ Sv
ij ≤ 1, v = 1, ...,m,

∀i, gij ≥ 0,1Tgi = 1

(7)

Based on the comprehensive formulation in RMvSL, the view subspace
structure Zv, view graph Sv and consensus graph G are jointly learned in a
unified framework, resulting in the alternating optimizing among the recovered
data and graph learning to improve each variable. That is to say, by Eq.(7), we
establish a multiview graph learning framework with dynamic data compensa-
tion mechanism, which could mutually learn the recovered data, view graphs and
fusion graph and show some advantage on similarity learning for uncertain noisy
data. Furthermore, with the proposed unified framework, each variable is not op-
timized in isolation during iteration. For example, when the subspace structure
Zv is updated, the view graph Sv is involved to provide relationships between
data, which is benefit to intrinsic structure exploration and data reconstruction.
Similarly, for each view graph leaning, the cues from all other views are propa-
gated by the fusion graph G. So, the overall optimal solutions can be obtained
by our proposed framework, which is believed to learn a more robust and high
quality graph finally. In the next section, a numerical algorithm is developed to
solve the objective function in RMvSL efficiently.

3.1 Numerical algorithm

Solving all the variables at once is a challenging problem because they are
coupled in objective function. So, we adopt an alternating scheme to optimize
variables iteratively. That is, we updates only one variable once while fixing
others.

Eq.(7) can be solved by using the inexact augmented Lagrange multiplier
method (IALM). Introducing the auxiliary variable J , it can be changed into:

min
Z,E,S,G

m
∑

v=1

(

‖Zv‖∗ + α‖Ev‖l + βTr(XvZvLv(XvZv)T )

+ γ‖Sv‖2F + wv‖G− Sv‖2F
)

s.t.Xv = XvZv + Ev, Sv1 = 1, 0 ≤ Sv
ij ≤ 1, v = 1, ...,m,

∀i, gij ≥ 0,1Tgi = 1, Zv = Jv.

(8)
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Removing the equality constraints on Xvand Zv, we can get the following
Lagrangian functions:

min
Z,E,S,J,G

m
∑

v=1

(

‖Jv‖∗ + α‖Ev‖l + βTr(XvZvLv(XvZv)T ) + γ‖Sv‖2F

+ wv‖G− Sv‖2F + ‖Xv −XvZv − Ev − Rv
1

µ
‖2F + ‖Zv − Jv − Rv

2

µ
‖2F

)

(9)

where µ is penalty parameter. R1 and R2 are Lagrange multipliers. Next,the
variables in (9) will be solved one by one.

Updating Ev for each view:

min
Ev

α‖Ev‖l + ‖Xv −XvZv − Ev − Rv
1

µ
‖2F (10)

For different types of noise, the error matrix can be solved with the corre-
sponding l-norm based optimization. For example, if l1 norm is enforced, then

Eij = (|tij | − α/µ)
+ · sign(tij), where T = Xv −XvZv − Rv

1

µ
.

Updating Zv for each view:

min
Z

‖Zv−Jv−R2

µ
‖2F+βTr(XvZvLv(XvZv)T )+‖Xv−XvZv−Ev−Rv

1

µ
‖2F (11)

Setting its derivative to be zero, we have

2βZvLv + ((Xv)TXv)−1(2I + 2(Xv)TXv)Zv = ((Xv)TXv)−1D (12)

where D = 2Jv +2R1

µ
+2(Xv)TXv −2(Xv)TEv −2(Xv)T R2

µ
, and I denotes the

identity matrix. Eq.(12) is a standard Sylvester equation, which can be solved
by existing method[21].

Updating Jv for each view:

min
J

‖Jv‖∗ + ‖Zv − Jv − Rv
2

µ
‖2F (13)

Eq.(13) is a nuclear norm based minimization problem, which can be easily
solved by using the singular value shrinkage operator proposed in [22].

Updating graph Sv for each view: To make it more clear, the Sv is
solved in a row-wise way by

min
si

n
∑

j=1

β

2
‖oi − oj‖2sij + γs2ij + (gij − sij)

2

(14)

where O = XvZv is the recovered data by linear combination of raw data, and
oi denotes its i-th column. Assuming fij = ‖oi − oj‖2 − 4

β
gij , Eq.(14) can be

converted to

min
sT
i
1=1,0≤sij≤1

‖si +
β

4γ
fi‖2 (15)

Eq.(15) have a natural sparse solution due to the neighborhood connections.
Therefore, we only need to update its first k neighborhoods. In other words, si
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has k positive entries. The Lagrangian function of Eq.(15) can be expressed as
follows:

Γ (si, η, ζ) = ‖si +
β

4γi
fi‖2 − η(sTi 1− 1)− ζTi si (16)

where η and ζ ∈ Rn×1 are Lagrangian multipliers. By the Karush-Kuhn-Tucker
condition, it produces si = ((η/2)− (βfi/4η))+.

Ranking fi in ascending order, we have










sik = η
2 − βfik

4γi
> 0

si,k+1 = η
2 − βfi,k+1

4γi
∈ 0

sTi 1 =
∑k

j=1(
η
2 − βfij

4γi
) = 1

(17)

After infering, we can get










sij =
fi,k+1−fij

kfi,k+1−
∑

k
r=1 fir

, j ≤ k

γi =
β
4 (kfi,k+1 −

∑k
j=1 fij)

η = 2
k
+ β

2kγi

∑k
j=1 fij

(18)

Updating consensus similarity graph G: When the above variables of
all views are solved, the consensus fusion graph G can be optimized by

min
G

m
∑

v=1

wv‖G− Sv‖2F

s.t.gTi 1 = 1, gij > 0
(19)

The solution can be obtained by solving its each row separately as

min
gT
i
1=1,gij>0

m
∑

v=1

‖wv(gi − svi )‖2F (20)

Eq.(20) can be solved by an effective iterative scheme proposed in [23].
In summary, the developed scheme for solving our proposed objective func-

tion of RMvSL in Eq.(7) is listed in Algorithm 1 as follows.
Algorithm 1
Input: Multiview Data {Xv}mv=1, Parameters α, β, γ, µ;

Initialize: Ev = 0, Zv =
(

XvTXv + 10−3I
)−1

XvTXv, Rv
1 = Rv

2 = 0;
Sv is initialized with normalized Euclidean distance;
while not converged do
for each view do
1. Update Jv using Eq.(14);
2. Update Zv according to Eq.(13);
3. Update Sv using Eq.(18);
4. Update Ev by Eq.(11);
5. Rv

1 = Rv
1 + µ(XvZv + Ev −Xv)

6. Rv
2 = Rv

2 + µ(Jv − Zv)
end for
7. Update G according to Eq.(20), and wv = 1

2
√

‖G−Sv‖2
F

until convergence
Output: Similarity graph G
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4 Experiments

In this part, we will verify the performance of our RMvSL model via visual
clustering experiments on four datasets, including two facial datasets, a digital
handwritten dataset and a object dataset. The detailed description and setting
for each dataset will be elaborated later. Our proposed RMvSL is compared
with six recent simliarity graph learning approaches, including two single-view
based approaches and four multiview based approaches: classical k-nearest neigh-
bor Graph Construction with Gaussian distance(GCG), Robust Graph Clus-
tering(RGC) [4], Graph-based Multi-view Clustering(GMC) [24], Multi-Graph
Fusion for Multi-view Spectral Clustering(GFSC) [16], parameter-free Auto-
weighted Multiple Graph Learning(AMGL) [12], Self-weighted Multiview Clus-
tering with Multiple Graphs(SwMC) [13], Multiview concept factorization(MVCF)
[14] and Multiview consensus graph clustering(MCGC)[15]. Among them, RGC
and GCG are single-view based methods that are implemented on each view and
the average indicator of all views are taken as the final clustering performance.
To be balanced, the same spectral clustering are implemented on the learned
graphs from comparison methods, and the obtained clustering indicators are
used to evaluate their performance. Three classical clustering evaluation indica-
tors(accuracy(ACC), normalized mutual information(NMI) and purity(PUR))
are used in our experiments.

4.1 Datasets

ORL/YALE dataset: The ORL contains 400 facial images from 40 dif-
ferent people. YALE contains total 165 facial images from 15 people, each of
whom has 11 photos under different lighting, posture and expression. We extract
three kinds of features for these datasets that are gray intensity, Local Binary
Pattern(LBP)[25] and Gabor feature [26] as three views for each subject.

COIL20 dataset: COIL-20 is a collection of gray-scale images, including
20 objects taken from different angles. The image is taken every 5 degrees and
size of 32×32, and each object has 72 images, a total of 1440 images. We directly
divide them into four different views according to the taken degree: V1[0◦, 85◦],
V2[90◦, 175◦], V3[180◦, 265◦], V4[270◦, 360◦]. In essence, by this setting, each
object has 18 individuals, meanwhile each individual has 4 views from different
taken degree interval.

UCI-handwritten(UCI-H) dataset: UCI-H contains ten kinds of hand-
written images, which are 0,1,2,..., 9. Each subject has 200 samples, so the entire
dataset has 2000 samples and 10 clusters. We select 500 samples and use three
views for each instance. The first view is the profile-correlation feature with 216
dimensions, the second is the Fourier-coefficient with 76 dimensions, and the
third is morphological feature with 6 dimensions.

4.2 Experimental Results and Analysis

In our experiments, there are two types of representative noise will be in-
troduced to valid the robust performance of comparison methods under noisy
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visual data, which are Gaussion noise and feature missing respectively. The test
on each dataset are repeated five times and the average indicator performance
are reported. We add the Gaussion noise to normalized view feature with dif-
ferent variances with interval 0.01, and take l2 norm as the constraint on error
matrix E. The average clustering results and their variances in parenthesis are
shown in Table.1-4. The best results are highlighted in boldface. Specially, only
the variance larger than 10−3 is presented while others are shown as →0. For
feature missing, we randomly select part of the features of data in each view
to be zero. Meanwhile, the l1 norm is taken to be enforced on E. The average
clustering results under different missing rates are plotted in Fig.2-5.
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Fig. 2. Clustering results on YALE with missing rate.
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Fig. 3. Clustering results on ORL with missing rates.

From the results in tables, we can see that, when the data are contaminated
with Gaussion noise, our proposed method outperforms other compared meth-
ods on visual clustering task in almost all experiments, which demonstrates the
robust performance of RMvSL. In particular, thank for the introduced low-rank
representation model, the view graph can be learned from the clean reconstruct-
ed data, which will help to obtain a better similarity metric with nearly true
data distribution.
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Fig. 4. Clustering results on UCI-H with missing rates.
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Fig. 5. Clustering results on COIL20 with missing rates.

Table 1. Clustering results on UCI-H(%).

Metric SwMC GMC GFSC AMGL RGC GCG MCGC MVCF RMvSL

σ = 0.02
ACC 70.56(→0) 74.24(→0) 39.16(→0) 72.88(0.008) 35.66(→0) 40.27(→0) 72.36(0.005) 16.64(→0) 73.12(0.004)
NMI 75.24(→0) 76.10(→0) 42.98(→0) 75.63(0.003) 33.78(→0) 36.31(→0) 70.02(0.003) 3.65(→0) 75.85(0.003)
PUR 75.08(→0) 60.48(→0) 73.22(→0) 75.64(0.006) 36.33(→0) 51.20(→0) 72.52(0.004) 16.52(→0) 88.68(→0)

σ=0.03
ACC 69.96(0.005) 73.80(0.002) 38.75(0.0004) 69.56(0.005) 34.49(→0) 44.60(0.0008) 73.12(→0) 15.88(→0) 72.84(0.001)
NMI 72.83(0.001) 76.19(0.001) 40.21(0.0004) 73.27(0.003) 34.40(→0) 38.66(0.0007) 70.48(→0) 3.49(→0) 72.95(0.002)
PUR 74.16(0.002) 58.94(0.006) 75.16(→0) 73.16(0.003) 40.13(→0) 50.07(→0) 73.6(→0) 16.52(→0) 86.80(→0)

σ=0.04
ACC 69.36(0.003) 72.51(→0) 32.80(0.002) 74.92(0.002) 36.67(→0) 37.34(0.003) 67.48(0.002) 17.0(→0) 73.24(0.001)
NMI 70.69(0.001) 74.35(→0) 33.32(0.002) 72.09(0.002) 32.85(→0) 30.89(→0) 63.07(0.001) 4.66(→0) 73.92(0.005)
PUR 71.96(0.001) 57.61(0.002) 81.20(0.001) 74.92(0.004) 51.34(→0) 43.87(→0) 67.76(0.001) 18.2(→0) 87.28(→0)

σ=0.05
ACC 67.88(→0) 69.20(0.006) 31.66(0.001) 66.28(0.004) 32.66(→0) 39.87(→0) 66.16(0.007) 17.8(→0) 68.16(0.003)
NMI 67.96(→0) 70.35(0.004) 30.72(0.001) 65.76(0.002) 30.10(→0) 30.13(→0) 62.67(0.003) 5.22(→0) 67.27(0.004)
PUR 71.44(→0) 45.36(0.012) 80.55(0.002) 67.84(0.003) 38.26(→0) 47.40(→0) 67.52(0.007) 19.0(→0) 88.88(→0)

σ=0.06
ACC 60.56(0.003) 58.72(0.005) 29.33(0.001) 61.25(0.003) 32.34(→0) 33.60(→0) 62.72(0.003) 15.4(→0) 60.94(0.002)
NMI 61.16(0.002) 60.06(0.001) 27.60(0.001) 58.69(0.001) 27.37(→0) 25.17(→0) 56.27(0.002) 3.58(→0) 58.81(0.002)
PUR 65.08(0.003) 30.42(0.007) 82.51(0.002) 64.92(0.002) 41.00(→0) 40.93(→0) 63.04(0.003) 15.8(→0) 89.80(0.001)

For experiments on feature missing, RMvSL achieves almost best perfor-
mance among comparison methods on all evaluation indicators in Yale, ORL
and COIL20. Only for UCI-H dataset, the GMC and AMGL are a little better
than our proposed method on ACC and NMI under a few of missing rates. Never-
theless, the competitive results can still show advantage of RMvSL on robustness
under feature missing situation.

4.3 Parameters sensitivity and convergence

There are total five parameters α, β, γ, and µ in our proposed method. We
set α = 1/

√

(max (d, n)) for all the experiments according to [22]. As for γ, it can
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Table 2. Clustering results on YALE(%).

Metric SwMC GMC GFSC AMGL RGC GCG MCGC MVCF RMvSL

σ = 0.02
ACC 52.97(0.001) 54.30(0.001) 47.96(→0) 55.03(0.001) 48.28(→0) 41.82(→0) 60.36(→0) 41.82(0.006) 58.30(0.003)
NMI 56.94(0.002) 58.88(→0) 52.10(→0) 55.87(0.001) 50.66(→0) 49.96(→0) 59.85(→0) 45.96(0.007) 59.52(0.001)
PUR 54.67(0.001) 29.21(0.003) 64.62(→0) 56.85(0.002) 51.92(→0) 48.69(→0) 64.48(→0) 44.85(0.005) 70.55(→0)

σ=0.03
ACC 43.15(0.002) 32.85(0.006) 43.67(→0) 44.91(→0) 33.73(→0) 29.29(→0) 46.12(0.002) 33.94(→0) 44.91(0.001)
NMI 45.13(0.002) 42.43(0.001) 44.75(→0) 47.78(0.003) 33.73(→0) 32.60(→0) 47.26(0.003) 41.25(0.001) 43.47(0.001)
PUR 44.00(0.002) 7.67(→0) 63.90(→0) 49.21(0.003) 37.57(→0) 31.92(→0) 49.33(0.002) 35.15(→0) 67.52(→0)

σ=0.04
ACC 25.58(→0) 25.82(0.001) 27.07(→0) 28.79(→0) 23.23(→0) 24.24(→0) 31.87(0.001) 27.27(0.001) 28.94(→0)
NMI 28.59(0.001) 30.75(0.001) 28.26(→0) 30.34(→0) 27.59(0.009) 26.57(0.009) 31.61(0.002) 31.31(0.001) 29.33(0.02)
PUR 27.88(→0) 3.52(→0) 64.05(→0) 32.97(→0) 26.46(→0) 25.66(→0) 62.90(0.002) 29.70(0.001) 75.39(0.002)

σ=0.05
ACC 21.24(→0) 19.06(→0) 16.10(→0) 21.15(→0) 21.41(→0) 18.61(→0) 20.96(0.001) 22.42(→0) 21.32(→0)
NMI 23.28(→0) 23.11(→0) 21.60(→0) 25.89(→0) 25.83(→0) 25.59(→0) 20.16(→0) 26.71(→0) 23.46(→0)
PUR 24.48(→0) 0.72(→0) 64.40(→0) 28.85(→0) 23.03(→0) 25.86(→0) 22.66(0.001) 24.45(→0) 77.33(→0)

σ=0.06
ACC 17.82(→0) 18.42(→0) 15.89(→0) 21.30(→0) 19.62(→0) 20.61(→0) 17.33(→0) 18.18(→0) 20.84(→0)
NMI 18.1(→0) 24.71(→0) 21.37(→0) 22.57(→0) 21.20(→0) 20.43(→0) 17.45(→0) 18.72(→0) 22.86(→0)
PUR 18.91(→0) 0.36(→0) 63.76(→0) 23.76(→0) 23.84(→0) 22.42(→0) 18.66(→0) 20.00(→0) 79.52(→0)

Table 3. Clustering results on ORL(%).

Metric SwMC GMC GFSC AMGL RGC GCG MCGC MVCF RMvSL

σ = 0.02
ACC 51.55(→0) 49.10(→0) 41.17(→0) 59.50(→0) 43.58(→0) 37.50(→0) 70.00(→0) 20.00(0.03) 72.65(0.002)
NMI 65.76(→0) 73.88(→0) 61.58(→0) 76.96(→0) 61.64(→0) 43.33(→0) 80.50(→0) 37.56(0.03) 83.37(0.007)
PUR 60.60(→0) 59.30(→0) 68.47(→0) 65.95(→0) 46.67(→0) 44.08(→0) 75.85(→0) 21.5(0.04) 82.05(0.001)

σ=0.03
ACC 33.40(→0) 36.25(→0) 38.54(→0) 49.15(0.002) 31.25(→0) 26.25(→0) 46.70(0.001) 47.00(→0) 50.80(→0)
NMI 41.91(0.001) 60.89(→0) 59.68(→0) 64.69(0.001) 51.59(→0) 47.29(→0) 56.78(0.002) 64.67(→0) 62.16(→0)
PUR 40.15(→0) 45.70(→0) 68.34(→0) 54.85(0.001) 34.08(→0) 30.83(→0) 52.60(0.002) 52.50(→0) 75.05(→0)

σ=0.04
ACC 19.05(→0) 18.70(→0) 18.51(→0) 28.50(→0) 17.92(→0) 20.00(→0) 22.00(→0) 32.00(0.01) 28.15(→0)
NMI 23.71(→0) 37.42(→0) 33.16(→0) 42.92(→0) 36.47(→0) 37.98(→0) 29.84(→0) 48.54(→0) 40.79(→0)
PUR 21.25(→0) 23.60(→0) 67.04(→0) 31.20(→0) 23.08(→0) 22.83(→0) 24.55(→0) 95.75(0.001) 76.40(→0)

σ=0.05
ACC 13.75(0.008) 14.00(→0) 13.82(→0) 18.40(→0) 16.66(→0) 16.42(→0) 14.80(→0) 19.5(→0) 18.45(→0)
NMI 19.32(→0) 30.29(→0) 38.23(→0) 35.87(→0) 39.87(→0) 37.50(→0) 22.90(→0) 37.46(→0) 38.68(→0)
PUR 15.20(→0) 16.35(→0) 65.59(→0) 20.80(→0) 19.34(→0) 22.00(→0) 16.10(→0) 24.50(→0) 77.00(→0)

σ=0.06
ACC 12.50(→0) 13.20(→0) 12.87(→0) 17.05(→0) 16.34(→0) 15.92(→0) 13.25(→0) 17.00(→0) 16.94(→0)
NMI 18.61(0.001) 31.03(→0) 33.42(→0) 34.60(→0) 39.69(→0) 32.02 (→0) 21.38(→0) 32.06(→0) 36.30(→0)
PUR 13.90(→0) 14.80(→0) 64.73(→0) 17.90(→0) 44.84(→0) 19.58(→0) 14.30(→0) 18.50(→0) 77.45(→0)

Table 4. Clustering results on COIL20(%).

Metric SwMC GMC GFSC AMGL RGC GCG MCGC MVCF RMvSL

σ = 0.02
ACC 77.15(→0) 82.22(→0) 64.22(→0) 66.56(0.002) 76.80(→0) 65.07(→0) 84.61(→0) 59.28(0.001) 83.50(0.001)
NMI 85.56(→0) 92.71(→0) 77.52(→0) 83.37(→0) 84.51(→0) 77.68(→0) 93.50(→0) 76.45(→0) 91.09(→0)
PUR 80.55(→0) 85.17(→0) 82.22(→0) 74.50(0.001) 80.07(→0) 73.75(→0) 90.11(→0) 66.67(0.001) 90.72(→0)

σ=0.03
ACC 66.60(0.002) 77.94(→0) 62.31(→0) 64.00(→0) 77.08(→0) 59.16(→0) 79.66(→0) 63.06(→0) 79.06(0.002)
NMI 78.36(→0) 90.86(→0) 76.13(→0) 83.20(→0) 84.66(→0) 70.81(→0) 90.50(→0) 75.81(→0) 91.13(→0)
PUR 71.55(→0) 81.17(→0) 82.77(→0) 72.06(0.001) 80.83(→0) 63.68(→0) 90.11(→0) 66.67(→0) 89.78(→0)

σ=0.04
ACC 62.25(0.003) 72.00(0.002) 57.95(→0) 64.56(0.003) 71.88(→0) 46.88(→0) 72.27(→0) 61.44(→0) 72.33(→0)
NMI 73.20(0.002) 89.07(→0) 73.31(→0) 80.72(→0) 80.37(→0) 58.14(→0) 89.38(→0) 70.44(→0) 86.92(→0)
PUR 66.65(0.002) 78.17(0.001) 83.06(→0) 70.89(→0) 77.03(→0) 53.33(→0) 85.50(→0) 63.72(→0) 85.83(→0)

σ=0.05
ACC 57.25(0.001) 56.78(→0) 51.68(→0) 57.89(0.001) 52.56(→0) 35.76(→0) 58.72(0.002) 50.61(→0) 59.17(→0)
NMI 67.92(0.002) 76.45(→0) 72.04(→0) 74.73(→0) 64.94(→0) 45.18(→0) 75.21(→0) 61.75(→0) 73.78(0.001)
PUR 61.65(0.002) 63.11(→0) 70.5(→0) 64.22(0.001) 58.68(→0) 40.91(→0) 73.66(0.001) 54.44(→0) 76.44(→0)

σ=0.06
ACC 50.35(→0) 46.33(0.002) 46.68(→0) 48.61(0.004) 42.15(→0) 28.68(→0) 48.00(0.001) 42.0(0.005) 47.22(→0)
NMI 63.73(→0) 67.98(→0) 69.22(→0) 64.98(0.002) 54.98(→0) 35.58(→0) 70.35(0.001) 52.56(0.003) 61.77(→0)
PUR 57.10(→0) 50.39(0.001) 66.61(→0) 56.33(0.002) 46.87(→0) 32.15(→0) 60.22(0.001) 44.78(0.004) 75.50(→0)

be computed with Eq.(18) during the iteration. So, the unknown parameters are
just β and µ. To evaluate their influence on the clustering performance, we take
the ORL as testing dataset. The experimental results under missing rate 0.3 are
drawn with varying parameters. As shown in Fig.6, the two unknown parameters
are not quite sensitive to three evaluation indicators. Moreover, the experimental
results in section 3.2 on each dataset are obtained with the empirical parameter-
s setting in this way. In addition, max {‖XvZv + Ev −Xv‖∞ , ‖Jv − Zv‖∞} is
taken as the criteria to evaluate the convergence in each iteration. The conver-
gence curves with increasing iterative step on two selected datasets are shown
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(a) ACC (b) NMI (c) PUR

Fig. 6. The influence of β and µ on clustering performance of ORL

in Fig.7, from which it is confirmed that our proposed method converges fast
within a few of iterations.
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Fig. 7. Convergence curves on two selected datasets.

5 Conclusions

This paper presents a novel multiview similarity graph learning method
named RMvSL for visual clustering task. With a unified objective function, R-
MvSL can optimize the view graphs, consensus fusion graph and constructed
data alternately, which can greatly improve each other during the iteration. By
introducing the low-rank self-representation model, the recovered data with dis-
tribution compensation can be obtained to learn the true similarity between
pairs of instances, which shows more advantage than raw data and help to con-
struct meaningful graphs. With the learned fusion graph, spectral clustering can
be implemented to obtain the final cluster results. Extensive experiments on four
visual datasets demonstrate the superior and robustness of RMvSL compared
with various existing excellent similarity graph learning approaches.
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