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Abstract

In the last few years, several works have tackled the

problem of novel view synthesis from stereo images or even

from a single picture. However, previous methods are com-

putationally expensive, specially for high-resolution im-

ages. In this paper, we address the problem of generating a

multiplane image (MPI) from a single high-resolution pic-

ture. We present the adaptive-MPI representation, which

allows rendering novel views with low computational re-

quirements. To this end, we propose an adaptive slicing

algorithm that produces an MPI with a variable number

of image planes. We present a new lightweight CNN for

depth estimation, which is learned by knowledge distillation

from a larger network. Occluded regions in the adaptive-

MPI are inpainted also by a lightweight CNN. We show that

our method is capable of producing high-quality predictions

with one order of magnitude less parameters compared to

previous approaches. The robustness of our method is evi-

denced on challenging pictures from the Internet.

1. Introduction

Novel view synthesis from a single image is a very chal-

lenging problem that has gained attention from the com-

puter vision community in the last few years. Despite

the challenges involved in this task, for instance, estimat-

ing depth and generating color information on occluded re-

gions, novel view synthesis unlocks a broad range of ap-

plications related to 3D visual effects from a single image,

augmented reality systems, among many others.

Traditionally, methods for new view synthesis rely on

stereo vision for obtaining both depth information and color

inpainting [23, 43]. Among these methods, multiplane im-

ages (MPI) [31] has frequently been used to encode the
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Figure 1: Our method predicts an adaptive multiplane im-

age representation from a single picture, which can be easily

rendered to produce new views of the scene.

scene. Contrarily to other representations, such as point

clouds or 3D meshes, multiplane images are easily stored

with traditional image compression algorithms and can be

rendered efficiently on embedded systems, such as in smart-

phones or Smart TVs, even for high-resolution images.

Learning an MPI representation from a single image is

a much more challenging problem, since depth and oc-

cluded colors have to be inferred from a flat image. Very

recently, Tucker and Snavely [35] proposed a framework for

learning an MPI from a single-view image. However, their

method is still dependent on multiview (stereo) data during

training. This fact hinders the robustness and applicabil-

ity of the method, since such data is often collected from a

moving camera (e.g., images from RealEstate10K dataset),

therefore, being limited to static scenes. Contrarily, in our

method we learn an MPI representation from single-view

and unconstrained pictures from the Internet. As a result,
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our method benefits from a strong generalization capabil-

ity. Another drawback of previous methods based on MPI is

their high computational cost, since a high number of image

planes are often used to achieve satisfactory results [30].

Considering the limitations of previous methods, we pro-

pose a new approach to generate an adaptive multiplane im-

age (adaptive-MPI) from a single image. As shown in Fig-

ure 1, differently from traditional MPI, the adaptive version

automatically selects the number of layers and the distance

between them in order to better represent the content of the

scene. Consequently, our method is able to produce results

comparable to the state of the art while requiring very few

image planes and running in a few seconds even for high-

resolution images. The main contributions of our work are

listed as follows. First, we propose a new method to learn

an adaptive-MPI from single images from the Internet. Sec-

ond, we propose a lightweight CNN for depth estimation

and a robust distillation method for transfer learning from a

larger network in high-resolution. Third, we propose an in-

painting strategy that handles MPI with a variable number

of layers. Our approach is evaluated for depth estimation

with respect to our teacher network and on view synthesis

on challenging pictures extracted from the Internet.

2. Related work

In this section, we review some of the most relevant

works related to our method.

2.1. Single-image depth estimation

Estimating depth from a single image is an ill-posed

problem due to scale ambiguity. With the advent of deep

learning, predicting depth maps has become possible for

well conditioned environment [7], such as indoor scenes.

However, for reducing the epistemic uncertainty related to

the task [17], an enough amount of data is required for more

general cases. To handle this issue, methods based on stereo

matching have emerged in the last few years [11, 34]. Such

approaches rely only on well calibrated pairs of images for

training, which is easier to capture than precise depth maps.

However, learning from stereo pairs is not as effective as

learning directly from ground-truth depth [9].

More recently, impressive results have been achieved by

exploring stereo data from the Web [40], structure from mo-

tion (SfM) using Internet pictures [18], and from YouTube

videos (mannequin challenge) [19]. The main advantage

of these methods is that they benefit from a high variety

of data. However, when multiple datasets with different

scales and data distributions are mixed together, learning

a common representation becomes a challenge. Ranftl et

al. [25] proposed to solve this problem with a scale- and

shift-invariant loss, that allows the network learning from

multiple datasets simultaneously.

Considering the discussed previous work, we can notice

that a key factor for robust depth estimation is training data.

Nevertheless, some datasets may not be readily available

or may require customization that makes their use difficult.

Therefore, our main contribution in depth estimation is a ro-

bust distillation process for learning a lightweight model ca-

pable of generating high-quality and high-resolution depth

maps, as demonstrated through our experiments.

2.2. View synthesis from a single view

Realistic view synthesis has gained great relevance in

the areas of computer and robotic vision. Recent works

have used deep learning-based approaches, which gener-

ally predict representations such as 3D meshes [20] or point

clouds [39], while for more complex images, represen-

tations such as MPI [31] and LDI [26] have been used.

Until recently, methods in the literature have only dealt

with calibrated stereo images [8, 30, 43] and used fully-

convolutional deep networks to predict an MPI represen-

tation, which is then rendered to extrapolate novel views.

Currently, there are still few studies that predict new

views from a single image, such as in Tucker and Snavely

[35]. In this case, the authors generated the training data

for depth supervision using Simultaneous Localization and

Mapping (SLAM) and SfM algorithms from videos with

static content, while the network is optimized for both depth

estimation and new view synthesis. Image segmentation has

also been explored to simulate motion parallax effect [24].

Other methods propose to learn an LDI relying on interme-

diate tasks, such as depth and segmentation maps [4, 5], or

even from pairs of stereo images [36]. Very recently, Shih et

al. [27] proposed a framework for new view synthesis based

on monocular depth estimation and on a cascade of depth

and color inpainting. Despite the high-quality results, this

method has an iterative process that becomes prohibitive for

high-resolution images on computational restricted devices.

Similar to the work proposed by Tucker and Snavely

[35], we predict an MPI from a single image. However, the

planes of our MPI are defined in an adaptive way, depending

on the input image, which is more suitable for view synthe-

sis from a small number of image planes. In addition, our

method does not rely on stereo data for training and per-

forms efficiently due to our lightweight models.

2.3. Image inpainting

Several inpainting techniques have been proposed to fill

missing or occluded parts of an image. These methods can

be divided into traditional diffusion-based [1, 2] and patch-

based [6] approaches, and more recent GAN-based meth-

ods [14, 22, 42]. Differently from classic image inpaint-

ing, multiplane images require a more sophisticated pro-

cess, since only the background or specific borders in the

image layers need inpainting. Since we are not considering
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the case of stereo images for training, we propose an ap-

proach to learn an inpainting CNN for MPI layers based on

single images and their respective depth maps.

3. Proposed method

3.1. Dataset preparation

The goal of our method is to produce an adaptive-

MPI representation from unconstrained images. Publicly

datasets for novel view synthesis are frequently based on

static scenes, i.e., collected from videos without people or

animals, such as RealEstate10K [43], limited to macro pic-

tures captured by plenoptic cameras [16, 29], or restricted to

a specific domain [10]. Available depth estimation datasets

are also limited to specific domains (MegaDepth [18]) and

low resolution images (NYU-Depth V2 [28]).

Nevertheless, the Internet is a massive source of high-

resolution image data, with scenes of different modali-

ties, including landscapes, portraits, groups of people, an-

imals, food and vehicles, frequently on variable conditions

of lightning. This abundance of image data could be used

to train a robust inpainting algorithm, as well as to distill

the knowledge from depth estimation methods. With this in

mind, we collected a dataset of high-resolution Internet pic-

tures, which is used for teaching our lightweight CNN mod-

els, both for depth estimation and inpainting tasks. Some

examples of images from our dataset are shown in Figure 2.

Figure 2: Samples from our dataset and the pseudo ground

truth generated by our ensemble approach.

3.1.1 Data collection

We collected 100K images from Flickr by performing

queries based on 16 different keywords: america, animals,

asia, brazil, city, civilization, europe, food, indoor, land-

scape, night, objects, people, show, sports, and vehicle. The

queries were made for high-resolution images with no re-

strictions in the rights of use. All the collected files were

filtered to remove duplicated pictures and to correct rota-

tions. We split the remaining files as 95K training and 3K

evaluation images.

3.1.2 Distilling depth knowledge

Recent depth estimation methods [18, 25] are capable of

predicting high quality depth maps. However, these models

are computationally expensive, specially for high-resolution

images. Since our approach focuses on efficiency, we pro-

pose to distill the knowledge from MiDaS [25] by using our

collected pictures from the Internet.

In knowledge distillation, an effective approach is to

train the student network based on an ensemble of predic-

tions from the master network [12]. In our method, we per-

formed a 10× ensemble by considering predictions in five

different resolutions (squares with rows and columns with

512, 768, 1024, 1600, and 1920 pixels) and horizontal flip-

ping. All the intermediate predictions were then normalized

and resized with bilinear interpolation to the highest resolu-

tion, which are then combined by the median value at each

pixel position, resulting in our pseudo ground truth depth

maps. Figure 2 shows some examples of depth maps gener-

ated by this approach. For simplicity and efficiency during

training, out method does not rely on intermediate feature

supervision. Similarly to previous works, we use the term

depth map interchangeably for disparity map.

3.2. Efficient depth estimation

Considering our objective to produce high-resolution ef-

fects efficiently, we propose a lightweight CNN for depth

estimation. Previous methods for depth estimation are fre-

quently based on U-Net [19] architectures. The drawback

of traditional U-Net models are their high number of param-

eters and high memory usage, specially for high-resolution

images. Instead, we propose to adapt EfficientNet [32] to

perform depth estimation.

Specifically, we integrated the lightweight MobileNet

V3 block [13] with Discrete Wavelet Transforms (DWT), as

shown in Figure 3. We use DWT and Inverse DWT in a sim-

ilar way to Luo et al. [21], i.e., for downscaling and upscal-

ing feature maps, respectively. The DWT has the effect of

decomposing an input tensor of shape H×W ×C into a set

of approximation coefficients (AC) and detailed coefficients

(DC), which represent the time-frequency decomposition of

the input signal. By concatenating the AC and DC compo-

nents, we recover a tensor with shape H/2 × W/2 × 4C.

This allows our model to benefit from skip connections with

lower resolutions compared to traditional U-Nets and to pre-

serve high frequency information throughout the full net-

work. In addition, we perform multi-scale depth supervi-

sions to enforce learning from multi-resolution signals. Our

design decisions are evaluated in the ablation studies.

3.3. Adaptive multiplane image slicing

The goal of the adaptive multiplane image slicing algo-

rithm is to compute a small set of image planes that repre-

sents a 3D scene, while reducing the possible artifacts on
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Figure 3: Depth estimation network (lite) based on MobileNet V3 blocks. Input and feature maps are downscaled by Discrete

Wavelet Transforms (DWT) and upscaled by Inverse DWT. Supervision at intermediate resolutions are applied to enforce

multi-resolution learning.

novel views. To this end, we propose a slicing algorithm

based on depth information. This algorithm selects thresh-

olds between the image planes from regions with high dis-

continuity in the depth map, assuming that the scene has

some depth salience, such as an object in the foreground.

Given a depth map of a scene, we first pre-process it

in order to enhance depth discontinuities. In this pre-

processing stage, depth values are normalized to the interval

[0..255] ∈ Z
+. Then, we apply a bilateral filter [33] fol-

lowed by a Canny edge detector. The borders in the depth

map are expanded by a morphological erosion. The effect

of this process is shown in Figure 4. From the resulting

depth map, we compute a transition index, defined by:

t =
∇2h

max(ǫ, h)
, (1)

where h is the normalized histogram of the resulting depth

map and ǫ is set to 0.001 to avoid division by zero. Figure 5

shows the normalized histogram and the transition index for

a given depth map.

Filtered depth Canny edges Eroded borders

Figure 4: Pre-processing of depth maps: proposed steps al-

low better delineation of object edges.

A high value in t corresponds to a valley or a discon-

tinuity in the depth map, since it depends on the second

derivative of h. Therefore, the local maximum values from

t are used to select the threshold (transition) between two

image planes. Once a transition ti is selected, the corre-

sponding value of i is stored in a vector T and its neighbors

0 50 100 150 200 250

0.00

0.01

0.02

0 50 100 150 200 250

Normalized disparity from [0..255]

0

2

Normalized histogram

Transition index

Selected transitions

Figure 5: Local and spaced maximum values in t define

the transitions Tj between image planes. The first and last

index of t are always selected as boundaries. Note that no

transition was selected between 46 and 141 due to the low

density in this interval.

{i− ξ, . . . , i+ ξ} in t are set to zero. This prevents from se-

lecting transitions too close in the depth. In our implemen-

tation, we set ξ = 8. This process of transition selection

repeats until no more values in t are above a threshold (set

to 0.1 in our method), or a maximum number of selected

transitions is reached. At the end of this process, we have

N + 1 selected transitions, where N is the number of im-

age planes. Finally, each image plane Ij is formed by the

pixels lying in the depth interval {hTj
, . . . , hTj+1

}, where

j = {0, . . . , N} is the index of the selected transitions. The

position of Ij on the Z axis is computed as the average of

the depth values lying in the same interval. Thus, the num-

ber of image planes and the depth of each layer is adapted

accordingly to the depth information of the scene.

3.4. Multiplane image inpainting

Once the image planes are computed by the adaptive slic-

ing algorithm, some regions may require image inpainting

to fill the holes on the generated novel views. A naive ap-

proach would be to inpainting after rendering. However,
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this would be prohibitive to most of the real-time appli-

cations, since inpainting is computationally expensive and

cannot be performed on current embedded devices in real-

time for high-resolution images. Instead, we propose to

inpaint the adaptive-MPI representation before rendering,

which means that no additional post-processing will be re-

quired during novel views generation.

Differently from classic inpainting tasks based on reg-

ular regions [3] or on small free-form regions [42], in our

case, we have to inpaint image planes that frequently con-

tain very sparse visual information. In addition, the parts of

the image that require inpainting are generally thin margins

that follow the contour of the available color information.

For this reason, we trained a lightweight inpainting CNN1

for generating pixels in a masked region that is computed

based on morphological operations.

Since our method is trained on single pictures from the

Internet, therefore, no ground truth is available for occluded

regions, we propose to train the inpainting model as follows:

given an image layer computed by the adaptive slicing al-

gorithm, we perform a morphological erosion in its mask in

order to remove a border of pixels following the image con-

tour. Then, the resulting image is concatenated with a mask

corresponding to the removed pixels and fed to the network.

The model is supervised with the original image layer (tar-

get). This process is illustrated in Figure 6 (top). During

inference (Figure 6, bottom), the input mask is computed

based on the dilated border from the current image layer,

and both are fed to the network. The prediction is then used

for inpainting. Transparent regions in the MPI are not con-

sidered in this process, such that pixels are generated on

occluded regions only.

T
ra
in
in
g

Input image Input mask Target

In
fe
re
n
ce

Input image Input mask Prediction

Figure 6: Illustration of the proposed inpainting process

during training and inference. The goal of the inpainting is

to generate pixels to extend the background image (input)

according to a margin defined by morphological operations

(input mask).

1The CNN architecture for inpainting was inspired in [41] but with a

smaller number of filters and convolutions.

4. Experiments

In this section, we present the implementation details of

our method, as well as an experimental evaluation consid-

ering depth estimation and view synthesis, for both quanti-

tative and qualitative results.

4.1. Implementation details

To train the depth estimation network, we used a com-

posed loss function based on two terms, data and gradient

losses:

Ldata =
1

N

N∑

i=0

|ŷ − y| (2)

Lgrad =
1

N

N∑

i=0

3∑

s=0

|∇x(ŷs − ys)|+ |∇y(ŷs − ys)|, (3)

where ŷs and ys are the predicted and the target values, con-

sidering a downscaling factor of 2s. Similarly to [25], we

normalize the target disparity maps between 0 and 10. The

final depth loss is defined by

Ldepth = Ldata + αLgrad, (4)

where α is set to 0.5 in our experiments. This loss is applied

individually to each output of our model (see Figure 3). At

inference time, we use only the last prediction. The net-

work was optimized with stochastic gradient descent and

the Adam optimizer. Learning rate was initially set to 0.001
and reduced by a factor of 0.2 when validation plateaus. We

trained the network with the images of our dataset rescaled

to 1024 × 768 pixels, for about 1.2 million iterations using

6 images per batch.

For training the inpainting network, we randomly se-

lected image layers computed by our adaptive slicing al-

gorithm and included on it the respective layers farther in

the depth range, resulting in one single image containing

the pixels farther than a given depth threshold. The result-

ing image was then pre-processed as illustrated in Figure 6

and used for training. In the morphological dilation, we

used a 3× 3 filter with 40 iterations to produce a margin of

about 40 pixels. We used pixel losses, similarly as in Equa-

tion 4, but assuming ŷs and ys as RGB images. To increase

the quality and sharpness of predicted inpainting, we also

used a classic discriminator loss and a perceptual loss [15],

respectively designated by Ldisc and Lperc. The resulting

loss for training the inpainting network is:

Linpaint = Ldata + αLgrad + βLdisc + γLperc, (5)

where we set α = 0.1, β = 0.01, and γ = 0.01. The in-

painting network was also trained on our dataset with Adam

and learning rate set to 0.0002 and 0.0001, respectively for

the generator and discriminator models, for about 1 million

iterations using 6 images per batch.
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4.2. Depth estimation

We performed several experiments to evaluate the effec-

tiveness of our depth estimation network, as well as to eval-

uate the proposed distillation process from MiDaS. In order

to compare our lightweight network with the teacher net-

work, i.e., MiDaS [25], we evaluated our approach on two

public depth datasets, which are described next.

The NYU-Depth V2 dataset [28] is composed of 1449

pairs of images and depth maps densely annotated, from

which 654 are used for evaluation. Despite the small num-

ber of samples with dense depth maps and the limited in-

door images, this dataset is useful to perform ablation stud-

ies with the proposed CNN architecture, since the training

process takes only one day on a single GPU.

The DIODE [37] is a depth dataset composed of diverse

high-resolution images of both indoors and outdoors scenes,

paired with accurate, dense and far-ranged depth measure-

ments. This dataset contrast itself with other depth datasets

due to its multiple scene types and employment of different

sensors, aiding the generalization across different domains.

This dataset is useful to evaluate our proposal on diverse and

precisely annotated data, specially to compare the proposed

network with the teacher model, considering the proposed

knowledge distillation process.

4.2.1 Evaluation metrics

We evaluated our method considering classic depth estima-

tion metrics, similarly to [7]. Namely, we used the thresh-

old metric, considering δ1.25, δ1.252 , and δ1.253 , as well

as RMSE (linear) and Absolute Relative difference (REL).

However, since we learn our depth estimator from MiDaS,

which has scale- and shift-invariant predictions, these met-

rics cannot be applied directly between the ground-truth and

the prediction of our model. To allow a fair comparison, we

followed the approach from [25] and aligned the depth pre-

dictions to the ground-truth based on the median and stan-

dard deviation. This evaluation is very useful in our ap-

proach, since we only require normalized depth to compute

our adaptive-MPI representation. Furthermore, our dataset

has no absolute ground truth depth nor camera parameters

information, which prevents from evaluating depth predic-

tions in absolute coordinates.

For new view synthesis, we use the SSIM [38] and PSNR

metrics to compare predicted views with target images.

Since our dataset has no paired calibrated image pairs, we

compare the views produced by our adaptive slicing method

with a densely sampled MPI projected to the target view

point. Differently from [35], which uses a set of points with

absolute depth information to align the MPI to the ground-

truth depth, we are not able to provide a fair comparison

on RealEstate10K since our method is relying on relative

depths only.

4.2.2 Network architecture

In this part, we present a study with the depth estimation

network that motivated our choices in the proposed archi-

tecture. Table 1 shows the results of our method when

trained on NYU-Depth V2 only. As a baseline, we con-

sider the same architecture as illustrated in Figure 3, but

using supervision only in the last prediction, and convolu-

tions with striding 2 and bilinear upsampling, respectively

for downscaling and upscaling feature maps.

Table 1: Results for depth estimation on NYU-Depth V2

considering variations of our depth estimation network and

training strategy. +MS: multi-scale predictions, +DWT: us-

ing direct and inverse DWT, +D: pre-training on our dataset.

The model lite corresponds to the architecture from Fig. 3,

and the heavy variation uses more filters (details in the ap-

pendix). Predictions where shifted and scaled with ground-

truth based on median and standard deviation.

Method δ1.25 RMSE REL Model Size

Baseline model (lite) 0.779 0.531 0.156 10.8 MB

+MS 0.793 0.514 0.149 10.8 MB

+MS +DWT 0.794 0.520 0.150 10.6 MB

+MS +DWT +D 0.835 0.452 0.129 10.6 MB

+MS +DWT +D (heavy) 0.869 0.416 0.113 25.2 MB

Input image Ground truth

Baseline +MS +MS +DWT

Figure 7: Predictions on NYU-Depth V2 considering our

baseline model with multiple supervisions (+MS) and the

proposed architecture with DWT (lite model version).

We improved the baseline by 1.4% in the δ1.25 score

(+MS in Table 1) just by including supervisions at multi-

ple resolutions. This enforces the network to learn depth

at different scales of the feature maps. Note that the inter-

mediate supervisions are used only during training and, at

inference time, only the last prediction is used. Replacing

strided convolutions by DWT and bilinear upsampling by

inverse DWT (row +MS +DWT) improved by an additional
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0.1% and reduced the model size from 10.8 to 10.6 MB,

since DWT has no trainable parameters. Despite this im-

provement could be considered marginal, we noticed that

DWT results in sharper depth maps, as can be observed in

Figure 7. This is an important factor for novel view synthe-

sis, since most of the artifacts are produced in the borders

of objects. We also show that a pre-training of the network

in our dataset produces an improvement of 4.1%. Finally,

we also show the results for a heavy version of the network,

which has 25.2 MB and increases δ1.25 by 3.5%.

4.2.3 Comparison with MiDaS

In Table 2, we compare our depth estimation models with

MiDaS. Predictions from MiDaS and our models were

scaled and shifted to the ground truth, as suggested in [25].

Surprisingly, our heavy model, which has only 6.2% of the

size of MiDaS (403 MB) and is 5× faster, was able to sur-

pass the teacher network on the DIODE dataset, while our

lite model (38 times smaller than MiDaS and 14× faster)

reached comparable results. We believe that this fact results

from our depth distillation procedure from MiDaS, which

is based on an ensemble of 10× predictions (as details in

Section 3.1.2) and improves the robustness of our model.

Moreover, MiDaS was trained with crops of size 384×384,

while our model was trained on 1024 × 768, which is the

native resolution of DIODE. We believe that this fact also

explains our lower scores on NYU, which has lower reso-

lution images, on which our method was not trained in. We

also show in Figure 8 some qualitative results of our method

compared to [25].

Table 2: Comparison of the results from our depth estima-

tion models on NYU-Depth V2 and DIODE datasets. On

DIODE, we consider MiDaS predictions in 384× 384 (na-

tive resolution) followed by a rescaling, and direct predic-

tion in 1024× 768. On NYU, all predictions are performed

in 512× 384. Latency was computed on an Intel Core i5

CPU at 2.60 GHz.

Method
Higher is better Lower is better

δ1.25 δ1.252 δ1.253 RMSE REL Latency

DIODE

MiDaS 384×384 0.649 0.825 0.899 7.976 0.465 2.620 s

MiDaS 1024×768 0.600 0.802 0.888 9.575 0.467 19.112 s

Ours (lite) 0.614 0.812 0.894 6.420 0.440 1.308 s

Ours (heavy) 0.684 0.839 0.902 5.286 0.385 3.674 s

NYU-Depth V2

MiDaS 512×384 0.824 0.951 0.984 0.550 0.146 4.675 s

Ours (lite) 0.713 0.925 0.979 0.640 0.185 0.339 s

Ours (heavy) 0.734 0.914 0.962 0.622 0.180 0.939 s

Input image MiDaS Ours (lite)

Figure 8: Comparison of depth predictions by our lite model

and MiDaS on test samples from our dataset.

4.3. View synthesis

As previously mentioned, our adaptive multiplane image

slicing aims to use a small set of image planes to represent

a 3D scene, while reducing the number of induced artifacts.

To demonstrate the efficiency of the adaptive slicing algo-

rithm, we used 1500 video sequences from RealEstate10K

extracting a source and target image from each sequence.

Varying the number of maximum planes, we used both uni-

form slicing and our adaptive algorithm to render the tar-

get view from the source frame using the camera transfor-

mation provided by the dataset. The results, presented in

Table 3, show that for each number of planes the adaptive

strategy outperforms the uniform slicing on both SSIM and

PSNR metrics. It is important to notice that the difference

between the two strategies is more significant as the num-

ber of planes gets smaller, reflecting the desired property of

the adaptive slicing. Visual results of our method are shown

in Figure 9. While 3D-Photography takes more than 400

seconds to produce an LDI running on CPU, our approach

takes less than 10 seconds for 1024× 768 images.

4.3.1 Subjective user study

In addition to the objective evaluation carried out, we

also conducted a subjective study with users through 25

images chosen randomly from the test samples of our

dataset to evaluate and compare our method with 3D-

Photography [27] according to human perception. We gen-

erated videos with equivalent motion for both methods,

placing them side by side in a single video. Three types

of movement were used based on those provided by the

3D-Photography code. Each video was generated with 180

frames of size 1024× 768 and 30 frames per second.

We asked users to evaluate two aspects of the videos: (a)
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Input image 3D-Photography Ours

Figure 9: Qualitative results of our method compared to 3D-Photography on images from our dataset.

Table 3: Comparison between uniform and adaptive slic-

ing using RealEstate10K. The number of maximum planes

in the adaptive algorithm was varied as specified and the

uniform slicing was performed with the number of planes

resulting from our method.

Number of planes Method SSIM PSNR

4
Uniform 0.6710 18.6921

Adaptive (ours) 0.6818 18.9200

8
Uniform 0.6778 18.8438

Adaptive (ours) 0.6836 18.9725

16
Uniform 0.6804 18.9034

Adaptive (ours) 0.6841 18.9874

motion quality, in order to check whether the motion is nat-

ural and (b) amount of noise or artifacts present in the video.

For both cases, we use the Absolute Category Rating, with

1 indicating poor and 5 indicating excellent. In addition,

we allow the user to optionally comment on each assess-

ment. We obtained, for each of the five video samples, the

respective number of responses from users: 22, 18, 17, 15,

and 15. For each of the videos, we calculated their aver-

age for the values of the motion and frame quality. Then,

we applied the min-max normalization to change the range

of averages from [1,5] to [0,100]. We also count, for each

video, the number of times that someone assigned an equal

or better rating to our method. Table 4 shows the Mean

Opinion Score (MOS) and the percentage of times that our

videos scored equal or higher for both aspects evaluated.

From these results, we can notice that 3D-Photography

had some superiority in MOS. However, the difference is

Table 4: Comparison between our method and 3D-

Photography according to users’ perception.

MOS Motion Quality Frame Quality

3D-Photography 70.24 ± 7.36 72.71 ± 8.61

Ours 65.07 ± 8.82 64.49 ± 14.23

Ours (% of ≥) 63.85 ± 12.94 60.37 ± 23.17

not substantial, being comparable by the standard deviation.

In addition, our method scored higher than or equal to more

than 60% of the responses in both criteria, which is even

more relevant considering that our method requires signifi-

cantly less memory and computational processing.

5. Conclusions

In this paper, we described a novel method to estimate

an adaptive multiplane image representation from a single

image that allows novel view synthesis with low compu-

tational requirements. The main contribution presented in

our work is a new algorithm that produces a variable set of

image planes depending on the depth of the scene. In ad-

dition, we proposed a distillation technique that allows our

lightweight CNN architecture to achieve depth estimation

results comparable to a state-of-the-art model while requir-

ing only 2.7% of the original model’s number of param-

eters (a reduction of 38 times in the model size). There-

fore, our method is capable of producing an adaptive-MPI

for high-resolution images in less than 10 seconds (about 44

times faster than 3D-Photography), resulting in an efficient

method for new high-quality view generation.
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