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Abstract

Documents are often used for knowledge sharing and

preservation in business and science, within which are ta-

bles that capture most of the critical data. Unfortunately,

most documents are stored and distributed as PDF or

scanned images, which fail to preserve logical table struc-

ture. Recent vision-based deep learning approaches have

been proposed to address this gap, but most still cannot

achieve state-of-the-art results. We present Global Table

Extractor (GTE), a vision-guided systematic framework for

joint table detection and cell structured recognition, which

could be built on top of any object detection model. With

GTE-Table, we invent a new penalty based on the natu-

ral cell containment constraint of tables to train our ta-

ble network aided by cell location predictions. GTE-Cell

is a new hierarchical cell detection network that leverages

table styles. Further, we design a method to automati-

cally label table and cell structure in existing documents to

cheaply create a large corpus of training and test data. We

use this to enhance PubTabNet with cell labels and create

FinTabNet, real-world and complex scientific and financial

datasets with detailed table structure annotations to help

train and test structure recognition. Our framework sur-

passes previous state-of-the-art results on the ICDAR 2013

and ICDAR 2019 table competition in both table detection

and cell structure recognition. Further experiments demon-

strate a greater than 45% improvement in cell structure

recognition when compared to a vanilla RetinaNet object

detection model in our new out-of-domain FinTabNet.

1. Introduction

In real world enterprise and scientific applications, cru-

cial information is often summarized in tabular form within

PDF or scanned documents [1]. Since neither of these

widely-used document formats preserve logical table struc-

ture, accurate table detection and cell structure recognition

techniques are required to reconstruct the table before its

contents can be leveraged for any subsequent analysis, such

as question answering [22], scientific leaderboard construc-

tion [12] or knowledge base population [25]. Accurate table

extraction is possibly the most important task and a major

pain point in document analysis for businesses where the

computer vision community can have a significant impact.

In fact, the reliance on rules, lack of labelled data and visual

nature of table recognition in documents resembles research

in the early days of object recognition in images. Table de-

tection refers to detecting the boundary of a table, while cell

structure recognition generates the logical relations of cells

and their contents inside a table, e.g., identification of all

cells within the same row or column inside the table. Al-

though straightforward for humans, accurately reconstruct-

ing table boundary and cell structure information from PDF

or image documents is difficult for automated systems due

to the wide variety of styles, layout and content tables have

across heterogeneous document sources [11]. Such visual

“clues” often conflict across sources, e.g., examples in Fig-

ure 1.

Unfortunately, conventional rule-based or statistical

techniques for table extraction often fail to generalize as

they rely heavily on hand-crafted features like graphical

lines or bold font, which are not robust to style variations

across different document formats. Compared to these ap-

proaches, vision-based deep learning methods have two ad-

vantages. First, by working directly on images, they can

be applied to any document renderable to an image, includ-

ing PDF. They do not rely on programmatic PDF encodings

such as graphical line, spacing and font attributes which

rule-based approaches require. Second, if a large annotated

dataset for tables is available, models can be pretrained and
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Figure 1: Tables are challenging to extract as they can be

presented in a variety of styles and structures. Graphical

ruling lines sometimes do not exist (a) and when present

(b), may not be a necessary condition to delineate a cell

(red box).

then finetuned using a small amount of in-domain labels.

However, few vision-based deep learning models for table

extraction that have been proposed, with most existing deep

learning approaches directly use off-the-shelf object detec-

tors [24, 26, 18] without any major architectural adaptation.

To tackle cell structure recognition, rule-based and sta-

tistical machine learning approaches are commonly used

[8]. Recent deep learning approaches either output struc-

ture as text with a image-to-sequence method [34, 18], or

generate structure after detecting related objects in the ta-

ble. Although object detection also needs a box to struc-

ture conversion step when compared to end-to-end sequence

generation, the visualized bounding boxes of object detec-

tion methods are easier for humans to interpret and correct,

which leads to better results [11]. Most existing work on

object detection-based methods detect entire rows and col-

umn separately, and represents the intersection of detected

rows and columns as cells [26, 33]. Such an approach has

limitations in accurately detecting structure of complex ta-

bles with rows or columns which do not span the entire

table or align well. Our proposed Global Table Extractor

(GTE) adapts vision-based models to the table identifica-

tion and cell structure recognition problem, and achieves

state-of-the-art results by addressing limitations of existing

work as follows. First, GTE improves object detectors by

explicitly enforcing the model to learn the natural constraint

of tables: A table must contain certain amount of cells in-

side it and a cell cannot exist outside of the table. In other

words, the model should not only focus on the tables, but

also pay attention to the cells inside. Second, we propose

to detect each cell directly instead of detecting entire rows

and columns separately since cells are more visually dis-

tinct as object units and this approach naturally supports

tables with rows and columns not spanning the entire ta-

ble. Third, current object detection models focus on the

local area around objects, which neglects the global style of

tables that determine cell appearance. To leverage the infor-

mation of the whole table, we propose a hierarchical system

of networks where we discriminate the global context first,

the table style. The table image is then fed into different

object detectors specialized for different styles. After cell

bounding boxes are detected, we invent a cell cluster-based

algorithm to generate cell structures. In summary, our con-

tributions are as follows:

1. We present our systematic framework for vision-

guided joint table detection and cell structure recogni-

tion, GTE, which outperforms previous systems on the

ICDAR 2013 and 2019 table competition benchmark.

(a) We leverage a cell detection network to guide the

training of the table detection network.

(b) We present a hierarchical network and a novel

cluster-based algorithm for cell structure recog-

nition by classifying tables, detecting cells and

convert this into structure with spatial clustering.

2. We design a method to automatically create ground-

truth labels for table recognition and use it to enhance

PubTabNet[36] and create FinTabNet, which are large

datasets from real-world data sources with fine-grained

cell structure annotation for table related tasks. Pub-

TabNet enhancements are now available and we intend

to release FinTabNet publicly (subject to legal evalua-

tions) to address the lack of such labelled data.

2. Related Work

2.1. Table Detection

Rule-based methods were among the earliest proposed

approaches for locating tables inside a document [9, 10,

13, 5, 27]. Such rules mainly focus on text-block arrange-

ment, horizontal and vertical lines, and item blocks. Rule-

based systems perform well on some documents, but require

extensive human effort to summarize rules and often fail

to generalize to other domains or across heterogeneous ta-

ble formats. Statistical machine learning approaches have

been proposed to fill these gaps. Unsupervised methods use

bottom-up clustering of word segments [17]. Examples of

supervised methods include learning a MXY tree to repre-

sent a table [2], learning a Hidden Markov Model designed

for table structure [32] and learning a SVM to classify tables

using line information [15]. Semi-supervised methods have

also been proposed to leverage unlabelled documents [3].

Recently, data-driven vision based approaches have been
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used to detect tables by adapting state-of-the-art object de-

tectors such as Faster-RCNN to table detection [26, 18, 6].

2.2. Cell Structure Recognition

Earliest successful system is the rule-based T-RECS by

evaluating horizontal and vertical structure of words [17].

Wang et al. presented a seven-step process similar to the

X - Y cut algorithm to improve the previous system with

statistical learning approaches from a training corpus [35].

Shigarov et al. decomposed tables by offering configuration

of algorithms, thresholds and rule sets based on PDF meta-

data [29]. Recently, there is a trend from rule-based and sta-

tistical machine learning to deep learning methods in table

recognition. Deep learning approaches include two cate-

gories: (a) End-to-end image-to-sequence models [18, 36];

(b) Object detection based methods [26, 33, 23].

2.3. Existing Datasets

During the development of GTE, we found few exist-

ing datasets with any kind of structure annotation. We re-

quired a dataset with a large number of labelled examples

where each table cell is annotated with its pixel-coordinate

location, logical coordinates inside the table structure (e.g.,

row-span and col-span) and cell text contents. Although the

ICDAR2013 dataset met the annotation requirements, only

254 table examples (96 train and 156 test from the com-

petition) were available, which were from European Union

and US Government reports [8]. TableBank has 145K la-

belled tables, but provides only logical coordinates of cells

in the table [18]. While in the enhanced PubTabNet and

FinTabNet dataset, annotations give detailed information on

the logical structure as well as the location and contents of

each cell, similar to the ICDAR2013 competition. Very re-

cently, a new ICDAR2019 table competition was held with

not PDF files but images of document pages [4]. It contains

in total 80 documents for table structure recognition, in-

cluding both modern and handwritten archival documents.

They do not have a training set for modern documents, only

some for testing. Other existing datasets only contain table

boundary information [28, 31].

3. PubTabNet, FinTabNet

As shown above, there is a lack of large scale datasets

for cell structure recognition. To fill this gap, we designed a

novel method to automatically match PDF and HTML doc-

uments in order to generate a large and comprehensive ta-

ble recognition dataset. We collaborated with the authors

of PubTabNet to enhance the dataset with cell labels, which

was originally sourced from PubMed scientific articles. We

also worked with them to make a subset of PubLayNet and

PubTabNet such that each page has full table and cell infor-

mation, which we call PubXNet. To generate the cell struc-

ture labels, we use token matching between the PDF and

HTML version of each article. From the HTML, we know

the logical structure of the table cells and from the PDF,

we know the cell and table boundary location. PubTabNet

contains more than 568k tables and PubXNet contains more

than 24K pages.

On top of enhancing PubTabNet, we also created FinTab-

Net, which is a large dataset containing complex tables from

the annual reports of the S&P 500 companies. Financial ta-

bles often have very different styles when compared to ones

in scientific and government documents, with fewer graph-

ical lines and larger gaps within each table and more colour

variations. There are more than 70K pages with full ta-

ble bounding box and structure annotations (train/val/test=

61801/7191/7085) and more than 110k tables with cell

bounding boxes (train/val/test= 91596/10635/10656). The

test and validation split are retrieved at the company level

with 50 companies in each and companies were selected to

have a similar number of tables such that the test sets are

not biased towards a particular company.

4. Methods

As shown in Figure 2, our full GTE framework consists

of a series of vision-based neural networks. Each of the

main object detection networks use context from the output

of the other networks. The framework could be adapted to

any kind of object detector. The table boundary network

(GTE-Table) uses a cell detection network by leveraging

the fact that tables must contain at least some cells. The

cell structure recognition network (GTE-Cell) uses table

boundaries from the table boundary network(GTE-Table)

and table-level style information (Attributes Net).

4.1. GTE­Table

In the training stage, besides the regression and classifi-

cation loss, we add a piecewise constraint loss. It penalizes

the detection probability of unrealistic tables when consid-

ering cell locations. This novel cell constraint based loss

function may be added to any detection network. We for-

malize the terminologies of this section here. We make

the following definitions in Fig. 3. We used the guided

cell network to generate a set of cell bounding box(es)

Bcells = {bcell,i|i}. The cells are detected by a simpler

non-hierarchical version of our GTE-Cell network that is

trained on only original full-page document pages, without

knowing the location of the tables. Given Bcells, we define

two Boolean operators where inputs are an inner box(bibox)

and outer box(bobox), which define the boundaries of the
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Figure 2: Our full GTE Framework consists of several networks for table (GTE-Table) and cell (GTE-Cell) boundary de-

tection. The input is an image form of a document page for both sub-frameworks, but note GTE-Cell depends on table

boundaries output by GTE-Table to generate cell structures for each specific table.

Figure 3: Definition of Operators used in Sec 4.2.

mask input area:

C(bibox, bobox) =
{

SLC(M(Bcells), bobox)

− SLC(M(Bcells), bibox)
}

<
{

α · (A(bobox)−A(bibox))
}

D(bibox, bobox) =
{

SLC(M(Bcells), bobox)

− SLC(M(Bcells), bibox)
}

> 0

Where C is true if the area covered by the cells between

bobox and bibox is at most α times the area of the bobox minus

area of the bibox. D is true if any cells exist in the area

between bibox and bobox. The penalty indicator I(btbl) is

defined as

I(btbl) =C((0, 0, 0, 0), btbl) ∨ C(S(btbl, µ1), btbl)∨

D(S(btbl, µ2), S(btbl, µ3)) ∨ C(U(btbl, µ4), btbl)

The penalty indicator is true when any of the following con-

ditions are true:

• C((0, 0, 0, 0), btbl) : Less than α of the whole table has

cells.

• C(S(btbl, µ1), btbl) : Less than α of the area just inside

the table has cells.

• D(S(btbl, µ2), S(btbl, µ3)): The area just outside of

the table contains any cells.

• C(U(btbl, µ4), btbl): Less than α of the area at just in-

side the bottom of the table has cells.

Then the constraint loss(CL) is

Btbl
∑

btbl

I(btbl)P (btbl) + γ1(1− I(btbl))(1− P (btbl)) (1)

where P (·) is the table detection probability function. We

choose µ1 = −5, µ2 = 5, µ3 = 10, µ4 = −10, α = 1/8,

γ1 = 1/10 in our experiments. Additionally, one of the

input image channels to the table network is replaced with

a mask generated from the prediction of cells to further aid

training.

In the inference stage, instead of the widely used

non-max suppression, our ranking of proposed bounding

boxes not only consider detection probabilities, but also

the presence of cells inside and outside the table. We

define Constraint Coefficient(CCoef) for each bounding

box, whereCCoef(btbl) = SLC(M(Bcell), S(btbl, µ5))−
SLC(M(Bcell), btbl) − γ2 · (SLC(M(Bcell), btbl) −
SLC(M(Bcell), S(btbl, µ6))). For each boundary of the

table bounding box, we calculate the amount of cells just
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outside subtracted by the amount of cells just inside the ta-

ble. For any pair of bounding boxes bi, bj overlapped with

each other more than δ%, and |P (bi) − P (bj)| < ǫ, we

discard the bounding box with higher CCoef . We choose

µ5 = −20, µ6 = {0.25 ∗ (x2 − x1), 0.25 ∗ (y2 − y1)},

γ2 = 0.1, ǫ = 0.1, δ = 25 in our experiments. The hyper-

parameters are described in more details in Supplemental

material. Here it suffices to say that they are chosen, in

a straightforward way, based on characteristics of tables in

typical documents; to give some intuition of the concrete

values, in the above, a value of 5 reflects half of the height

of a character (10 pixels), while 20 corresponds to two lines

of text.

4.2. GTE­Cell

Tables in the real world often adhere to a global style

that determines the rules and meanings of its components.

For example, there are some tables that have visible verti-

cal and horizontal ruling lines for every row and column,

easily defining cell boundaries. However, there are other

styles that have no ruling lines or only intermittent breaks.

In such a case, a model that only looks at its local surround-

ings, such as most object detection networks, would not be

able to ascertain whether a ruling line represents the start of

a new cell. Empirically, we also found that mixing different

styles of tables in training worsens model performance on

some data, even though this used more training data. In our

framework, we first train an attribute network aimed at clas-

sifying the presence of vertical graphical ruling lines in the

table. The output of this network determines which of two

cell detection networks is used, which were trained with dif-

ferent augmentation schemes. The “no lines” scheme erases

all existing graphic lines and “full boundaries” adds in ver-

tical and horizontal boundaries for every row and column

at the median point between cells. The network specialized

on tables with graphical lines is trained on the original plus

“full boundaries” data while the other network is trained on

the original and all augmentations.

To convert the bounding box output into a logical struc-

ture, we first align cell boxes to text lines as extracted

from the PDF. Then, we determine the number of rows and

columns by sampling in the vertical and horizontal direc-

tions, respectively. Before sampling in the vertical direc-

tion to determine the number of rows, we expand the left

and right edges of cells while it is not overlapping with ex-

isting cells, to account for rows with missing cells. If there

are graphical lines available, we ensure that the number of

rows or columns detected are at least equal to the number

of unique inner lines plus one. Then, we infer the verti-

cal and horizontal alignments of the table by which edge

of the cell box has the best alignment with other cells. We

use K-means clustering on cell bounding box coordinates

to define row and column locations. Then, we assign row

and column positions to each cell based on their box loca-

tions, merging cells when necessary. Finally, we leverage

the fact that cell content generally starts with a capital let-

ter. Therefore, cells that start with a small case is likely a

case of over-splitting. We merge these cells with the cell

above. Also, we perform some post-processing steps. This

includes assigning locations to leftover text boxes that were

not overlapping with any detected cells and we split cells

in certain cases when there are gaps nearby. Before pro-

ducing the final logical structure of each cell in the table,

we increase the row and column span of cells when the text

box intersects with neighboring empty rows or columns as

this is likely a hierarchical cell spanning multiple rows or

columns. Our clustering-based algorithm is more efficient

than a greedy or exhaustive search method that selects each

cell sequentially. As well, many of our steps are designed

to be robust against cell detection errors. For more details,

see Algorithm 1 in the supplementary material.

5. Experiments

5.1. Datasets

We perform extensive experiments on both the table de-

tection and cell structure recognition tasks in the widely

used ICDAR2013 table competition [8]. This dataset is

considered as a standard benchmark dataset in PDF table

extraction. It contains 96/156 tables for training/testing col-

lected from European Union and US Government reports.

Since the in-domain dataset is very small, pretraining the

model on other datasets is required. For table detection, we

pretrain the model on the combination of TableBank([18])

and PubTabNet; For cell structure recognition, we pretrain

the model on PubTabNet.

We also conduct additional experiments on ICDAR2019

as well as the PubTabNet and FinTabNet datasets.

5.2. Evaluation Metrics

For ICDAR2013, We use the official evaluation script of

ICDAR2013 table competition [8]. For ICDAR 2013 table

detection, the metrics are character-level Recall (Rec.), Pre-

cision (Prec.) and F1-measure op(F1), averaged per docu-

ment, along with Purity (Pu) and Completeness (Cpt). Con-

sider N is the set of test documents, then they are defined

as follows:

Pu =
∑

n∈N

⌊Rec(n)⌋ Cpt =
∑

n∈N

⌊Prec(n)⌋

For cell structure recognition, the metrics are precision,

recall and F1-measure for generated adjacency matrices.

Additional details are available in [7] and [8].
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(a) (b) (c) (d)

Figure 4: (a) Correct detection (b) Partial under-detection (c) Mis-detection (d) Over-detection

Table 1: Table Detection Percent Results on ICDAR2013. We also provide purity and completeness scores when available.

There are a few other methods[30, 14, 16] that could not be compared directly in this table as they are using a measure based

on Intersection-over-union(IOU) where the IOU threshold=0.5. Our method achieves F1=0.997 by this measure, which is

higher than reported by the other methods. We observe the character-based measure computed by the competition script

better measures table quality than a measure based on IOU threshold of 0.5, since the latter counts as correct for predictions

capturing only half of a ground-truth table which have little practical use. Also, [23, 26] used different train/test split from

the original competition without publishing their split and so cannot be compared directly. For brevity, we present only the

highest performing method in each category. The full table is in the supplement

Category Method Input type Recall Precision F1 Cpt Pu

Commercial Softwares FineReader PDF 99.71 97.29 98.48 142 148

Non Deep Learning Nurminen[8] PDF 90.77 92.10 91.43 114 151

Deep Learning TableBank [18] Image / / 96.25 / /

Ours GTE Image 99.77 98.97 99.31 147 146

Ablation
Detection-Base Image 84.64 90.65 84.65 68 97

GTE-Table-Sep Image 95.71 98.18 95.71 140 150

5.3. Experimental Setup

5.3.1 Training and Inference Details

We leverage TableBank and PubTabNet table boundary to

pretrain the object detection network before fine-tuning

on the ICDAR train set for the table boundary detec-

tion task[20]. We use the architecture of RetinaNet with

Resnet50-FPN backbone as our base object detection model

[20, 19]. We use resolution of 643 by 900 for tables, and

965 by 1350 for cells, as cells need higher resolutions to

distinguish. We redesigned the feature pyramid network for

tables and cells such that there are fewer detection layers

than a typical object detection network but this allows for

finer-grained anchor boxes for cells and larger object boxes

for tables without sacrificing computational efficiency. We

add anchors with aspect ratio 0.1 and 0.25 for each feature

map to catch commonly appearing wide tables and cells.

In the cell network, since the objects are really dense, we

use anchors of sizes 0.5, 0.7, 1, 1.2, 1.6 of the set of as-

pect ratio anchors. We add additional smaller scale anchors

because many cells are much smaller than the anchors. In

the table network, we run each page at test time at multi-

ple zoom scales to help improve detection of abnormally

small or large tables. All the object detection models in

GTE are initialized with the parameters pretrained on MS

COCO dataset [21].

5.4. Experimental Results

5.4.1 Table Detection

As reported in Table 1, GTE-Table achieves the best

character-level F1 measure among all methods. Although

FineReader slightly outperforms GTE on purity, the higher

F1-measure for GTE indicates GTE produces higher qual-

ity boundaries closer to ground-truth. Since the purity met-

ric penalizes all incorrect table boundaries equally, it does

not provide “partial-credit” for almost correct answers in
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the same manner as character F1-measure for cases where

the predicted boundary only includes a few extra charac-

ters. Figure 4 shows some correctly detected table bound-

aries as well as some failures. In general, we see three types

of errors, partial under-detection, where some parts of the

ground truth table is missing, partial over-detection, where

some text outside of the ground truth is mistakenly included

and mis-detection, where a non-table entity such as a chart

was misidentified as a table. We do not see any cases of

table non-detection in our ICDAR2013 test results and only

one case of mis-detection. Overall, most partial detections

are only missing or adding one or two extra lines, such as a

short captions in the table.

5.4.2 Table Detection Ablation Study

As shown by the additional experimental results in Table 1,

the base detection network trained to perform the cell and

table detection task simultaneously (Detection-base) per-

forms far worse than the more specialized networks. There

are two main reasons behind this. First, TableBank data

cannot be leveraged when pretraining the networks because

it lacks cell bounding boxes annotations [18] so it is only

trained of PubTabNet and finetuned on ICDAR training

data. Second, tables and cells are of two completely dif-

ferent scales where it is hard to choose an appropriate res-

olution to generate anchors fitting the two scales. On the

other hand, it is still important for the cell network and ta-

ble network to leverage each other’s information, as shown

by the nearly 3% boost in F1 accuracy as compared to the

regular object detection losses (GTE-Table-Sep) that do not

use information from other networks.

5.4.3 Cell Structure Recognition

Figure 5: Partial cell detections with correct cell structure

As reported in Table 2, GTE-Cell outperforms all previ-

ous methods and commercial software in all metrics even

without using any PDF encodings (ruling lines, rendering

techniques, etc). All results are from cell detection on out-

puts produced from table detection by each framework, not

the ground truth table. When analyzing the qualitative re-

sults in Figure 5, we see cell boundary detection often gen-

erates a detection box that is too short for very long lines of

text. This is a key limitation of the anchor-based object de-

tection system, which has difficulties with aspect ratios dif-

fering greatly from ones in the configuration. As well, in the

case of tables without graphical lines at every row and col-

umn, the model may mistakenly merge multiple cells into

one. In many cases, our post-processing boundary to struc-

ture algorithm is robust to some of these mistakes are still

able to generate a correct or nearly correct structure out-

put. We see three main types of detection errors that can

lead to incorrect structure output. There are overmerged cell

detection, where two or more cells are incorrectly merged

together, oversplit cell detection, where one cell has been

incorrectly split into multiple cells and cell non-detection,

where there is no predicted bounding box that includes such

a cell. These errors can lead to a number of inaccuracies in

the boundary to cell structure process, including incorrect

number of rows and columns, alignment and of course final

cell location assignment as well. Examples of such errors

are in the supplementary material.

5.4.4 Cell Structure Ablation Study

Table 2: Cell Structure results on ICDAR2013 show that

GTE improves previous state-of-the-art in cases where the

ground truth table border (GT?) was and was not used.

For brevity, we are only presenting the highest performing

method in each category. The full table is in the supplement.

Method GT? Rec. Prec. F1

Nurminen[8] N 80.78 86.93 83.74

GTE N 92.72 94.41 93.50

Tensmeyer[33] Y 94.64 95.89 95.26

GTE Y 95.77 96.76 96.24

Detection-Base Y 76.66 80.63 78.10

GTE-Cell-Style-Mix
Y 89.78 89.30 89.43

-no-pt

GTE-Cell-Style-Mix Y 92.39 94.20 93.15

GTE-Cell-Border Y 91.60 93.67 92.48

To analyze our GTE-Cell network further, we compare

the several variations in Table 2 using ground truth table

borders. Firstly, the baseline detection network (Detection-

Base) that performs both cell and table detection has very

poor recall and precision. For networks specialized for cell

detection, we see that the model pretraining on the Pub-

TabNet dataset gives a boost when compared to GTE-Cell-

Style-Mix-no-pt. We also test each of the sub detection

networks (GTE-Cell-Style-Mix for the network trained on
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all augmentations and GTE-Cell-Border trained on origi-

nal and graphical line augmentations). The full hierarchi-

cal model GTE-Cell-Hierarchical performs better than both

individual sub-models, showing that it is indeed helpful to

first determine the style of the table and then use the model

trained on data most similar to it. Out of 156 total test ta-

bles in ICDAR2013, there are 108 with at least some verti-

cal graphical lines (69.23%). To note, our attributes network

(graphical line table classifier) was correct in 123 out of 156

tables (78.84%). The errors generally come from very small

tables or tables with vertical graphical lines that only span

the header, which is an ambiguity also present in the train-

ing data. To help mitigate this error, during the row and

column sampling step, we keep track of the standard devi-

ation of the sampling points. If this value is high, it likely

indicates that the cell detection model used was not suitable

for the given table as tables tend to have similar number of

columns and rows throughout, thus we would then use the

alternate cell model.

5.4.5 Experiments with Additional Datasets

To demonstrate the robustness of our network on more com-

plex tables and ones outside of the training data domain,

we tested the same model on ICDAR2019, PubTabNet, and

FinTabNet (Table 3). For ICDAR2019 table border task

(Table 4), our score is comparable to the top method. How-

ever, it can be difficult to really differentiate as we found

that many of our table detections are correct but the anno-

tations themselves are inconsistently including or exclud-

ing whitespace. Therefore, we believe that the IOU=0.9

measure is not reliable without determining the amount of

text correctly included. We also adapt our model output for

task B2 for modern documents (trained on FinTabNet as no

training data is provided) to demonstrate our full recogni-

tion system and we show significant improvements to both

the competition top-performer as well as more recent re-

sults(Table 5). We believe that the IOU at lower thresholds

is a more accurate measure for this task similar to our rea-

soning for table border as we found that many of our struc-

ture is exactly correct when looking at the text extracted

but is shown as 0 at IOU=0.9 as the small text boxes are a

bit shifted from the label without cutting off any text so we

show results for IOU=0.1 as well. Examples of this ambi-

guity is displayed in the supplement.

For PubTabNet and FinTabNet data, we use TEDS scor-

ing (see details in [36]) to be consistent with the original

PubTabNet paper. However, these numbers are not directly

comparable as our results are on the PDFs from the valida-

tion set. The test set has not been made available. Addi-

tionally, we noticed that the original dataset inconsistently

included bolding and italics that are not in the original table

image, we therefore modified the original evaluation script

to ignore these styling tags. Nevertheless, our TEDS of

93.01 compares well to the original score of 88.38. We

also show good table and structure recognition scores on

our new FinTabNet dataset both in cases where the model

was and was not finetuned. It performs much better than

the detection-base, showing that our model improvements

transfer to other document domains.

Table 3: Table detection and structure results on scientific

paper PubTabNet (PTN) and out-of-domain financial filings

FinTabNet (FTN) before and after finetuning (FT?).

Dataset Method Task FT? Table F1 TEDS

PTN GTE Structure Y NA 93.01

FTN Det-Base Table N 81.17 NA

FTN GTE Table N 89.97 NA

FTN GTE Table Y 95.29 NA

FTN Det-Base Structure N NA 41.57

FTN GTE Structure N NA 87.14

FTN GTE Structure Y NA 91.02

Table 4: Table detection results ICDAR 2019 competition.

Method
IOU = 0.8 IOU = 0.9

Weighted F1
P R P R

NLPR-PAL [4] 93 93 86 86 93

TableRadar[4] 95 94 90 89 94

GTE 96 95 90 89 94

Table 5: Cell structure results for ICDAR 2019 competition

Task B2-Modern.

Method
IOU

Weighted F1
0.1 0.5 0.6

NLPR-PAL [4] - 36.5 30.5 20.6

CascadeTabNet[23] - 43.8 35.4 23.2

GTE 77.5 54.8 38.5 24.8

6. Conclusion and Future Work

In summary, we have demonstrated a vision based table

extraction framework with state-of-the-art results. It can

perform the full pipeline of table recognition, from docu-

ment to table structure, which can be used easily for down-

stream analysis. Our framework leverages the global vi-

sual context of tables, including the style and rules in the

relationship between cells and tables. As well, we have

released the enhanced PubTabNet dataset and will release

FinTabNet, which we hope will help others using data hun-

gry methods to tackle table-related problems. Our vision

based method is very easily merged with Optical Character

Recognition (OCR) methods to perform table recognition

fully from images.
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