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DIP [8] MEDS [2] DIP [8] + CL InGAN [7] DCIL [3] DeepCFL (ours)

Framework
Design

Encoder-decoder
framework.

Multi-level
extension of
encoder-decoder
framework.

Encoder-decoder
framework with
the contextual loss
(CL).

Single image GAN
framework for in-
ternal patch distri-
bution learning.

Single image GAN
framework for inter-
nal patch distribution
learning with contex-
tual loss.

Single image GAN
framework for learn-
ing the distribution of
contextual features.

Target Appli-
cation.

Image restoration. Image restoration. Image restoration. Image synthesis. Image restoration and
image synthesis.

Image restoration and
image synthesis.

Non-aligned
image data

applications.

No. Pixel to pixel
comparison.

No. Pixel to pixel
comparison.

Yes. The
contextual loss

compares image
statistics at VGG
features space.

Yes. Cycle
consistency loss.

Yes. Cycle
consistency loss.

Yes. Cycle consis-
tency loss.

New object
synthesis.

No. It lacks new
object synthesis
abilities of GAN

framework.

No. It lacks new
object synthesis
abilities of GAN

framework.

No. It lacks new
object synthesis
abilities of GAN

framework.

Yes. But it may not
preserve the context

of the object as
described in [7].

Yes. It preserves
better object context

as shown in [3].

Yes. It preserves
object context well,
as shown in Fig. 6
and Fig. 8 of the
manuscript.

Table 1: In this table, we give a summary of single image deep features learning methods. DIP [8] and MEDS [2] perform well for
image restoration, but they lack the image synthesis abilities achievable using the GAN framework. DIP [8] and MEDS [2] frameworks
compute pixel-based loss. Therefore, they might not apply to non-aligned image data applications. DIP with contextual loss (DIP + CL)
computes the MSE loss and contextual loss. The cycle consistency loss would provide the scenario of non-alignment, where the pixel
correspondence between the source and the target images is not well defined, for example, content-aware image resizing. Fig. 6 and Fig. 8
of the manuscript show new objects synthesis using single image GAN models: InGAN [7], DCIL [3], and DeepCFL. DCIL [3] perform
image restoration by denoising-super resolution. DeepCFL performs image restoration when the input image has missing pixels corrupted
by the binary mask (e.g., outpainting).

In this supplementary material, we discuss the DeepCFL
framework. We also give detailed visual comparisons and
quantitative comparisons for the generated images.

1. DeepCFL Framework

We have illustrated the DeepCFL framework (ours) in
Fig. 2 of the main paper. In this supplementary mate-
rial, we discuss the generator G and discriminator D ar-

chitectures. The generator is an encoder-decoder network
as shown in Fig. 1. Encoder-decoder has been reported to
capture good quality low-level image statistics from the in-
put image [2, 8]. The multi-scale discriminator shown in
Fig. 2 consists of three discriminators which do not share
the weights. The input to D is an image that could be the
real image or the output of the generator. We feed the input
image to VGG19 φ to extract the context vectors. We use



Figure 1: Generator Network. The figure shows
the generator network G(·) of DeepCFL. It is an
encoder-decoder network which is used to perform im-
age restoration and image synthesis. The encoder net-
work encodes the image features to smaller feature rep-
resentations, and the decoder performs the reconstruc-
tion from the encoded representation.

Figure 2: Discriminator architecture. In this figure, we have shown
the multi-scale discriminator D of DeepCFL. It consists three discriminators
{D1,D2,D3}. Each discriminator in {Di}3i=1 is operating at the different scales
of the context vectors. Here, {w1, w2, w3} are the coefficients of the discrimina-
tor. The final output is a discriminator map µ, where each entry in µ denotes the
probability of the context vector coming from the distribution of the contextual
feature of the original image.

Figure 3: Image resizing. The figure shows new objects creations when performing image resize using DeepCFL. The input
images are in red color frame.

the features present at conv 4 2 layer of VGG network φ.
In Table 1, we summarize different frameworks for

deep features learning from a single image. DIP [8] and
MEDS [2] are based on the pixel-to-pixel loss. Mechrez
et al. have shown that pixel-to-pixel loss is not applicable
for non-aligned image data applications [5]. Internal patch
distribution learning performs a patch-based comparison.
Therefore is applicable for non-aligned image data appli-
cation, e.g., image retargeting. Our DeepCFL makes the
contextual features comparison. Therefore, it also applies
to a non-aligned image data application. We have shown
content-aware image resizing where the input source image

and the target out image does not have a well-defined pixel
correspondence).

2. Perceptual Loss and Contextual Loss

We now highlight the interesting difference between per-
ceptual loss (PL) and context vector loss (CVL). Suppose
two images denoted by x and y. Also suppose feature ex-
tractor VGG19 denoted as φ. Let φ(x) = {φl(x)}kl=1 de-
note the features extracted from the k layers of φ. Sim-
ilarly, φ(y) = {φl(y)}kl=1 denotes the features of y at



the VGG19 feature space. For simplicity, consider the
layer l of φ(x) and φ(y) contains N feature vectors, i.e.,
φl(x) = {φl(x)i}Ni=1 and φl(y) = {φl(y)i}Ni=1.

The perceptual loss (PL) for the layer l is defined in
Eq. 1.

PL(x, y, l) = ‖φl(x)− φl(y)‖. (1)

Here, we can observe that the perceptual loss would be com-
puting the direct difference between feature vectors φl(x)i
and φl(y)i.

The context vector loss (CVL) is computed between
the context vectors extracted from the features extractor
VGG19 φ. The context vectors represent content informa-
tion present at the higher layers (e.g., conv4 2) of φ. CVL
is defined in Eq. 2.

CV L(x, y, l) = − log(CX(φl(x), φl(y))). (2)

Here, CX is computed by finding for each feature φl(y)j ,
a feature φl(x)i that is most contextually similar to it and
then summed for all φl(y)j (Eq. 5 of the manuscript). CX
is given in Eq. 3.

CX(φl(x), φl(y)) =
1

N

∑
j

max
i

CXij (3)

Here, CXij is the similarity between the context vectors
φl(x)i and φl(y)j . The contextual similarity CXij is com-
puted by using the cosine distance between feature vectors
φl(x)i and φl(y)j [5].

It is interesting to note that the perceptual loss does not
use the contextual similarity criterion. Therefore, PL will
be comparing the different pairs of image features as com-
pared to the pairs of features in CVL.

3. InGAN Implementation.

We have implemented the internal learning of InGAN [7]
for the restoration of missing pixels. We have not used the
cycle consistency due to the following reason. Cycle con-
sistency would first take input as the corrupted image and
generate the restored image, and the next task is to use
the restored image and generate a corrupted image (cycle
consistency). Generating the corrupted image from the
restored image would make the network to learn the cor-
rupted features. Therefore, the cycle consistency would
not be useful for image restoration [3]. We have used the
encoder-decoder network without skip connections as the
generator. We have not used the residual blocks in the gen-
erator. It is done to incorporate the generator architectures
from the state-of-the-art image restoration methods in the
implementation [2, 8].

4. Results.
Here, we provide additional figures and the tables for

various applications described in the manuscript. We em-
phasize that single image deep features learning is sensitive
to hyper-parameters search [2,8]. Therefore, we believe that
the results of our method and the methods in the compari-
son could be further improvised using the hyper-parameter
search.
• Ablation Study. Fig. 4 shows the ablation study that

increasing the number of layers in the features extrac-
tor VGG19 improvised the restoration of image pixels.
Moreover, using features from more layers will be com-
putationally heavy. One trick is to sample a collection of
features randomly [5]. The scope of DeepCFL is limited
to the contextual features present in conv4 2 layer. We
propose as future work to study the single image GAN
framework with randomly sampled the context vectors
for the restoration of missing pixels.

• Image Resizing. We have provided more results for the
synthesis of new objects when performing image resize
in Fig. 3. The content-aware image resizing is performed
by considering the input height and width to be a multiple
of 128. It could be observed that the single image GAN
framework synthesize new objects features when per-
forming the image resizing. We first performed the image
resizing and then do the post-processing of the synthe-
sized output using the style transfer similar to DCIL [3].
The resized image is taken to be the content image, and
the input image is taken to be the style image. Post-
processing reduces the number of iterations and makes
the output image’s style features consistent with the in-
put image.

• Outpainting. We have provided detailed quantitative
comparison for image outpainting in Table 2, Table 3,
Table 4, Table 5, and Table 6. We observed that the im-
age features could be fine-tuned by matching the patches
from the corrupted input. Therefore, for outpainting,
we perform the post-processing using deep image anal-
ogy [1].

• Inpainting. We have provided a detailed quantitative
comparison in Table 7 and Table 8. The visual compari-
son is provided in Fig. 11.

• Restore WC 50%. We have shown the restoration of
missing pixels in the presence of the word cloud image
with the increasing number of iterations in Fig. 5. The vi-
sual quality comparison for the generated images is pro-
vided in Fig. 12 and Fig. 13. We provide a detailed quan-
titative comparison of the generated images in Table 9
and 10.

• Restore 90%. We have shown the restoration of missing
pixels with the increasing number of iterations in Fig. 6.
The input image contains only 10% pixels and 90% pix-



(a) Original image (b) Corrupted image (c) DeepCFL
“Conv4 2 layer”

(31.14, 0.96)

(d) DeepCFL
“Conv3 4 & Conv4 2 layers”

(31.18, 0.97)

Figure 4: Ablation Study. The figure shows that increasing the number of layers for feature comparison using features
extractor VGG19 improves performance. It could be observed that the output (d) having Conv3 4 and Conv4 2 layers
achieved higher PSNR and SSIM values than the output (c) having only Conv4 2 layer.

Corrupted Input 1000 2000 3000 4000 5000

6000 7000 8000 9000 10000

Figure 5: The figure shows the restoration of wordcloud in the corrupted image with the increasing number of iterations for Fig. 7 of the
manuscript.

House Peppers Lena Baboon F16 Kodak-1 Kodak-2 Kodak-3 Kodak-12 Avg
DIP [8] 0.94 0.89 0.92 0.89 0.94 0.89 0.96 0.88 0.94 0.91

DIP + CL 0.86 0.94 0.93 0.91 0.91 0.87 0.94 0.93 0.95 0.91
MEDS [2] 0.89 0.92 0.91 0.92 0.88 0.88 0.94 0.91 0.93 0.91
InGAN [6] 0.94 0.88 0.91 0.88 0.93 0.89 0.95 0.94 0.95 0.92
DeepCFL 0.95 0.90 0.93 0.88 0.95 0.88 0.94 0.91 0.94 0.92

Table 2: Image Outpainting. A detailed quantitative comparison (SSIM values) for outpainting of 20% missing pixels.

els are corrupted. We provide more perceptual quality
comparison in Fig. 14 and Fig. 15. We provide a detailed
quantitative comparison for Restore 90% in Table 11.

• Table 12 shows the size of the image used in our experi-
ments.



Corrupted Input 1000 2000 3000 4000 5000

6000 7000 8000 9000 10000

Figure 6: The figure shows the restoration of missing pixels in the corrupted image with the increasing number of iterations (Fig. 13 of
the manuscript).

House Peppers Lena Baboon F16 Kodak-1 Kodak-2 Kodak-3 Kodak-12 Avg
DIP [8] 24.51 20.16 21.72 24.13 22.43 23.69 30.03 22.02 24.88 23.73

DIP + CL 24.17 22.64 27.67 21.75 21.35 22.47 25.15 22.74 28.87 24.09
MEDS [2] 23.78 21.17 19.71 21.19 18.86 23.32 25.48 20.24 21.55 21.70
InGAN [6] 24.52 18.15 20.04 18.29 23.28 23.76 27.36 24.87 25.76 22.89
DeepCFL 24.84 20.61 22.35 24.09 25.19 23.46 29.79 22.52 24.36 24.13

Table 3: Image Outpainting. A detailed quantitative comparison (PSNR values) for outpainting of 20% missing pixels.

01 02 03 04 05 Avg
DIP [8] 0.89 0.90 0.88 0.86 0.87 0.88

MEDS [2] 0.90 0.87 0.86 0.90 0.89 0.88
InGAN [7] 0.92 0.88 0.86 0.89 0.88 0.89
DeepCFL 0.91 0.88 0.87 0.92 0.92 0.90

01 02 03 04 05 Avg
DIP [8] 13.20 22.11 18.66 22.23 18.96 19.03

MEDS [2] 16.4 20.35 17.54 22.85 19.65 19.35
InGAN [7] 20.22 21.13 18.04 20.01 17.05 19.29
DeepCFL 18.09 21.81 19.43 26.83 21.35 21.50

Table 4: Detailed PSNR comparison for outpainting on images from Set5 dataset.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 Avg
DIP [8] 0.85 0.87 0.88 0.90 0.89 0.88 0.90 0.89 0.91 0.87 0.93 0.88 0.94 0.9 0.89

MEDS [2] 0.87 0.88 0.87 0.90 0.86 0.92 0.90 0.90 0.91 0.86 0.89 0.89 0.87 0.87 0.89
InGAN [7] 0.86 0.86 0.87 0.91 0.86 0.90 0.89 0.92 0.90 0.86 0.89 0.88 0.93 0.89 0.89
DeepCFL 0.86 0.87 0.87 0.90 0.87 0.92 0.91 0.92 0.92 0.88 0.92 0.89 0.94 0.90 0.90

Table 5: Detailed SSIM comparison for outpainting on images from Set14 dataset.

01 02 03 04 05 06 07 08 09 10 11 12 13 14 Avg
DIP [8] 23.15 22.13 23.23 21.61 21.61 23.92 23.16 21.12 22.99 19.54 21.88 20.19 21.75 23.41 22.12

MEDS [2] 22.35 20.94 21.87 19.42 18.54 23.07 23.53 19.5 20.85 19.88 21.92 19.84 11.8 19.9 20.24
InGAN [7] 20.51 20.08 21.47 22.89 20.72 20.74 24.24 22.20 20.31 18.77 22.03 18.41 21.63 22.66 21.19
DeepCFL 22.46 20.71 22.13 20.29 20.43 24.99 24.96 21.58 23.42 21.05 24.33 20.55 22.03 26.48 22.52

Table 6: Detailed PSNR comparison for outpainting on images from Set14 dataset.



(a) Original (b) Masked (c) DIP [8] (d) DIP + CL (e) MEDS [2] (f) InGAN [7] (g) DeepCFL

Figure 7: Outpainting results on standard data set.



(a) Original (b) Masked (c) DIP [8] (d) MEDS [2] (e) InGAN [7] (f) DeepCFL

Figure 8: Outpainting results on set 14 data set - I.



(a) Original (b) Masked (c) DIP [8] (d) MEDS [2] (e) InGAN [7] (f) DeepCFL

Figure 9: Outpainting results on set 14 data set - II.

Baboon F16 House Lena Peppers Kodim01 Kodim02 Kodim03 Kodim12 Avg
DIP [8] 0.87 0.92 0.93 0.97 0.90 0.80 0.89 0.91 0.90 0.90

MEDS [2] 0.88 0.91 0.92 0.95 0.87 0.78 0.86 0.88 0.89 0.88
InGAN [7] 0.88 0.91 0.94 0.96 0.89 0.79 0.88 0.90 0.90 0.89
DeepCFL 0.89 0.93 0.95 0.96 0.91 0.80 0.89 0.91 0.91 0.91

Table 7: Detailed SSIM comparison for Inpainting.

Baboon F16 House Lena Peppers Kodim01 Kodim02 Kodim03 Kodim12 Avg
DIP [8] 24.86 26.13 28.89 31.36 24.39 24.05 24.71 26.68 24.45 26.16

MEDS [2] 24.99 21.32 26.34 29.20 22.46 22.82 25.05 25.45 26.08 24.85
InGAN [7] 25.24 24.08 27.67 31.22 23.10 21.94 26.81 26.03 26.80 25.87
DeepCFL 26.04 22.56 28 31.14 22.96 24.22 26.02 26.2 27.39 26.05

Table 8: Detailed PSNR comparison for Inpainting.



(a) Original (b) Masked (c) DIP [8] (d) MEDS [2] (e) InGAN [7] (f) DeepCFL

Figure 10: Outpainting results on set 5 data set.

Barbara Boat Cameraman Couple Fingerprint Hill House Lena Man Montage Peppers Avg
DIP [8] 0.93 0.89 0.88 0.94 0.96 0.93 0.96 0.93 0.87 0.94 0.92 0.92

MEDS [2] 0.93 0.92 0.93 0.93 0.96 0.92 0.95 0.95 0.92 0.92 0.92 0.93
InGAN [7] 0.88 0.92 0.93 0.91 0.93 0.91 0.94 0.95 0.93 0.93 0.93 0.92
DeepCFL 0.888 0.92 0.92 0.91 0.93 0.89 0.93 0.95 0.93 0.92 0.92 0.92

Table 9: Detailed SSIM comparison for Restore WC 50%.



(a) Original (b) Corrupted (c) DIP [8] (d) MEDS [2] (e) InGAN [7] (f) Ours

Figure 11: Visual comparison for Inpainting.



(a) Original (b) Corrupted (c) DIP [8] (d) MEDS [2] (e) InGAN [7] (f) Ours

Figure 12: Visual comparison for Restore WC 50%. Part I.



(a) Original (b) Corrupted (c) DIP [8] (d) MEDS [2] (e) InGAN [7] (f) Ours

Figure 13: Visual comparison for Restore WC 50%. Part II.

Barbara Boat Cameraman Couple Fingerprint Hill House Lena Man Montage Peppers Avg
DIP [8] 26.71 25.90 22.24 27.92 28.30 28.13 26.53 27.31 25.39 23.63 25.30 26.12

MEDS [2] 26.07 26.91 21.82 26.74 27.24 26.82 24.05 27.57 26.62 21.82 24.24 25.44
InGAN [7] 23.36 25.32 20.73 24.95 24.64 25.41 22.09 25.57 25.53 20.63 24.30 23.86
DeepCFL 24.24 26.78 23.44 26.83 25.64 26.70 22.61 28.15 26.97 22.50 21.90 25.06

Table 10: Detailed PSNR comparison for Restore WC 50%.

Barbara Boat Cameraman Couple Fingerprint Hill House Lena Man Montage Peppers Avg
DIP [8] 0.79 0.85 0.82 0.84 0.84 0.83 0.92 0.91 0.85 0.91 0.87 0.86

MEDS [2] 0.77 0.86 0.84 0.85 0.81 0.85 0.91 0.90 0.86 0.91 0.88 0.86
InGAN [7] 0.77 0.82 0.83 0.80 0.71 0.79 0.92 0.88 0.79 0.90 0.88 0.83
DeepCFL 0.78 0.82 0.83 0.81 0.73 0.80 0.92 0.90 0.83 0.89 0.89 0.84

Table 11: Detailed SSIM comparison for Restore 90%.



(a) Original (b) Corrupted (c) DIP [8] (d) MEDS [2] (e) InGAN [7] (f) Ours

Figure 14: Visual comparison for Restore 90%. Part I.



(a) Original (b) Corrupted (c) DIP [8] (d) MEDS [2] (e) InGAN [7] (f) Ours

Figure 15: Visual comparison for Restore 90%. Part II.



SI-1 SI-2 Set 5 Set 14
Baboon 256× 256 Barbara 512× 512 01 256× 256 01 256× 256

F16 256× 256 Boat 512× 512 02 256× 256 02 256× 210

House 256× 256 Cameraman 256× 256 03 256× 256 03 256× 256

Lena 256× 256 Couple 512× 512 04 256× 256 04 256× 209

Peppers 256× 256 Fingerprint 512× 512 05 179× 256 05 163× 256

Kodim01 384× 256 Hill 512× 512 06 256× 256

Kodim02 384× 256 House 256× 256 07 256× 188

Kodim03 384× 256 Lena 512× 512 08 256× 210

Kodim12 384× 256 Man 512× 512 09 256× 256

Montage 256× 256 10 256× 256

Peppers 256× 256 11 256× 171

12 256× 256

13 205× 256

14 256× 171

Table 12: The table show the size of the images used for our experiments. SI-1 denotes the standard images for region inpainting and
outpainting. SI-2 denotes the standard images for restoration of x% pixels.
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