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Abstract

Contextual information is a valuable cue for Deep Neu-
ral Networks (DNNs) to learn better representations and
improve accuracy. However, co-occurrence bias in the
training dataset may hamper a DNN model’s generalizabil-
ity to unseen scenarios in the real world. For example, in
COCO [26], many object categories have a much higher co-
occurrence with men compared to women, which can bias
a DNN’s prediction in favor of men. Recent works have
focused on task-specific training strategies to handle bias
in such scenarios, but fixing the available data is often ig-
nored. In this paper, we propose a novel and more generic
solution to address the contextual bias in the datasets by se-
lecting a subset of the samples, which is fair in terms of the
co-occurrence with various classes for a protected attribute.
We introduce a data repair algorithm using the coefficient
of variation(c,, ), which can curate fair and contextually bal-
anced data for a protected class(es). This helps in training
a fair model irrespective of the task, architecture or train-
ing methodology. Our proposed solution is simple, effective
and can even be used in an active learning setting where
the data labels are not present or being generated incre-
mentally. We demonstrate the effectiveness of our algorithm
for the task of object detection and multi-label image clas-
sification across different datasets. Through a series of ex-
periments, we validate that curating contextually fair data
helps make model predictions fair by balancing the true
positive rate for the protected class across groups without
compromising on the model’s overall performance. Code:
https:// github.com/sumanyumuku98/ contextual-bias

1. Introduction

Advancement in deep learning has mostly been model-
centric, ignoring what it is working with, i.e., the data. A re-

*Equal Contribution

Data
= Male ® Female Result of training model on Fairly Curated datz

;"’ff"""”'f

- Repair Selection
# Male 8 Female

;‘*"’ff ‘””‘”f /

Repair selection

Fair Selection(Ours)

Our Selection
 Male ® Female

/
1111111

b.f.\w"\f'f’jy’/ef

Figure 1. Bar plots in the left shows the count of men (blue) and
women (red) for different sports objects in COCO dataset. We pro-
pose to curate a fair data for a protected class (gender in this case)
across its co-occurring classes. As a result, the women which were
detected as men with skis, tennis and surfboard in the middle col-
umn are now detected as women with high confidence in the right
column, with only 20% of the training data. The left-middle and
left-bottom plots show the co-occurrence frequency after selecting
a subset using Repair[23], and our technique respectively.

cent study [30] reports that data is the most overlooked and
critical aspect of deep learning. By retraining the models
with well curated data can improve the quality of learning
in a much shorter time. Notably, large datasets are integral
to enhancing the generalization performance of deep learn-
ing models [44]. However, the challenge lies in annotat-
ing larger datasets, making them difficult to employ in the
real world. Moreover, if the data is inadvertently skewed,
the models will typically amplify the ill effects. Torralba
and Efros [44] pointed out that most datasets used for
benchmarking vision techniques contain unintended bias,
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which often gets amplified by deep learning-based models
[18, 38, 46]. Therefore, it is imperative for the training data
to be analyzed in order to uncover potential biases or unex-
pected distributional artifacts.

Semantic context among objects often serves as a valu-
able cue for scene understanding. Specific relations among
the objects help our mind to visualize a scene [5]. Sim-
ilarly, deep convolutional networks implicitly learn repre-
sentations encoding contextual relations between objects
that help in solving the underlying tasks [42, 4]. However,
unintended, and biased contextual relationships implicitly
learned by deep models can also lead to failure while de-
tecting objects outside their obvious context [32].

Contextual bias occurs when certain co-occurring,
but spuriously present/learnt relationships, influence the
decision-making of a DNN model. Wang et al. [45] have
identified that existing datasets suffer from contextually bi-
ased relations; for example, in MS-COCO, women occur in
more indoor scenes and with kitchen objects, whereas men
co-occur more with sports objects, and in outdoor locations.
Contextual bias like above may impact a model’s perfor-
mance in detecting an object with a protected attribute out
of its context, e.g., higher error in predicting women with
skis in an outdoor setting. While collecting new datasets
with reduced bias can be a solution, a more widely applica-
ble, and effective solution could be algorithmic curation of
existing datasets that lead to trained models which general-
ize well despite objects appearing in unseen contexts.

Recent works [36] have proposed algorithmic changes
to handle co-occurring bias in the dataset, which restricts
its scope to be re-integrated in every application. An al-
ternate approach for bias mitigation is to repair the train-
ing data before feeding it to a machine learning model [23].
These approaches only update the training set and can read-
ily be incorporated into any machine learning model: irre-
spective of its task or architecture, and by simply retraining
the model on the newly curated training set.

Dataset repair approaches are often criticized for possi-
ble data reduction due to re-sampling [36]. However, in
most dataset curation tasks, the bottleneck is often in the
data annotation and not the data capturing stage. It may
be prudent to capture a large dataset in these scenarios and
then resample a fair subset from it for annotation, using un-
supervised or active learning (AL) approaches. Even in the
scenarios where data capturing is costly, dropping samples
to repair the dataset may not always significantly deterio-
rate the model accuracy, as has been observed by recent AL
techniques [37, 1, 34]. Inspired by these advances in AL,
we argue that it is possible to devise a resampling strategy
that can maintain the model accuracy while substantially re-
ducing different sources of bias in a dataset.

Our resampling approach is inspired by the inequality
measures like the Generalized Entropy Index (GEI) used to

capture income inequality in populations [9]. Specifically,
we use a special case of GEI, the coefficient of variation
(cy) statistic, as a measure of inequality of representation
of co-occurring classes in the dataset. By following a sam-
pling strategy that minimizes this statistic in subsequent ac-
tive learning iterations, we demonstrate a reduction in co-
occurrence bias while maintaining the prediction accuracy.
Furthermore, we show additional results on different tasks
where the proposed sampling strategy can reduce prediction
bias. We summarize our contributions below:

1. We introduce a simple but effective data repair algorithm
to curate a fair dataset, free from contextual co-occurring
bias, using coefficient of variation (c,). Our curation al-
gorithm is shown to be effective in both supervised and
unsupervised settings.

2. Inasupervised setting, we show that our fair selection al-
gorithm achieves c¢,, value of almost 0, thus reducing the
representational bias and improving model performance
over the baselines techniques [406, 23, 25, 10, 36].

3. In an unsupervised setting, we experiment in the active
learning configuration and show improvements over the
recent state of the art AL techniques [I, 34, 7, 28] in
selecting fair subsets and learning fair models.

4. We validate the generalizability of models trained on
fairly curated data through a series of different experi-
ments and cross-data evaluation.

2. Related Work

Identifying Bias in Datasets: Bias in the datasets is be-
ing studied for a while, especially in the field of NLP [39,

, 24]. Torralba and Efros [44] pointed out similar risks
in visual datasets. As a solution, Datasheets for Datasets
[14] was proposed, which encouraged the dataset creators
to follow a certain protocol while collecting data. In re-
cent work [45], the authors propose a tool that investigates
bias in a visual dataset based on the object, gender and geo-
graphic locations. Wilson et al. [50] have also identified the
demographic stereotype learned by object detectors, show-
ing higher error rate for detecting pedestrians with darker
skin tones. As reported in [52], ImageNet, one of the most
popular and largest vision datasets also suffers from bias,
where the authors examined the ImageNnet person subtree
and its demographic bias. While some forms of bias can
be discovered by analysing raw datasets, it is more diffi-
cult to identify bias inherited by deep learning models dur-
ing training, e.g., representational bias. In this work we fo-
cus on contextual bias, which we define as representational
bias arising from a skewed distribution of co-occurring ob-
jects. Recent works [36] have also identified co-occurring
bias between a pair of classes, and using class activation
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maps to improve the model’s performance in identifying co-
occurring object exclusively, i.e., out of its typical context.
In this paper, we propose a data sampling technique that is
effective in reducing bias for multiple co-occurring objects.

Mitigating Bias: Previously, linear models have been pro-
posed to mitigate the bias in several ML algorithms [54, &,

]. More recently, there is a shift towards reducing model
bias in an end-to-end manner [22, 23, 46, 52, 3, 55, 47, 41,

, 15, 51]. Among these, approaches relying on resam-
pling of data to reduce bias remain scarce, with works often
criticizing them with claims that balancing data results in
bias amplification [46] . However, REPAIR [23] has intro-
duced a sampling technique based on the weight assigned to
each sample to reduce representational bias and also showed
increase in the model performance. We argue that a well-
designed curation technique can be an effective solution for
the problem of dataset bias.

Active Learning: AL techniques help select the most un-
certain samples which can be annotated to reduce the an-
notation cost and achieve the best performance with limited
data. Various AL scenarios like pool-based [49, 20, 37, 53].
query-based [13, 48] selection have been proposed. More
recent works [1, 37, 53] have also included diversity and
representativeness as a measure to select informative sam-
ples. There are few works that have proposed AL tech-
niques with fairness as one of the objectives. Very recently,
[7] incorporated fairness in the acquisition functions using
the existing AL technique [ 9] with the goal of training fair
models. FAL [2] queries data points in each round of selec-
tion expecting a fair model, which creates significant over-
head. On the other hand, our proposed technique curates
unbiased samples a-priori and thus trained model is fair and
better in terms of underlying task performance.

3. Methodology

Inspired by minimizing the inequality for contextual co-
occurrence bias, we use the objective function as the coef-
ficient of variation, which is a special case of Generalized
Entropy Index [!1]. We now present the notation and the
formulation, followed by our proposed algorithms for se-
lecting fair samples.

3.1. Problem Formulation

LetD = {11, I5,...,In} be adataset of N images with
{c1,¢2,...,cK} as the set of K object classes present. We
define C as the binary composition matrix of size N x K.
Each element (i, j) of the composition matrix indicates the
presence (1) or absence (0) of the j** class in the i*" image.
For a certain protected class ¢, we define the constituent
N, x K — 1 sub-matrix C, ! that represents all N, < N

1C; contains all the rows of C for which the entry in the column j. .
corresponding to class ¢ is 1, and all columns but j. . .

images containing the class ¢, and the corresponding N,
element subset of D as D,,.

We are interested in selecting a subset S C D, where all
co-occurring classes of ¢, are well represented. So we de-
fine the binary selection vector s € {0,1}"~ that indicates
the set of images selected from D,.. We obtain the number
of images per co-occurring class in n, € N'*X¥ as

n,=s'C, (1)

Defining the number of images as a measure of richness
of representation, we can compute the Generalized Entropy
Index as a measure of inequality among these co-occurring
classes:

K n, (7 «
(K 1)1 a=T) 2oim1 [( un(w)’) - 1} ;. a#0,1
GEl(a) = = Ly Kt ’;;n“ In 220, a=1
o e Z nW( ) a=0
(2)

where jiy,, = n]1/(K — 1) is the mean number of images
per class, and n (i) is i*" element of the vector n,. 1is a
K dimensional vector of ones. For o = 2, the GEI becomes
the square of the coefficient of variation (¢, = Z:” ), where
on, 1s the standard deviation of the elements of nzr. There-
fore, we formulate the following optimization problem to

sample a subset of size B = |S|.

. (K —1)s"C,s
—_— 3
selonve  (s1C,1)2 ©)
st. s'1=8
where matrix C, is given by

Cr (1- ") (1- +11T)Tc Here T is a
™ K- K-1 m

K —1x K —1identity matrix, and 1 is a K — 1 dimensional
vector of ones. The numerator of the objective function
contains the expression for the variance of n, and the
denominator is the squared mean of n,. The variable
s here is the selection vector, which is a binary vector
with ones denoting the indices of images selected. The
solution to (3) provides the optimal selection that yields
the smallest ¢, in the selected subset. We emphasize that
our focus is to show that a sound resampling strategy
is effective in mitigating model bias. We note that it is
possible to use a more sophisticated algorithm to solve
(3) optimally. However, we show empirically that even
a simple, greedy approach for sample selection produces
desirable results. Next, we describe our approach to solve
(3) for two scenarios: first, the fully supervised setting, and
second, in the active learning setting. The former permits
us to eliminate co-occurrence bias from existing datasets,
while the latter allows us to curate fair datasets.
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3.2. Supervised Fair Selection

Algorithm 1 describes the selection of a subset of images
S given C, corresponding to the protected class ¢, while
minimizing c,,.

Algorithm 1 Fair Selection
Input: C, € {0, 1}V~*X~1 Budget b, S={}
Qutput: S

. S~UC,

2: Cfn =C, \ S

3. repeat
min = oo} k = 0o
for y in C,

ry = co(SU{y})

if r, < min

min =71y k=y

S=8SU{k}
10: - CL = CL\ {k}
11: until |S| <b
12: return S

R A A

4

3.3. Active Learning for Fair Training (ALOFT)

In this section we describe our data curation approach,
Active Learning for Fair Training (ALOFT). We begin with
an initial unlabeled pool of data DY for a protected class
cr, and a base model M. As with typical AL methods,
ALOFT also uses a sampling budget b = |B]| in each cycle.
The ALOFT acquisition function selects a subset 3 of sam-
ples from DY for which the annotations are requested from
a human oracle. The samples in B are removed from the
DY and are added to the labeled set £ along with the cor-
responding annotations, which are then used to retrain the
model M. As opposed to the traditional usage of a measure
of uncertainty or diversity or both, ALOFT minimizes the
coefficient of variation ¢, across co-occurring classes for
selecting contextually class balanced samples. Algo. [2]
lists the different steps in a single AL cycle of ALOFT.

Algorithm 2 Sampling strategy for ALOFT
Input: C, € {0, 1}V=*EK-1 p DU

Output: L, D;J \B

Initialize: B = £ = {¢}

S, = Fair Selection(C ., B,S)

Sy = ORACLE(S,)

L=LUS,

ID7[rJ\B = ’Dg \ S:c

return L, Dg \B

Algo[1]

SN AN o e

To use the fair selection Algo. [1] in an active learn-
ing setting, we need the binary composition matrix C,. In

the absence of ground truth labels while curating a dataset,
we construct C,; using the pseudo-labels obtained from our
base model M. By using pseudo-labels, which in turn rely
on the large receptive fields typical in most CNN-based ob-
ject detectors, we are able to exploit the model’s predictive
uncertainty as well as implicitly capture the contextual se-
mantic relations between the objects and their representa-
tions in the composition matrix C,;.

For a given image I, a typical CNN-based object detector
model generates n,. region proposals and a corresponding
|C| + 1 dimensional® softmax probability vector, where C is
the set of classes of interest’. Let I,. be the 7 region in
I and p,- be the corresponding object class probability vec-
tor, which is stacked together to form the probability matrix
P; € [0,1]"*ICI+1, We say that an object class is present
in I if its probability is maximal for any of the n, regions.
In other words, we collect the set of classes Cy in image I as

Ci = U arg max P, | %)

i1€[n,]

where, [n,] = {1,2,...,n,} and P1[i, -] represents the i*"
row of Py. Using the corresponding sets Cy for all images
I;, j € [N;], we construct C; for a given unlabeled pool
DY in each AL cycle (Algo. [2]), where the next subset
for annotation is selected using (Algo. [1]) for labeling.
Following this strategy, our labeled set £ is maintained to
be contextually balanced, leading to a fair curated dataset.

4. Experimental Setup

Dataset: We have used two of the largest object detection
dataset COCO [26] and Openlmages [2 1] for validating per-
formance of models trained using our curated datasets for
object detection task. We report all our findings on the
COCO 2017 validation set, and have used Openlmages, Ob-
jectNet [6] and Dollar Street* for cross dataset experiments.
ObjectNet resembles real-life scenarios for 113 object cat-
egories with objects appearing in unusual contexts. On the
other hand, Dollar Street was created with an idea of “what
if the world lives on the same street”. It consists of 138
different categories showcasing the socio-economic bias be-
tween the daily household objects. For gender bias, we have
used COCO and CelebA[27], a celebrity face image dataset
with 40 attributes. To obtain gender annotations in COCO,
we considered the dataset suggested by [55], and use ground
truth captions given for each image to annotate an instance
of a person as a man or a woman.

Evaluation Metrics: To measure the fairness of selec-
tion, we used the coefficient of variation ¢, defined in

Zfor |C| classes and background
3In all our experiments, |C| = K — 1, where ¢ is left out.
“https://www.gapminder.org/dollar-street
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Table 1. In this table we report the ¢, scores of each selection by different techniques on different budgets. We choose ‘Cup’ as the
protected class, and each value in the table is the percentage of instances selected of a particular co-occurring class. Last row, reports the
total instances of each object in 100% data. Closer the ¢, to 0, more contextually balanced is the curated data.

Data(%) Method Person  Din-Table Bottle Chair Bowl Knife Fork Spoon  Wine Glass  Sink co(d)
Random 0.57 0.56 0.36 0.35 0.32 0.25 0.22 0.21 0.12 0.13 0.486

Ranking 0.67 0.59 0.54 0.44 0.54 0.45 0.38 0.4 0.3 0.2 0.26

10 Per-class rank 0.73 0.42 0.14 0.15 0.09 0.07 0.07 0.06 0.03 0.0 1.18
Threshold 0.64 0.64 0.44 0.36 0.47 0.34 0.31 0.31 0.21 0.11 0.422
Ours 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 0.36 | 0.0014

Random 0.55 0.54 0.35 0.33 0.32 0.25 0.22 0.22 0.12 0.12 0.467

Ranking 0.64 0.61 0.49 0.42 0.51 0.41 0.34 0.41 0.28 0.17 0.31

20 Per-class rank 0.67 0.51 0.21 0.32 0.21 0.1 0.09 0.11 0.04 0.0 0.91
Threshold 0.64 0.64 0.43 0.38 0.46 0.35 0.3 0.33 0.24 0.13 0.401
Ours 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 | 0.0008

Random 0.57 0.54 0.34 0.34 0.32 0.24 0.22 0.22 0.13 0.12 0.469

Ranking 0.63 0.62 0.46 0.39 0.51 0.37 0.31 0.36 0.35 0.15 0.35

30 Per-class rank 0.64 0.54 0.28 0.35 0.23 0.11 0.11 0.1 0.06 0.01 0.83
Threshold 0.62 0.69 0.43 0.38 0.46 0.34 0.29 0.33 0.21 0.13 0.398

Ours 0.32 0.32 0.33 0.31 0.32 0.31 0.31 0.32 0.31 0.31 0.017

Random 0.57 0.54 0.34 0.34 0.32 0.23 0.22 0.22 0.12 0.12 0.473

Ranking 0.62 0.63 0.44 0.38 0.47 0.35 0.3 0.34 0.23 0.13 0.38

40 Per-class rank 0.65 0.56 0.29 0.37 0.26 0.13 0.13 0.12 0.07 0.01 0.76
Threshold 0.62 0.63 0.43 0.38 0.46 0.34 0.29 0.33 0.22 0.13 0.394

Ours 0.34 0.36 0.34 0.31 0.33 0.31 0.29 0.31 0.27 0.28 0.08

Random 0.57 0.55 0.34 0.34 0.32 0.23 0.22 0.22 0.13 0.13 0.47

Ranking 0.62 0.63 043 0.37 0.45 0.33 0.28 0.31 0.21 0.12 0.41

50 Per-class rank 0.64 0.56 0.31 0.36 0.27 0.15 0.15 0.14 0.08 0.03 0.698
Threshold 0.62 0.61 0.44 0.35 0.40 0.38 0.28 0.33 0.21 0.15 0.395

Ours 0.36 0.38 0.34 0.31 0.33 0.31 0.28 0.28 0.23 0.25 0.14

100 - 0.57 0.55 0.35 0.34 0.33 0.23 0.22 0.22 0.13 0.13 0.49

Section 3.1. For a perfectly balanced set ¢, = 0. To 5. Experiments and Results

measure model bias, we used representational bias [23]:
B(D,¢) = IIEIZ(’;/)), where I(Z,Y) is mutual information
between Z and Y and H(Y') is the entropy of Y, used as
a normalizing term. The metric takes values in [0, 1], and
characterizes the reduction in uncertainty for the class label
Y in presence of feature Z. We also use Bias Amplifica-
tion [46]: A = Ay — Ap, defined as the difference be-
tween data (Ap) and the model (\;). leakageTo measure
model performance, we use mAP and F1 score. Inspired
by the traditional fairness metrics, we also use Equalized
Odds [16], which measures the true positive rate across a
group or protected attribute. The metric is formally defined
as: p(gly = 1,G = 0) = p(gly = 1,G = 1). Here y
is a binary outcome, ¢ is the corresponding binary predic-
tion and G is the group index for the particular sample. In
our case for a protected class ¢, the group G corresponds
to the K — 1 co-occurring classes, and for bias reduction
we want the disparity in true positive rate for K — 1 co-
occurring classes to be minimum. Hence, to measure bias
in a multi-label scenario, we propose a new score Disparity
in Equalized Odds, EoD = o(p(gly = 1,G = g)),g €
{91,92,...,9K}. Here o is a function denoting the vari-
ance of all the elements. Note that, for a perfectly unbiased
classifier, the variance in true positive rate among different
co-occurring classes, and hence the EoD value is 0.

We re-emphasize the motivation of our work which is to
select a subset of dataset, such that the contextual imbalance
corresponding to a protected class, measured using c,, is
minimum. This in turn should reduce the bias in the predic-
tions made by the model trained using the curated dataset.
Through a series of experiments described in this section,
we show improvement in both of the above aspects achieved
by our method compared to other competitive approaches.

5.1. Curating Fair Data in Supervised Settings

For contextual fairness in object detection in supervised
setting, we created a subset of images having ‘Cup’ as a
protected class and its 10 co-occurring classes like ‘Per-
son’, ‘Dining Table’, ‘Bottle’, ‘Chair’, ‘Bowl’, ‘Knife’,
‘Fork’, ‘Spoon’, ‘Wine Glass’ and ‘Sink’ in COCO dataset.
The processed dataset consists of 8459 and 360 images in
the training and testing set, respectively, with a ¢, of 0.49
and 0.48. Table 1 (last row) reports the distribution of co-
occurring classes in the training set.

For comparing the predictive bias in downstream task,
we choose the task of object detection. For the comparison,
we fine-tune a pre-trained FasterRCNN [31] model using
ResNet50 backbone for 30 epochs with a batch size of 4.
We used Adam optimizer with a learning rate of 1e~*. The
step size for learning scheduler was set to 5 with v = 0.5.
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Table 2. Comparing EoD score and mAP of baseline technique
with our proposed selection approach at different budgets in su-
pervised setting.

Data(%) | Sampling Method | EoD(]) | mAP(T)
Random 0.101 26.37
Ranking 0.104 28.1

10 Per-class rank 0.11 252
Threshold 0.118 26.27
Ours 0.086 29.2
Random 0.099 32.59
Ranking 0.094 32.7
20 Per-class rank 0.114 28.6
Threshold 0.106 31.29
Ours 0.083 34.08
Random 0.103 35.15
Ranking 0.118 36.25
30 Per-class rank 0.118 29.8
Threshold 0.098 34
Ours 0.079 37.5
Random 0.102 37.6
Ranking 0.108 38.1
40 Per-class rank 0.113 30.6
Threshold 0.109 34.9
Ours 0.077 39.22
Random 0.098 38.84
Ranking 0.11 39.5
50 Per-class rank 0.118 35.5
Threshold 0.115 37.9
Ours 0.093 40.29
100 Original 0.105 47.76

In the first set of experiments, we would like to validate
our fair selection algorithm and its impact on training the
model in a supervised setting. We compare by computing
¢, of the selected subsets at different budgets, sampled by
different sampling techniques like Random selection, Rank-
ing (samples of largest weights) based selection, selection
based on per class Rank (samples of largest weight from
each class), and Threshold based selection (samples with
weight > 0.5). For each of these competitive approaches
we use weights for the each sample learned using the objec-
tive function proposed by Repair [23].
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Figure 2. Comparison of ALOFT with other AL baselines.
(a)Coefficient of variation (c,) for each selection, lower the value
fairer the selection (b)Representational bias of the model. Re-
ported results are avarage of three independent runs.

In Table 1 we summarize the results; we can see that
our proposed algorithm selects samples balanced across the
different co-occurring classes with a very low c¢,, value of
only 0.0014 at 10% data as compared to 0.48 and 0.26 for

Table 3. Comparing EoD score and mAP of baseline technique
with our proposed selection approach at different budgets in an
active learning setting.

Data(%) | AL Techniques | EoD(J) | mAP(?T)
Random 0.098 21.04
Coreset 0.098 21.04
10 MaxEnt 0.098 21.04
CDAL 0.098 21.04
ALOFT 0.098 21.04
Random 0.110 27.83
Coreset 0.110 28.7
20 MaxEnt 0.109 29.2
CDAL 0.101 30.29
ALOFT 0.083 31.14
Random 0.110 30.51
Coreset 0.110 31.25
30 MaxEnt 0.116 31.69
CDAL 0.117 32.75
ALOFT 0.084 32.45
Random 0.105 31.93
Coreset 0.111 32.16
40 MaxEnt 0.104 32.35
CDAL 0.105 32.12
ALOFT 0.093 33.95
Random 0.105 32.84
Coreset 0.105 32.72
50 MaxEnt 0.106 32.45
CDAL 0.109 32.53
ALOFT 0.098 34.32
100 Original 0.105 47.76

‘Random’ and ‘Ranking’ based selection. Also, note that
our selection is highly balanced at a lower budget, but as
the budget increases, the ¢, also increases due to the lim-
ited samples of minor classes. For example, ‘Sink’ has only
0.13% of instances compared to 0.57% of ‘Person’ in 100%
training data. Hence, our technique tries to best balance the
selection by picking up almost all of it at 50% budget.

To evaluate the model’s improvement in the predictive
bias trained using the curated data, we report the EoD score
of detecting ‘Cup’ when present along with its various co-
occurring classes in Table 2. We also report mAP values for
the trained models in the table.

5.2. Curating Data in AL Setting with ALOFT

For the case of unlabeled data, we perform our experi-
ment in an Active Learning setting, considering ‘Cup and
its 10 contextually co-occurring classes. We begin our ex-
periment with an initially labeled pool of 10% randomly
selected data from the available un-labeled pool and itera-
tively add samples with a budget of 10% in each AL cycle.

Baselines: We have compared our ALOFT with following
state of the art active learning strategies:

1. Random Sampling, for each active learning budget,
samples are selected randomly with a uniform prob-
ability from the un-labeled pool of data.

2. Coreset [34], theoretically proven subset selection ap-
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proach using the feature space of a DNN. We have used
their k-center greedy algorithm for comparison.

3. Max Entropy [28], focuses on selecting the samples for
which the model is most uncertain about, by maximiz-
ing the entropy of the predicted features.

4. CDAL 1], exploits the contextual confusion among the
classes to select contextually diverse samples.

In Fig. 2(a) we see that ¢, value for ALOFT is fairly low
compared to other baselines. We note that although the cur-
rent AL techniques select diverse and representative sam-
ples using contextual information like in [1], but lacks in
selecting fair subset. With 20% data, ALOFT has a ¢, value
of 0.22 compared to 0.49 of Coreset. Fig. 2(b) reports the
representational bias. ALOFT’s performance is better than
other state-of-the-art.

In Table 3 we report the EoD score of detecting ‘Cup’
when appearing with different co-occurring classes.EoD
value closer to 0 for the model suggests that the learned
model has similar accuracy of detecting ‘Cup’ across its
context, thus equalizing true positive rate. We also re-
port mAP values computed on the COCO validation by the
model on the corresponding curated dataset. We see that
ALOFT is able to achieve better mAP values than other AL
approaches, while keeping the EoD score lower than the
rest.

5.3. Cross Domain Generalization Performance

Experiments in the previous Sections 5.1 and 5.2 have
shown that a model trained on the data selected using our
techniques is balanced (measured using c¢,), maintains or
improve the accuracy (measured by mAP), while reducing
the predictive bias (indicated by lower EoD score). In this
section we benchmark the generalization of a model trained
using data selected by us, but when tested in a cross-domain
setting.

For this experiment we use the model trained on COCO,
but tested on Openlmages without any finetuning. Follow-
ing the experimental setup of previous experiments, we take
‘Cup’ as the protected class, and create a test set from Open-
Images having ‘Cup’, and irrespective of its context. Per-
forming this experiment is crucial to check a model’s fair-
ness across domains. Each vision dataset has a certain do-
main representation, which is implicitly learnt by a DNN
during training, and impacts its generalizability when tested
outside the training domain. From Table 4 we observe that
in both supervised and AL settings, the AP value of ‘Cup’
across all the budgets, improves significantly when com-
pared to other baselines. Fig. 3 shows qualitative results of
detecting ‘Cup’ by the COCO trained model on ObjectNet
and Dollar Street datasets. Since the datasets don’t have the
ground truth labels for all the objects present in an image,
the quantitative experiments could not be performed.

Table 4. Cross Datasset Evaluation. We compare the average pre-
cision of detecting Cup on ‘Openlmages’ dataset when model
trained on images of Cup from COCO dataset by different meth-
ods in supervised(rows 1-3) and active learning setting(rows 4-8).

Data(%)
Method 10 20 30 40 50

Random 47.7 52.6 56.97 59.4 62.2
REPAIR[23] 38.15 41.3 51.47 55.2 61.8
Ours 38.31 55.7 60.9 60.12 64.1
Random 41.56 | 48.93 | 52.11 | 55.04 | 57.18
Coreset[34] 41.56 | 27.18 | 31.63 | 35.86 | 48.02
MaxEnt[28] 41.56 | 46.75 | 37.23 | 51.31 57.4
CDAL[!] 41.56 453 37.23 | 49.35 459
ALOFT 41.56 | 52.13 | 53.24 56.9 62.5

Dolar Street Object Net

. Sk
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Figure 3. Qualitative results of detecting ‘Cup’ by different AL
techniques on Dollar Street and ObjectNet dataset. Green box de-
notes predicted bounding box of ‘Cup’ when model trained using
only 20% of training data. (Best visible at 3x zoom)

5.4. Curating Fair Data to Mitigate Gender Bias

Beyond the contextual bias amongst the objects, we also
consider the fairness aspect when a person co-occurs with
different objects in an image. We identify the demographic
bias in COCO for gender; as sports objects like skateboard,
surfboard occurs more frequently with men than women.
We also notice that the overall representation of women
in COCO dataset is one-third that of men. On the other
hand, Women label is still biased favorably in categories
like ‘handbag’, ‘fork’, ‘teddy-bear’. This unequal represen-
tation of men and women with different objects leads to in-
trinsic bias for a model when tested in a real-world setting.

Wang et al. [46] also reported this imbalance in COCO
and claims that balancing data within a demography would
amplify the bias and thus proposed an adversarial de-
biasing approach to reduce bias amplification (A). We
disagree with their claim, and instead propose that it is
more effective to balance the data across the demogra-
phy for reducing the bias. We show that our sampling
is more effective in mitigating the bias than their adver-
sarial de-biasing approach. Following their experimental
setup of using ResNet-50 on COCO across 79 objects for
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‘male’ and ‘female’, we curate data with an &« = 1 such
that 1/ac < #(m,y)/#(w,y) < o, where #(m,y) and
#(w, y) denote the number of samples containing men and
women with label y. Results on other o values are given in
the supplementary. In the table below, we report ¢, values
of ‘male’ and ‘female’ as the protected and 79 categories as
the co-occurring classes. The lower values indicate that our
curation better balances gender across its context.

Sampling cy(male)({) | c,(female)(])
Balanced[46] 1.117 0.534
Ours 0.231 0.346

Table 5 summarizes the predictive performance in terms
of mAP and F1 scores along with bias amplification score
as suggested in [46]. We have experimented using different
classification networks to measure the impact of data cura-
tion. We conclude that, our data selection process helps in
reducing the bias amplification and also improves mAP.

Table 5. We showcase each classification network suffers from bias
and thus our selection reduces the bias amplification A, and in-
creases mAP and F1 score, when compared with selection heuris-
tic of Balanced data proposed by [46]. Row(5) Balanced(adv) re-
ports result after applying adversarial debiasing of [46].

Random @) Coreset @ MCD () ALOFT @
Male 04 Female

/>4/\/7 0s />_/
// //

20 30
Labeled Data (in%)
(b)

° ° °
8 & g

Average Precision

°
8
°

10 50

20 30 40
Labeled Data (in%)
(a)

Figure 4. Average precision of detecting (a) Male, (b) Female face
in the presence of 39 different attributes, at different budgets. AP
of female has significantly improved compromising a bit in Male
because of fair sampling.

80K COCO images such that the number of images of mi-
nority class, with and without biased co-occurring class, be-
comes balanced for all pairs given by [36]. Following their
experimental setup, we compare with the one trained on the
complete dataset but with a weighted loss which applies 10
times higher weight to the samples of biased category oc-
curring exclusively. The table below shows the comparative
performance of the two models in terms of mAP of the mi-
nor classes for all 20 pairs. More details and class-wise AP
for every biased pair is given in the supplementary material.

Method Exclusive(mAP) | Co-occur(mAP)
Standard(CE) 80 91
Weighted Loss 83 90.5
Ours 84.5 93.5

Model Sampling A(l) | mAP(T) | FI(T)
Balanced 9.8 45.56 43.39
VGGI6[35] Ours 3.5 50.05 44.97
Balanced 10.37 48.23 42.89
ResNet50[17] Balanced(adv) 2.51 43.71 38.98
Ours 23 48.9 42.6
. Balanced 12.1 40.54 37.142
MobileNet-V2[ 7] Ours 678 | 454 | 3881
Balanced 14.7 39.32 33.9
GoogleNet[10] Ours 8.3 442 373

5.5. ALOFT for Mitigating Gender Bias

We perform experiment on CelebA for gender classifica-
tion in active learning setting. We have compared ALOFT
with random, Coreset [34], and MCD [7]. MCD [7] pro-
poses a solution to fair training using i.i.d sampling over
the existing BALD [19] based sampling. We consider
male/female as the protected class, and other 39 face at-
tributes as co-occurring classes for the selection. We train a
ResNet50 [ 1 7] based classifier using the selection. In Fig. 4,
we report mAP of detecting (a) male and (b) female face in
the presence of the other co-occurring 39 attributes.

5.6. Multi Label Image Classification

In [36] authors identified 20 most biased pair of cate-
gories in COCO such as (Skateboard, Person) where Skate-
board mostly co-occurs with Person than exclusively. Their
objective was to improve the performance of the highly bi-
ased category when it occurs exclusively. For this experi-
ment, we asked our algorithm to select 31K images out of

6. Conclusion

We presented a novel, simple yet effective data curation
algorithm using the coefficient of variation (c,) that helps
to select contextually balanced data for a protected class
across its co-occurring biased classes. Our algorithm is ef-
fective in selecting contextually fair subsets with a very low
¢, value in both supervised and active learning settings. We
validate the effectiveness of training a model on contextu-
ally balanced data. It helps reduce representational bias and
increase the true positive rate for the protected class. We
validate that the model’s overall performance and gener-
alizability also increases in the cross-dataset setting. For
the active learning setting in future we would like to extend
our work to explore fairness combined with diversity. We
hope our work motivates more effort in addressing different
dataset bias and training models on well-curated datasets to
make them more reliable and trustworthy.
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