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Abstract

Uncertainty estimation in medical image registration en-
ables surgeons to evaluate the operative risk based on
the trustworthiness of the registered image data thus of
paramount importance for practical clinical applications.
Despite the recent promising results obtained with deep
unsupervised learning-based registration methods, reason-
ing about uncertainty of unsupervised registration models
remains largely unexplored. In this work, we propose a
predictive module to learn the registration and uncertainty
in correspondence simultaneously. Our framework intro-
duces empirical randomness and registration error based
uncertainty prediction. We systematically assess the per-
formances on two MRI datasets with different ensemble
paradigms. Experimental results highlight that our pro-
posed framework significantly improves the registration ac-
curacy and uncertainty compared with the baseline.

1. Introduction

Deformable image registration is the process of estab-
lishing a dense and non-linear correspondence between a
pair of images. Establishing this correspondence is critical
to many clinical image processing applications including tu-
mor and anatomy segmentation, motion analysis, intraoper-
ative tracking, and multi-modal image alignment. Tradi-
tional registration methods rely heavily on manually anno-
tated landmarks [21], and this process tends to be laborious
and non-reproducible. These methods optimize objective
function from scratch which is manually laborious and un-
reproducible. Solving this optimization is computationally
intensive, and therefore extremely slow in practice.

The rapid development of deep learning makes learning-
based approaches applied in medical image analysis [11, 59,
15, 14]. Deep learning based image registration achieves
competitive performance and tremendous speedup. Su-
pervised learning methods employ sparse/weak label of
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registration flow, or conduct supervised learning purely
based on registration flow, inducing high sensitivity on
registration flow during training. VoxelMorph recently
emerged as an unsupervised deep learning-based registra-
tion method that achieves accuracy comparable to tradi-
tional iterative optimization-based methods, with signifi-
cantly greater computational efficiency [1].

Uncertainty estimation has been widely used for medi-
cal image analysis on tasks such as detection and segmen-
tation. Monte Carlo (MC) dropout is a traditional empir-
ical method to evaluate the uncertainty of lesion detection
and segmentation [40] and surface registration [38]. Boot-
strap sampling has also been used as an empirical ensemble
to evaluate registration uncertainty [26]. Another category
of uncertainty estimation methods uses probabilistic models
for image segmentation [17], and image registration [28].

As part of this process, it is important to be able to esti-
mate the uncertainty of the correspondence in medical im-
age registration. The estimated uncertainty allows surgeons
to assess the operative risk based on the trustworthiness of
the aligned image data. Alerts can then be generated indi-
cating possible correspondence errors to help prevent unde-
sirable consequences during surgery. The most traditional
and successful approaches for non-rigid image registration
uncertainty are characterized by probabilistic image regis-
tration [51, 16, 28]. The ill-posed nature of learning-based
registration, however, makes the ability to estimate uncer-
tainty much more important in the clinical practice than
those probabilistic techniques.

Despite steady progress on the combination of prob-
abilistic and learning-based registration [9, 23, 24], un-
certainty estimation for deep unsupervised registration
paradigms remains under explored, and the ways to quan-
tify the uncertainty remain ambiguous. Most registration
uncertainty works target transformation uncertainty, e.g.,
using discretization [34] and regression forests [47]. Luo
et al. [33] shows there is a low-to-moderate correlation be-
tween the Gaussian process uncertainty and non-rigid regis-
tration error, indicating the transformation uncertainty may
not be applicable in practice. However, in most cases, the
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known transformation (registration flow) is not a reasonable
requirement, especially in unsupervised learning scenarios.
The literature on other kinds of registration uncertainty such
as label uncertainty, is either non-existent, or when it exists,
is not quantified [34].

In the context of neurosurgery, the goal of image reg-
istration is to map the pre-labeled tissues onto an intra-
operative patient space for the downstream segmentation.
As the registration uncertainty should serve the goal of neu-
rosurgery, we, therefore, investigate registration uncertainty
as a measure of the confidence of the registered labels.
Specifically, we propose to simultaneously explore deep un-
supervised registration along with uncertainty estimation,
which incorporates both predictive uncertainty and empir-
ical uncertainty. We deploy our uncertainty estimation on
two MRI datasets and demonstrate that it enables us to im-
prove the registration accuracy as well. Our main contribu-
tions can be summarized as follows:

* We propose a novel framework which consists of two
components: 1) an efficient way for introducing em-
pirical randomness for creating uncertainty and 2) reg-
istration error based uncertainty prediction.

* We provide an in-depth investigation of existing un-
certainty estimation techniques, and then comprehen-
sively evaluate how our method improves the reg-
istration accuracy based on the metrics of mean
square error (MSE), normalized local cross-correlation
(NLCC), mutual information (MI), Dice coefficient
based on segmentation.

* We adapt uncertainty metrics to our unsupervised reg-
istration task and provide systematic evaluation of dif-
ferent combinations, which is a pilot study to quantify
the uncertainty of medical image registration in terms
of registered labels.

2. Related Work
2.1. Medical image registration with Deep Learning

Recent work has leveraged the power of modern deep
learning to develop models that predict registration [5, 25,
43,46, 55]. Deep learning-based medical image registration
can be primarily categorized into deep iterative registration,
supervised, and unsupervised transformation estimation.

Early deep learning-based registration methods directly
utilize convolutional neural networks (CNN) to extract fea-
tures where the features are integrated into the traditional
iterative registration. The registration is based on hand-
crafted metrics such as sum of squared differences (SSD),
cross-correlation (CC), mutual information (MI), normal-
ized cross correlation (NCC) and normalized mutual infor-

mation (NMI) [54, 3]. Besides CNN, reinforcement learn-
ing also emerged as a popular method to be incorporated
into the traditional iterative registration. [31] uses a greedy
supervision to conduct rigid registration. [35] deploys Q-
learning with contextual feature to perform rigid registra-
tion. [39] employs multi-agent-based reinforcement learn-
ing in the rigid registration. [25] conducts deformable (non-
rigid) registration by reinforcement learning with fuzzy ac-
tion control. However, these iterative approaches consume
a long time to estimate the transformation.

Supervised transformation directly estimates deforma-
tion field with deep neural network. It speeds up the reg-
istration compared with the aforementioned deep iterative
registration methods. [5] estimates the deformation field
on image patches with an equalized activate-points guided
sampling during training. [46] augments the training sam-
ples with random displacement flow. [50] deploys statis-
tical appearance model to fit the deformation field. How-
ever, these supervised methods require ground truth such
as displacement field. The performance heavily relies on
the quality/quantity of ground truth, since it requires diverse
ground truth annotations for model generalization. The an-
notation is quite expensive and can only finished by the ex-
perts.

Unsupervised registration is desirable to learn from data
with increased generalization. Unsupervised transforma-
tion estimation usually uses spatial transformer networks
(STN) [20] to warp moving image with displacement field
to match the fixed image. The training is supervised with
image similarity between warped image and fixed image,
as well as the smoothness of estimated displacement field.
VoxelMorph ([10] and [29]) is a typical method for unsuper-
vised registration which computes the registration field and
aligns the moving image with the fixed image given a pair of
fixed and moving images. [8] further extends VoxelMorph
so that the deformation field is variational. [12] learns the
similarity function in an adversarial manner. All these un-
supervised registration methods [7, 9] are based on Voxel-
Morph and achieve comparable accuracy and significantly
higher efficiency than the traditional registration methods.
NeurReg [58] further implements a registration field sim-
ulator, which enables a simulated supervised learning for
an efficient deep registration learning. Zhu et al. [57] pro-
poses a multi-scale self-supervised registration and achieves
promising results for large deformations on noisy images.

2.2. Uncertainty estimation

Estimating the uncertainty of cues inferred from images
is of paramount importance for their deployment in com-
puter vision applications. This aspect has been widely ex-
plored even before the spread of deep learning. Uncertainty
estimation has a long history in neural networks as well,
starting with Bayesian neural networks [37]. Different mod-
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Figure 1. An overview of the proposed predicted uncertainty framework. We improve the unsupervised registration by predicting the
uncertainty of the registration flow guided by the reconstruction error, and refining the warped masks with an additional residual block

(both marked in red).

els are sampled from the distribution of weights to estimate
mean and variance of the target distribution in an empirical
manner. Instead of sampling, variational inference methods
try to approximate the distribution of the weights by a more
tractable distribution. [4] replaces sampling with variational
inference. [13] samples the weights by using dropout after
each layer and estimates the epistemic uncertainty of neural
networks. A followup work [22] studies the aleatoric uncer-
tainty (which explains the noise in the observations) and the
epistemic uncertainty (which explains model uncertainty) in
a joint framework. In contrast to Bayesian approaches, such
as MCMC sampling, bootstrapping [27] is another strategy
to sample from the distribution of weights since it only re-
quires point estimates of the weights. The idea is to train M
neural networks independently on M different bootstrapped
subsets of the training data and to treat them as independent
samples from the weight distribution. While bootstrapping
does not ensure diversity of the models and in the worst case
could lead to M identical models, [27] argues that ensem-
ble model averaging can be seen as dropout averaging. They
trained individual networks with random initialization and
random data shuffling, where each network predicts a mean
and a variance. During test time, it combines the individual
model predictions to account for the epistemic uncertainty
of the network. We also consider so-called snapshot ensem-
bles [18] in our experiments. These are obtained rather effi-
ciently via Stochastic Gradient Descent with warm Restarts
(SGDR) [32].

Besides these empirical sampling methods, another strat-
egy is to estimate uncertainty in a predictive manner. Pur-
posely, a neural network is trained to infer the mean and
variance of the distribution [42]. This predictive strategy is

both effective and cheaper than empirical strategies, since
it does not require multiple forward passes and can be di-
rectly adapted to any task. Nonetheless, in addition to the
different nature of our task (i.e., the ill-posed medical image
registration problem), our work differs from the supervision
paradigm.

2.3. Uncertainty estimation for medical imaging

Monte Carlo (MC) dropout is a traditional empirical
method and has been deployed to evaluate the uncertainty
of lesion detection and segmentation [40], surface regis-
tration [38], and neuroimage enhancement [48]. Bootstrap
sampling has also been used as an empirical ensemble to
evaluate registration uncertainty [26]. Another category
of uncertainty estimation methods uses probabilistic mod-
els for image segmentation [17], domain adaptation [6],
and image registration [28]. Recent works on uncertainty
focus on its application on semi-supervised segmentation:
[52] extends uncertainty to the feature level through mean
teachers [49], [30] deploys Jigsaw puzzles for self-loop
uncertainty to generate pseudo-labels, and [56] combines
the bootstrap and probabilistic uncertainty approaches with
Bayesian modeling to boost the performance of segmenta-
tion.

3. Methods

As illustrated in Figure 1, we use VoxelMorph [2, 1]
as the baseline of a unsupervised medical image registra-
tion method and improve it with an additional uncertainty
branch. Suppose a pair of 3D images are represented as
(I,I'), and their segmentation labels are (S,S’). Tak-
ing (I,I') as input, the registration network N learns a
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registration flow ¢ = Convl(N(I,I')) as the displace-
ment map from the moving image I’ to the fixed image
I in an unsupervised manner. We added a branch to pre-
dict registration uncertainty ug = Conv2(N(I,1I')). The
spatial transformer 7 warps I’ with ¢ to get warped im-
age I = T(I',¢) = I' o ¢ so that I is aligned to
I. Similarly, the warped segmentation mask is defined as
T(S’,¢) = S’ o ¢. An additional residual block R is in-
troduced to refine the warped segmentation mask [58]. The
final predicted warped mask § = R(N (I, I'), S’ o ) aims
to align to the fixed labels S.

We use normalized local cross-correlation (NLCC) to
evaluate the similarity between I’ o ¢ and I:

Lgim(I' 0 ¢, T) = ~NLCC(I, I)
S (((pi) = I(p))(

1 Di
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where p is the pixel position in the voxel space 2, p; is the
pixel position within a window 72 around p, and I(p) and

I(p) are local means within the window 73 around p in I
and I, respectively. We use Tversky loss [44, 58] for the
segmentation reconstructed loss between S’ o ¢ and S:

Licy(S'0 ¢, 8) = Licy (8, 5)
1E X288 @
C = >, (8%(p) + S<(p))

where C' is the number of classes, S is a one-hot vector of
the label ground truth with additional C' channels, S is the
warped mask prediction and in continuous values with C
channels. Furthermore, we penalize the local spatial vari-
ations in ¢ to constrain the registration flow to be smooth:

Zl\ws )PP 3)

smooth

The overall loss function for the registration consists of
a reconstruction loss of (I’ o ¢, I) and (S’ o ¢, S), and
smoothness loss of the registration flow ¢ weighted by reg-
ularization parameter \.

£reg = Esim(Ilo¢7 I) +£seg(sl O(ba S) +)\ Esmooth(¢)'

“)
To estimate the uncertainty w4 , we propose a predictive
model, investigate three major empirical methods, and ex-
plore empirical ensembles of the predictive models using
Bayesian learning.

3.1. Predictive Uncertainty

Based on traditional predictive methods [22, 42], we can
train the network to output the parameters of a parametric

distribution of the registration flow where the probability
function is f(¢*|N), and N defines the registration net-
work as described above. We model the predictive distribu-
tion as Laplace(u, o), where p and o parameterize the dis-
tribution’s mean and variance. We learn the model through
log-likelihood maximization (negative log-likelihood min-
imization) in the case of L; loss on the registration flow:

_ o —u(e)]
e o)

20(®) (3)

T
= min () + logo (o).
With the absence of ground truth registration ¢*, the pre-
dictive estimation needs to be adapted and modified in an
unsupervised manner. It is intuitive to assume the voxel-
wise reconstruction error will be high when the estimated
registration flow is inaccurate. Therefore, we learn a model
to encode the reconstruction error, representing ambiguities
of the registration flow in the unsupervised paradigm. We
train the model with an additional uncertainty term in the
loss function based on the reconstructed match:

max log f(¢*|N) = max log

Euncert = Z W + IOg Ugp (p)7 (6)

where ug(p) learns the registration uncertainty of pixel po-
sition p. Note S, S’, and u g are voxel-wise with additional
C channels.

3.2. Empirical Uncertainty

A straightforward approach to obtain uncertainty esti-
mation is to evaluate them empirically by measuring the
variance between all possible network configurations. This
allows us to explain the model uncertainty, namely epis-
temic [22]. Empirical approaches can be directly applied
to unsupervised learning frameworks through an ensemble
of N predicted registration flows:

1 N N
:NZQS”,U Z ¢n_ 7(7)
n=1 n=1

where the model outputs (@) and o2(¢) encodes the
mean (prediction) and variance (uncertainty) of multiple in-
ferences of the registration flow. In the following, we inves-
tigate the Bootstrap, Dropout, and Snapshot sampling meth-
ods of ensemble for registration uncertainty estimation.

3.2.1 Bootstrap

One classical method of model sampling is to train [V inde-
pendent models with bootstrap. Each bootstrapping model
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randomly samples a subset of the training data. The ap-
proach requires N independent training samples and N
model parameters. We perform N forward inferences on
these models and compute the empirical mean p(¢) and
variance o%(¢) of all inferences {¢,, }.

3.2.2 Dropout

The other traditional way to sample neural networks is us-
ing Monte Carlo Dropout. Dropout disables connections
between layers randomly with a given probability to avoid
overfitting. Enabling dropout at test time, we perform mul-
tiple forward inferences from the distribution of weights of
one trained network. This alleviates the large computational
requirement caused by the multiple training requirement.
Similarly, we obtain the empirical mean p(¢) and variance
o?(¢) to approximate the mean and variance of the distri-
bution of the registration flow.

3.2.3 Snapshot

An alternative way of model sampling is to obtain multiple
snapshots out of a single training instance using the cyclic
learning rate [18]. Keeping the total number of training
epochs T' the same as the normal training, we obtain M
pre-converged models in M cycles. In each cycle, we fol-
low a cyclic annealing schedule to decrease the learning rate
so that the model converges to a local minimum at a varying
pace over the course of this cycle. The optimization is then
continued at a larger learning rate, which perturbs the model
and dislodges it from the current local minimum. Given an
initial learning rate «y, the learning rate o at training epoch
t is a function of the total number of epochs 7' and cycles
M:

m-mod(t —1,[5])
(471
In one training instance, we randomly select N out of the

M snapshot models and calculate the empirical mean g (¢p)
and variance o%(¢) of the registration flow using Eq. 7.

(%)) (
oy = — - (cos
t7 9

)+ ®)

3.3. Bayesian Uncertainty

In Bayesian deep learning, the model uncertainty can be
explained by marginalizing over all possible model param-
eters rather than choosing one point of estimation. Accord-
ing to [41, 22], we approximate the empirical ensembles of
predictive estimations by:

N N
1 1
=D Pnus =D (6= ) +ug, O
n=1 n=1
In our experiments, we will quantitatively evaluate dif-
ferent combinations of empirical and predictive methods.

4. Experiments
4.1. Datasets and Experiment Settings

We conduct experiments on the Hippocampus and
Prostate MRI datasets from the medical segmentation de-
cathlon [45]. On the Hippocampus dataset, we randomly
split the dataset into 208 training images and 52 test images.
There are two foreground categories, the hippocampus head
and the hippocampus body. For the Prostate dataset, we ran-
domly split the dataset into 24 training images and eight
test images. We use the T2 weighted modality only for
the prostate dataset. MR images from both datasets are re-
sampled to spacing of 1x1x1 mm?3. The hippocampus im-
ages are padded to 48x64x48 voxels, and a window size is
set to 5x5x5 in Eq. 1. The prostate images are padded to
240x240x96 voxels, and the window size is set as 9x9x9.
Note that we disregard the padding area for the loss function
and evaluation.

During training, we use the same data augmentation on
both datasets as described in [58]. We use the Adam op-
timizer with a learning rate of 107 for £ = Lreg +
0.1Luncert- A is set as 0.01 in L., (Eq.4). We set the
number of training epochs 7' to 200 and 300 for the hip-
pocampus and prostate datasets, respectively. We set N to
8 for all empirical methods. For the snapshot method, we
employ the SGD optimizer with an initial learning rate of
0.1 and a scheduler described in Eq. 8 where the number of
cycles M is set to 20 and number of training epochs 7' is
the same as in normal training. For bootstrap sampling, we
randomly sample 90% from the training set for each inde-
pendent network. Dropout sampling uses a probability of
10% and is only applied to the last convolution layer in the
encoder.

4.2. Evaluation Protocol

In addition to image reconstruction, the estimated reg-
istration flow can be applied to image segmentation. We
infer the segmentation mask of the test image with access
to the segmentation masks of the training images. And the
uncertainty prediction provides a voxel-wise confidence of
the registration errors.

4.2.1 Registration Metrics

We traverse to sample a pair of images in the test dataset and
evaluate registration performance on image reconstruction.
We use three metrics to evaluate image similarity: the av-
erage mean square error over the reconstructed image and
fixed images (MSE), the average normalized local cross-
correlation (NLCC) with 5x5x5 as window size, and the
average mutual information with 100 bins (MI).

To evaluate the registration performance on image seg-
mentation, we use the test image as the fixed image I and
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g MSE| |

AUSE]

NLCC(%)*t | Dice(%)71 |

Method MIt
\ \ \ \ | ERR | MR | FDR
VoxelMorph[2] | 1x | 0.005+0.003 | 0.91+0.18 | 78.92+1.17 | 91.20+2.05 | 0.0077 | 0.063 | 0.073
Ours Ix | 0.004+0.002 | 1.04£0.17 | 86.89+1.01 | 93.73+1.33 | 0.0002 | 0.010 | 0.002
VoxelMorph+Boot | Nx | 0.004+0.002 | 0.93+£0.13 | 80.21+£1.08 | 92.87+1.93 | 0.002 | 0.044 | 0.061
VoxelMorph+Drop | 1x | 0.00540.002 | 0.91+0.23 | 78.70+1.92 | 90.96 +2.57 | 0.003 | 0.062 | 0.056
VoxelMorph+Snap | 1x | 0.005+0.002 | 0.91+0.19 | 79.89+1.63 | 91.73+1.75 | 0.002 | 0.060 | 0.049
Ours+Boot Nx | 0.00540.002 | 1.12+0.25 | 83.874+1.24 | 94.51+1.61 | 0.0006 | 0.041 | 0.016
Ours+Drop Ix | 0.004+0.002 | 1.05+£0.21 | 86.45+1.52 | 90.47+3.01 | 0.0003 | 0.046 | 0.074
Ours+Snap Ix | 0.004+0.002 | 0.98+£0.15 | 87.86+0.95 | 95.12+1.03 | 0.0003 | 0.005 | 0.007

Table 1. Registration and uncertainty comparisons on the Hippocampus dataset. VoxelMorph without empirical method involved estimates
uncertainty through the warping error on the image during test. “Ours” indicates the proposed predictive uncertainty method.

‘ #Trn ‘ MSE] ‘

Method MIt

| NLCC(%)1 | Dice(%)1 |

AUSE|
| | ERR | MR | FDR

VoxelMorph[2] | 1x

| 0.010 £ 0.002 | 0.5240.03 | 55.03+2.97 | 77.25 +2.83 | 0.0059 | 0.0103 | 0.0077

Ours Ix 0.009+£0.002 | 0.53£0.03 | 56.79£2.23 | 90.15£1.87 | 0.0001 | 0.0017 | 0.0002
Ours+Drop Ix | 0.011£0.002 | 0.49£0.04 | 56.77 £2.33 | 87.39+£3.73 | 0.0001 | 0.0036 | 0.0200
Ours+Snap Ix | 0.008 +0.002 | 0.57 +0.03 | 60.03 = 1.37 | 91.25+1.52 | 0.0001 | 0.0011 | 0.0005

Table 2. Registration and uncertainty comparisons on the Prostate dataset. VoxelMorph without empirical method involved estimates
uncertainty through the warping error on the image during test. “Ours” indicates the proposed predictive uncertainty method.

select one training image as the moving image I’ during
inference. In the case of K images in the training set, we
calculate NLCC between the test image and each training
image to select the image I’ that is most similar (highest
NLCC) to I: I' = maxyeo..x) NLCC(I;, I). Based on
the estimated registration flow ¢, we predict the final seg-
mentation mask S by taking argmax along the class chan-
nel. We report the average Dice coefficient over the fore-
ground classes. Dice for one class is defined as: Dice =

20P where TP, F'N, F' P are true positives, false

2TP+FN+FP’ - '
negatives, and false positives, respectively.

4.2.2 Uncertainty Metrics

To assess the quality of the uncertainty measures, we use
sparsification plots. Sparsification plots are commonly used
for pixel-wise uncertainty evaluation [36, 53, 19]. Such
plots reveal how much the estimated uncertainty coincides
with the true errors. If the mean error monotonically de-
creases when the pixels with the highest uncertainty are re-
moved gradually (Sparsification Error), the estimated un-
certainty is a good representation. The best possible uncer-
tainties are ranked by the true error between the prediction
and the ground truth.

In our case, with the absence of the flow ground truth,
we represent the true uncertainty with the voxel-wise error
between the predicted label S and target label S. The true
uncertainty is used to plot the optimal error curve, called

0.010 1
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- VoxelMorph-boot
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Figure 2. Sparsification plots with multiple uncertainty estimation
methods on the Hippocampus dataset. Sparsification error uses
averaged voxel-wise error (ERR). “Ours” indicates the proposed
predictive uncertainty method.

the Oracle Sparsification (marked in red in Figure 2). To
quantify the sparsification error (the difference between the
sparsification and its oracle), we use the Area Under the
Sparsification Error curve (AUSE) as the metric of the un-
certainty estimation.

In the implementation, we evaluate three kinds of Spar-
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sification Error with 50 bins: averaged voxel-wise error
(ERR), miss rate (MR), and false discover rate (FDR). The
miss rate is the false negative rate for the one-hot label:

MR = %, and the false discover rate is calculated
as FDR = %. Note that all three sparsification errors

take average over the foreground classes.
4.3. Experimental Results

We evaluate both the registration performance (MSE,
MI, NLCC, and average Dice of segmentation) and un-
certainty performance (AUSE in terms of ERR, MR, and
FDR).

Table 1 compares the registration performance (MSE,
MI, NLCC, and Dice) on the Hippocampus dataset. It also
shows the uncertainty metric (AUSE) when VoxelMorph
and our predictive model are combined with three empir-
ical methods. #Trn indicates the training times. Note Vox-
elmorph uses the same backbone network as our method
with same training strategy. When VoxelMorph is com-
bined with empirical ensemble methods, the bootstrap en-
semble improves the registration performance (e.g., NLCC
and average Dice) but consumes NX training resources,
while the snapshot sampling achieves similar improvement
without additional training resources. Our predictive model
significantly improves the performance on four registration
metrics, and it achieves the best performance when the pre-
dictive models are ensembled via snapshot with Bayesian
uncertainty estimation.

Figure 2 illustrates the uncertainty performance with a
sparsification plot on the Hippocampus dataset. The sparsi-
fication error uses averaged voxel-wise error (ERR). When
comparing the Area Under the Sparsification Error curve
(AUSE), our predictive module outperforms (has smaller
AUSE than) VoxelMorph combined with empirical meth-
ods (dropout, bootstrap, and snapshot). Our predictive mod-
ule combined with empirical methods (dropout, bootstrap,
and snapshot) also outperforms VoxelMorph with empirical
methods (dropout, bootstrap, and snapshot).

The comparison in Table 2 shows results on Prostate
dataset and demonstrates the effectiveness of our method
for both registration and uncertainty estimation. We did not
conduct bootstrap experiments because of large image size
of prostate MR images and huge computational cost during
training. We can see from the table that our proposed uncer-
tainty model outperforms VoxelMorph on Prostate dataset.
Our predictive method combined with snapshot empirical
ensemble achieves the best performance on both segmenta-
tion metrics (MSE, MI, NLCC, and average Dice) and un-
certainty metrics (AUSE in terms of ERR and MR).

5. Conclusion

We systematically investigate the uncertainty modeling
of unsupervised medical image registration in terms of reg-

istration error. Without additional training resources, our
predictive framework enables a highly efficient ensemble
through empirical techniques for unsupervised registration
and uncertainty estimation. We adopt a quantitative un-
certainty evaluation tailored for the case where the ground
truth flow is not accessible. Our experiments demonstrate
that our combination of a snapshot ensemble and a predic-
tive model significantly improves the registration accuracy
and achieves the best uncertainty estimation. With registra-
tion error being of particular importance in practical neuro-
surgery, our study of registration uncertainty as a surrogate
for assessing registration error may increase the feasibility
of non-rigid registration in interventional guidance and ad-
vance the state of image-guided therapy.
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