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Abstract

Unmanned Aerial Vehicles (UAVs) are of crucial impor-
tance in search and rescue missions in maritime environ-
ments due to their flexible and fast operation capabilities.
Modern computer vision algorithms are of great interest
in aiding such missions. However, they are dependent on
large amounts of real-case training data from UAVs, which
is only available for traffic scenarios on land. Moreover,
current object detection and tracking data sets only provide
limited environmental information or none at all, neglecting
a valuable source of information. Therefore, this paper in-
troduces a large-scaled visual object detection and tracking
benchmark (SeaDronesSee) aiming to bridge the gap from
land-based vision systems to sea-based ones. We collect
and annotate over 54,000 frames with 400,000 instances
captured from various altitudes and viewing angles ranging
from 5 to 260 meters and 0 to 90° degrees while providing
the respective meta information for altitude, viewing angle
and other meta data. We evaluate multiple state-of-the-
art computer vision algorithms on this newly established
benchmark serving as baselines. We provide an evaluation
server where researchers can upload their prediction and
compare their results on a central leaderboard '.

1. Introduction

Unmanned Aerial Vehicles (UAVs) equipped with cam-
eras have grown into an important asset in a wide range
of fields, such as agriculture, delivery, surveillance, and
search and rescue (SAR) missions [5, 48, 21]. In partic-
ular, UAVs are capable of assisting in SAR missions due
to their fast and versatile applicability while providing an
overview over the scene [38, 26, 6]. Especially in maritime

*These authors contributed equally to this work. The order of names is
determined by coin flipping

IThe leaderboard, the data set and the code to reproduce our results are
available at https://seadronessee.cs.uni-tuebingen.de.

(b)
Figure 1. (a) Typical image examples with varying altitudes and
angles of view: 250 m, 90°; 50 m, 30°; 10 m, 0° and 20 m, 90°
(from top left to bottom right). (b) Examples of the Red Edge
(717 nm, left) and Near Infrared (842 nm, right) light spectra of an
image captured by the MicaSense RedEdge-MX. Note the glowing
appearance of the swimmers.

scenarios, where wide areas need to be quickly overseen
and searched, the efficient use of autonomous UAVs is cru-
cial [54]. Among the most challenging issues in this appli-
cation scenario is the detection, localization, and tracking
of people in open water [20, 41]. The small size of people
relative to search radii and the variability in viewing angles
and altitudes require robust vision-based systems.

Currently, these systems are implemented via data-
driven methods such as deep neural networks. These meth-
ods depend on large-scale data sets portraying real-case sce-
narios to obtain realistic imagery statistics. However, there
is a great lack of large-scale data sets in maritime environ-

2260



ments. Most data sets captured from UAVs are land-based,
often focusing on traffic environments, such as VisDrone
[58] and UAVDT [16]. Many of the few data sets that are
captured in maritime environments fall in the category of
remote sensing, often leveraging satellite-based synthetic
aperture radar [12]. All of these are only valuable for ship
detection [11] as they don’t provide the resolution needed
for SAR missions. Furthermore, satellite-based imagery is
susceptible to clouds and only provides top-down views. Fi-
nally, many current approaches in the maritime setting rely
on classical machine learning methods, incapable of dealing
with the large number of influencing variables and calling
for more elaborate models [44].

This work aims to close the gap between large-scale
land-based data sets captured from UAVs to maritime-based
data sets. We introduce a large-scale data set of people
in open water, called SeaDronesSee. We captured videos
and images of swimming probands in open water with var-
ious UAVs and cameras. As it is especially critical in
SAR missions to detect and track objects from a large
distance, we captured the RGB footage with 3840x2160
px to 5456x3632 px resolution. We carefully annotated
ground-truth bounding box labels for objects of interest in-
cluding swimmer, floater (swimmer with life jacket), life
jacket, swimmer! (person on boat not wearing a life jacket),
floater! (person on boat wearing a life jacket), and boat.

Moreover, we note that current data sets captured from
UAVs only provide very coarse or no meta information at
all. We argue that this is a major impediment in the devel-
opment of multi-modal systems, which take these additional
information into account to improve accuracy or speed. Re-
cently, methods that rely on these meta data were proposed.
However, they note the lack of large-scaled publicly avail-
able data set in that regime (see e.g. [27, 51, 36]). Therefore,
we provide precise meta information for every frame and
image including altitude, camera angle, speed, time, and
others.

In maritime settings, the use of multi-spectral cameras
with Near Infrared channels to detect humans can be ad-
vantageous [20]. For that reason, we also captured multi-
spectral images using a MicaSense RedEdge. This enables
the development of detectors taking into account the non-
visible light spectra Near Infrared (842 nm) and Red Edge
(717 nm).

Finally, we provide detailed statistics of the data set and
conduct extensive experiments using state-of-the-art mod-
els and hereby establish baseline models. These serve as
a starting point for our SeaDronesSee benchmark. We re-
lease the training and validation sets with complete bound-
ing box ground truth but only the test set’s videos/images.
The ground truth of the test set is used by the benchmark
server to calculate the generalization power of the models.
We set up an evaluation web page, where researchers can

upload their predictions and opt to publish their results on a
central leader board such that transparent comparisons are
possible. The benchmark focuses on three tasks: (i) object
detection, (ii) single-object tracking and (iii) multi-object
tracking, which will be explained in more detail in the sub-
sequent sections. Our main contributions are as follows:

* To the best of our knowledge, SeaDronesSee is the first
large annotated UAV-based data set of swimmers in
open water. It can be used to further develop detec-
tors and trackers for SAR missions.

* We provide full environmental meta information for
every frame making SeaDroneSee the first UAV-based
data set of that nature.

* We provide an evaluation server to prevent researches
from overfitting and allow for fair comparisons.

* We perform extensive experiments on state-of-the-art
object detectors and trackers on our data set.

2. Related Work

In this section, we review major labeled data sets in the
field of computer vision from UAVs and in maritime sce-
narios which are usable for supervised learning models.

2.1. Labeled Data Sets Captured from UAVs

Over the last few years, quite a few data sets captured
from UAVs have been published. The most prominent are
these that depict traffic situations, such as VisDrone [58]
and UAVDT [16]. Both data sets focus on object detec-
tion and object tracking in unconstrained environments. Pei
et al. [43] collect videos (Stanford Drone Dataset) show-
ing traffic participants on campuses (mostly people) for
human trajectory prediction usable for object detection.
UAV123 [39] is a single-object tracking data set consist-
ing of 123 video sequences with corresponding labels. The
clips mainly show traffic scenarios and common objects.
Both, Hsieh et al. [24] and Mundhenk et al. [40] capture
a data set showing parking lots for car counting tasks and
constrained object detection. Li et al. [31] provide a single-
object tracking data set showing traffic, wild life and sports
scenarios. Collins et al. capture a single-object tracking
data set showing vehicles on streets in rural areas. Krajew-
ski et al. [28] show vehicles on freeways.

Another active area of research focuses on drone-based
wildlife detection. Van et al. [50] release a data set for the
tasks of low-altitude detection and counting of cattle. Ofli
et al. [42] release the African Savanna data set as part of
their crowd-sourced disaster response project.
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Object detection Env. Platform | Image widths | Altitude Range Angle Range Other meta
DOTA [52] cities satellite 800-20,000 - - X 90° X
UAVDT [16] traffic UAV 1,024 X 5-200 m* X 0 —90°%* X
VisDrone [58] traffic UAV 960-2,000 X 5-200 m* X 0 —90°* X
Airbus Ship [2] | maritime | satellite 768 - - X 90° X
AU-AIR [10] traffic UAV 1,920 v 5-30 m X 45 —90° v
SeaDronesSee | maritime UAV 3,840-5,456 ve 5-260 m N 0 —90° v
Single-object tracking Env. #Clips | Frame widths | Altitude Range Angle Range Other meta
UAV123 [39] traffic 123 1,280 X 5-50 m* X 0 —90°%* v
DTB70 [31] sports 70 1,280 X 0-10 m* X 0 —90°%* X
UAVDT-SOT [16] traffic 50 1,024 X 5-200 m* X 0 —90°* v
VisDrone [58] traffic 167 960-2,000 X 5-200 m* X 0 —90°* v
SeaDronesSee maritime 208 3,840 v 5-150 m v 0 —90° v
Multi-object tracking |  Env. #Frames | Frame widths | Altitude  Range | Angle  Range | Other meta
UAVDT-MOT [16] traffic 40.7k 1,024 X 5-200 m* X 0 —90°%* v
VisDrone [58] traffic 40k 960-2,000 X 5-200 m* X 0 — 90°* v
SeaDronesSee maritime 54 k 3,840 v 5-150 m vV 0 —90° v

Table 1. Comparison with the most prominent annotated aerial data sets. ’Altitude’ and *Angle’ indicate whether or not there are precise
altitude and angle view information available. ’Other meta’ refers to time stamps, GPS, and IMU data and in the case of object tracking can
also mean attribute information about the sequences. The values with stars have been estimated based on ground truth bounding box sizes
and corresponding real world object sizes (for altitude) and qualitative estimation of sample images (for angle). For DOTA and Airbus
Ship the range of altitudes is not available because these are satellite-based data sets.

2.2. Labeled Data Sets in Maritime Environments

Many data sets in maritime environments are captured
from satellite-based synthetic aperture radar and therefore
fall into the remote sensing category. In this category, the
airbus ship data set [2] is prominent, featuring 40k images
from synthetic aperture radars with instance segmentation
labels. Li ef al. [30] provide a data set of ships with images
mainly taken from Google Earth, but also a few UAV-based
images. In [52], the authors provide satellite-based images
from natural scenes, mainly land-based but also harbors.
The most similar to our work is [34]. They also consider the
problem of human detection in open water. However, their
data mostly contains images close to shores and of swim-
ming pools. Furthermore, it is not publicly available.

2.3. Multi-Modal Data Sets Captured from UAVs

UAVDT [16] provides coarse meta data for their object
detection and tracking data: every frame is labeled with
altitude information (low, medium, high), angle of view
(front-view, side-view, bird-view) and light conditions (day,
night, foggy). Wu et al. [51] manually label VisDrone af-
ter its release with the same annotation information for the
object detection track. Mid-Air [19] is a synthetic multi-
modal data set with images in nature containing precise al-
titude, GPS, time, and velocity data but without annotated
objects. Blackbird [7] is a real-data indoor data set for agile
perception also featuring these meta information. In [35],

street-view images with the same meta data are captured
to benchmark appearance-based localization. Bozcan et al.
[10] release a low-altitude (< 30 m) object detection data
set containing images showing a traffic circle and provide
meta data such as altitude, GPS, and velocity but exclude
the import camera angle information.

Tracking data sets often provide meta data (or attribute
information) for the clips. However, in many cases these
do not refer to the environmental state in which the image
was captured. Instead, they abstractly describe the way in
which a clip was captured: UAV123 [39] label their clips
with information such as aspect ratio change, background
clutter, and fast motion, but do not provide frame-by-frame
meta data. The same observation can be made for the track-
ing track of VisDrone [18]. See Table 1 for an overview of
annotated aerial data sets.

3. Data Set Generation

We gathered the footage on several days to obtain vari-
ance in light conditions. Taking into account safety and en-
vironmental regulations, we asked over 20 test subjects to
be recorded in open water. Boats transported the subjects
to the area of interest, where quadcopters were launched at
a safe distance from the swimmers. At the same time, the
fixed-wing UAV Trinity F90+ was launched from the shore.
We used waypoints to ensure a strict flight schedule to max-
imize data collection efficiency. Care was taken to maintain
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Resolution Video
3,840%x2,160 30 fps
1,280x 960 X
5,456%x3,632 X

Camera
Hasselblad L1D-20c
MicaSense RedEdge-MX
Sony UMC-R10C

Zenmuse X5 3,840%x2,160 30 fps
Zenmuse XT2 3,840%x2,160 30 fps
Table 2. Overview of used cameras.

Data Unit Min. value Max.value
Time since start ms 0 00
Date and Time ISO 8601 - -

Latitude degrees -90 +90
Longitude degrees -90 +90
Altitude meters 0 00

Gimbal pitch degrees 0 90
UAV roll degrees -90 +90
UAV pitch degrees -90 +90
UAV yaw degrees —180 +180
z-axis speed m/s 0 00
y-axis speed m/s 0 00
z-axis speed m/s 0 o0

Table 3. Meta data that comes with every image/frame.

a strict vertical separation at all times. Subjects were free to
wear life jackets, of which we provided several differently
colored pieces (see also Figure 2).

To diminish the effect of camera biases within the data
set, we used multiple cameras, as listed in Table 2, mounted
to the following drones: DJI Matrice 100, DJI Matrice 210,
DJI Mavic 2 Pro, and a Quantum Systems Trinity FO0+.
With the video cameras, we captured videos at 30 fps. For
the object detection task, we extract at most three frames
per second of these videos to avoid having redundant oc-
currences of frames. See Section 4 for information on the
distribution of images with respect to different cameras.

Lastly, we captured top-down looking multi-spectral im-
agery at 1 fps. We used a MicaSense RedEdge-MX, which
records five wavelengths (475 nm, 560 nm, 668 nm, 717
nm, 842 nm). Therefore, in addition to the RGB channels,
the recordings also contain a RedEdge and a Near Infrared
channel. The camera was referenced with a white refer-
ence before each flight. As the RedEdge-MX captures ev-
ery band individually, we merge the bands using the devel-
opment kit provided by MicaSense.

3.1. Meta Data Collection

Accompanied with every frame there is a meta stamp,
that is logged at 10 hertz. To align the video data (30 fps)
and the time stamps, a nearest neighbor method was per-
formed. The data in Table 3 is logged and provided for
every image/frame read from the onboard clock, barometer,

IMU and GPS sensor, and the gimbal, respectively.

Note that o = 90° corresponds to a top-down view, and
a = 0° to a horizontally facing camera. The date format
is given in the extended form of ISO 8601. Furthermore,
note that the UAV roll/pitch/yaw-angles are of minor im-
portance for meta-data-aware vision-based methods as the
onboard gimbal filters out movement by the drone such that
the camera pitch angle is roughly constant if it is not inten-
tionally changed [25]. Note that the gimbal yaw angle is not
included, as we fix it to coincide with the UAV’s yaw angle.

We need to emphasize that the meta values lie within the
error thresholds introduced by the different sensors, but an
extended analysis is beyond the scope of this paper (see e.g.
[61, 1, 29] for an overview).

3.2. Annotation Method

Using the non-commercial labeling tool DarkLabel [3],
we manually and carefully annotated all provided images
and frames with the categories swimmer (person in water
without life jacket), floater (person in water with life jacket),
life jacket, swimmer! (person on boat without life jacket),
floater (person on boat with life jacket), and boats. We
note that it is not sufficient to infer the class floater by the
location from swimmer and life jacket as this can be highly
ambiguous. Subsequently, all annotations were checked by
experts in aerial vision. We choose these classes as they
are the hardest and most critical to detect in SAR missions.
Furthermore, we annotated regions with other objects as ig-
nored regions, such as boats on land. Moreover, the data set
also covers unlabeled objects, which may not be of interest,
like driftwood, birds or the coast such that detectors can be
robust to distinguish from those objects. Our guidelines for
the annotation are described in the appendix. See Figure 2
for examples of objects.

3.3. Data Set Split
Object Detection

To ensure that the training, validation, and testing set have
similar statistics, we roughly balance them such that the re-
spective subsets have similar distributions with respect to
altitude and angle of view, two of the most important fac-
tors of appearance changes. Of the individual images, we
randomly select 4/7 and add it to the training set, add 1/7
to the validation set and another 2/7 to the testing set. In
addition to the individual images, we randomly cut every
video into three parts of length 4/7, 1/7, and 2/7 of the origi-
nal length and add every 10-th frame of the respective parts
to the training, validation, and testing set. This is done to
avoid having subsequent frames in the training and testing
set such that a realistic evaluation is possible. We release
the training and validation set with all annotations and the
testing set’s images, but withhold its annotations. Evalu-
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Life jacket

Floater

Figure 2. Examples of objects. Note that these examples are crops from high-resolution images. However, as the objects are small and the
images taken from high altitudes, they appear blurry.

ation will be available via an evaluation server, where the
predictions on the test set can be uploaded.

Object Tracking

Similarly, we take 4/7 of our recorded clips as the training
clips, 1/7 as the validation clips and 2/7 as the testing clips.
As for the object detection task, we withhold the annota-
tions for the testing set and provide an evaluation server.

4. Data Set Tasks

There are many works on UAV-based maritime SAR
missions, focusing on unified frameworks describing the
process of how to search and rescue people [38, 20, 33, 34,
45,47,22]. These works answer questions corresponding to
path planning, autonomous navigation and efficient signal
transmission. Most of them rely on RGB sensors and detec-
tion and tracking algorithms to actually find people of inter-
est. This commonality motivates us to extract the specific
tasks of object detection and tracking, which pose some of
the most challenging issues in this application scenario.

Maritime environments from a UAV’s perspective are
difficult for a variety of reasons: Reflective regions and
shadows resulting from different cardinal points (such as in
Fig. 1) that could lead to false positives or negatives; people
may be hardly visible or occluded by waves or sea foam (see
Supplementary material); typically large areas are overseen
such that objects are particularly small [38]. We note that
these factors are on top of general UAV-related detection
difficulties.

Now, we proceed to describe the specific tasks.

4.1. Object Detection

There are 5,630 images (training: 2,975; validation: 859;
testing: 1,796). See Figure 3 for the distribution of im-
ages/frames with respect to cameras and the class distribu-

Swimmers’

tion. We recorded most of the images with the L1D-20c
and UMC-R10C, having the highest resolution. Having the
lowest resolution, we recorded only 432 images with the
RedEdge-MX. Note, for the Object Detection Task only the
RGB-channels of the multi-spectral images are used to sup-
port a uniform data structure.

Furthermore, the class distribution is slightly skewed to-
wards the class "boat’, since safety precautions require boats
to be nearby. We emphasize that this bias can easily be di-
minished by blackening the respective regions, as is com-
mon for areas which are not of interest or undesired (such
as boats here; see e.g. [16]). Right after that, swimmers with
life jacket are the most common objects. We argue that this
scenario is very often encountered in SAR missions. This
type of class often is easier to detect than just swimmer as
life jackets mostly are of contrasting color, such as red or or-
ange (see Fig. 2 and Table 4). However, as it is also a likely
scenario to search for swimmers without life jacket, we in-
cluded a considerable amount. There are also several differ-
ent manifestations/visual appearances of that class which is
why we recorded and annotated swimmers with and with-
out adequate swimwear (such as wet suit). To be able to dis-
criminate between humans in water and humans on boats,
we also annotated humans on boats (with and without life
jackets). Lastly, we annotated a small amount of life jack-
ets only. However, we note that the discrimination between
life jackets and humans in life jackets can become visually
ambiguous, especially in higher altitudes. See also Fig. 2.

Figure 4 shows the distribution of images with respect
to the altitude and viewing angle they were captured at.
Roughly 50% of the images were recorded below 50 m be-
cause lower altitudes allow for the whole range of available
viewing angles (0 — 90°). That is, to cover all viewing an-
gles, more images at these altitudes had to be taken. On the
other hand, there are many images facing downwards (90°),
because images taken at greater altitudes tend to face down-
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Figure 4. Distribution of images over altitudes (left) and angles
(right), respectively.

wards since acute angles yield image areas with tiny pixel
density, which is unsuitable for object detection. Neverthe-
less, every altitude and angle interval is sufficiently repre-
sented.

4.2. Single-Object Tracking

We provide 208 short clips (>4 seconds) with a total
of 393,295 frames (counting the duplicates), including all
available objects labeled. We randomly split the sequences
into 58 training, 70 validation and 80 testing sequences. We
do not support long-term tracking. The altitude and angle
distributions are similar to these in the object detection sec-
tion since the origin of the images of the object detection
task is the same.

4.3. Multi-Object Tracking

We provide 22 clips with a total of 54,105 frames and
403,192 annotated instances, the average consists of 2,460
frames. We differentiate between two use-cases. In the first
task, only the persons in water (floaters and swimmers) are
tracked, it is called MOT-Swimmer. In the second task, all
objects in water are tracked (also the boats, but not people

on boats), called MOT-All-Objects-In-Water. In both tasks,
all objects are grouped into one class. The data set split is
performed as described in section 3.3.

4.4. Multi-Spectral Footage

Along with the data for the three tasks, we provide multi-
spectral images. We supply annotations for all channels of
these recordings, but only the RGB-channels are currently
part of the Object Detection Task. There are 432 images
with 1,901 instances. See Figure 1 for an example of the
individual bands.

5. Evaluations

We evaluate current state-of-the-art object detectors and
object trackers on SeaDronesSee. All experiments can be
reproduced by using our provided code available on the
evaluation server. Furthermore, we refer the reader to the
Supplementary Material for the exact form and uploading
requirements.

5.1. Object Detection

The used detectors can be split into two groups. The
first group consists of two-stage detectors, which are mainly
built on Faster R-CNN [23] and its improvements. Built
for optimal accuracy, these models often lack the inference
speed needed for real-time employment, especially on em-
bedded hardware, which can be a vital use-case in UAV-
based SAR missions. For that reason, we also evaluate on
one-stage detectors. In particular, we perform experiments
with the best performing single-model (no ensemble) from
the workshop report [60]: a Faster R-CNN with a ResNeXt-
101 64-4d [53] backbone with P6 removed. For large one-
stage detectors, we take the recent CenterNet [57]. To fur-
ther test an object detector in real-time scenarios, we choose
the current best model family on the COCO test-dev ac-
cording to [4], i.e. EfficientDet [49], and take the smallest
model, D0, which can run in real-time on embedded hard-
ware, such as the Nvidia Xavier [27]. We refer the reader
to the appendix for the exact parameter configurations and
training configurations of the individual models.

Similar to the VisDrone benchmark [58], we evalu-
ate detectors according to the COCO json-format [32],
i.e. average precision at certain intersection-over-union-
thresholds. More specifically, we use AP=APU=0-5:0.05:095
AP5y =AP"©U=05 and AP;5; =AP"U=075  Furthermore,
we evaluate the maximum recalls for at most 1 and 10
given detections, respectively, denoted AR =AR™=! and
ARy =AR™ =10 Al these metrics are averaged over all
categories (except for “ignored region”). We furthermore
provide the class-wise average precisions. Moreover, sim-
ilar to [27], we report APgg-results on different equidistant
levels of altitudes 'low’ = 5-56 m (L), 'low-medium’ = 55-
106 m (LM), medium’ = 106-157 m (M), 'medium-high’
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Model AP APs; AP;s AR, ARy | S F st Ff B LI | FPS
F. ResNeXt-101-FPN [53] | 304 547 297 186 426 | 781 824 259 443 967 06| 2
F. ResNet-50-FPN [23] 142 301 72 64 177 | 246 541 49 75 892 03| 14
CenterNet-Hourglass104 [57] | 25.6 503 222 17.7 40.1 [ 65.1 73.6 191 481 958 03| 6
CenterNet-ResNet101 [57] | 15.1 364 108 96 214 |168 398 08 1.7 743 0 | 22
CenterNet-ResNet18 [57] 99 218 90 72 197 | 209 219 26 33 819 04| 78
EfficientDet—DO0 [49] 208 37.1 206 115 29.1 [653 551 3.1 33 955 0.1 26

Table 4. Average precision results for several baseline models. The right part contains APso—values for each class individually. All reported
FPS numbers are obtained on a single Nvidia RTX 2080 Ti. The abbreviation F.’ stands for Faster R-CNN. For visualization purposes, the

classes are abbreviated as swimmer(h) — S("), floater(") — F("), boat — B, life jacket — LJ.

= 157-208 m (MH), and ’high’ = 208-259 m (H). To mea-
sure the universal cross-domain performance, we report the
average over these domains, denoted AP5. Similarly, we
report AP5g-results for different angles of view: ’acute’ =
7-23° (A), ’acute-medium’ = 23-40° (AM), *'medium’ = 40-
56° (M), *medium-right’ = 56-73° (MR), and ’right’ = 73-
90° (R). Ultimately, it is the goal to have robust detectors
across all domains uniformly, which is better measured by
the latter metrics.

Table 4 shows the results for all object detection mod-
els. As expected, the large Faster R-CNN with ResNeXt-
101 64-4d backbone performs best, closely followed by
CenterNet-Hourglass104. Medium-sized networks, such as
the ResNet-50-FPN, and fast networks, such as CenterNet-
ResNet18 and EfficientDet- D0, expectedly perform worse.
However, the latter can run in real-time on an Nvidia
Xavier [27]. Swimmers are detected significantly worse
than floaters by most detectors. Notably, life jackets are
very hard to detect since from a far distance these are eas-
ily confused with swimmers' (see Fig. 2). Since there is a
heavy class imbalance with many fewer life jackets, detec-
tors are biased towards floaters.

Table 5 and 6 show the performances for different alti-
tudes and angles, respectively. These evaluations help as-
sess the strength and weaknesses of individual models. For
example, although ResNeXt-101-FPN performs overall bet-
ter than Hourglass104 in AP (54.7 vs. 50.3), the latter
is better in the domain of medium angles (45.2 vs. 49.7).
Furthermore, the great performance discrepancy between
CenterNet-ResNet101 and CenterNet-ResNetl8 in APs
(36.4 vs. 21.8) vanishes when averaged over angle domains
(23.8 vs. 23.1 AP;Y) possibly indicating ResNet101’s bias
towards specific angle domains.

5.2. Single-Object Tracking

Like VisDrone [59], we provide the success and preci-
sion curves for single-object tracking and compare models
based on a single number, the success score. As comparison
trackers, we choose the DiIMP family (DiMP50, DiMP18,
PrDiMP50, PrDiMP18) [9, 14] and Atom [13] because they
were the foundation of many of the submitted trackers to
the last VisDrone workshop [18].

Model L LM M MH H |APy
ResNeXt-101-FPN | 56.8 546 492 65 783 | 60.8
ResNet-50-FPN | 32.8 29.8 235 405 489 | 35.1
Hourglass104 506 520 475 649 732 | 576
ResNet101 202 304 241 351 38.0 | 29.6
ResNet18 238 203 192 293 319 | 249

Do 39.6 380 304 425 545 | 410

Table 5. Results on different altitude-domains. E.g. ResNeXt’s

APs performance in low-medium (LM) altitudes is 54.6 APsg.

Model A AM M MR R | AP
ResNeXtIOI-FPN | 683 551 452 636 515 567
ResNet50-FPN | 32.8 355 327 357 276 | 329
Hourglass104 | 664 421 497 587 469 | 52.76
ResNet101 74 358 205 336 217 | 238
ResNet18 96 295 263 279 22.1 | 23.1

DO 269 470 405 403 368 | 383

Table 6. Results on different angle-domains. For example,
ResNeXt’s APsq performance in medium-right (MR) angles (57-
73°) is 63.6 APso.

Success plot Precision plot

—— DIiMP50 [67.3]

PrDIMP50 [67.0]|

—— PrDiMP18 [65.9] \
“I|— DiMP18 [64.6]

—— Atom [63.8]

—— DiMP50 [86.8]
PrDiMP50 [84.9]

Overlap Precision [%]
=
Distance Precision [%]

—— PrDiMP18 [83.5]
—— DiMP18 [82.7]
—— Atom [82.3]

Overlap threshold Location error threshold [pixels]

Figure 5. Success and precision plots for single-object tracking
task (best viewed in color).

Figure 5 shows that the PrDiMP- and DiMP-family ex-
pectedly outperform the older Atom tracker in both, success
and precision. Surprisingly, PrDiMP50 slightly trails the ac-
curacy of its predecessor DiMP50. Furthermore, all track-
ers’ performances on SeaDronesSee are similar or worse
than on UAV 123 (e.g. Atom with 65.0 success) [9, 14, 13],
for which they were heavily optimized. We argue that in
SeaDronesSee there is still room for improvement, espe-
cially considering that the clips feature precise meta infor-
mation that may be helpful for tracking. Furthermore, in
our experiments, the faster trackers DiMP18 and Atom run
at approximately 27.1 fps on an Nvidia RTX 2080 Ti. How-
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Model ‘ MOTA IDF1 MOTP MT ML FP FN Recall Pren ID Sw.  Frag
FairMOT-D34 [56] 39.0 44.8 23.6 17 17 3,604 9,445 572 T77.8 307 1,687
FairMOT-R34 [56] 15.2 27.6 33.7 6 37 2502 12,592  30.1 68.4 181 807

Tracktor++ [8] 55.0 69.6 25.6 62 4 7,271 3,550 85.5 74.2 165 347
Table 7. Multi-Object Tracking evaluation results for the Swimmer task.

Model ‘ MOTA IDF1 MOTP MT ML FP FN Recall Pren ID Sw.  Frag
FairMOT-D34 [56] 36.5 43.8 20.9 28 49 3,788 20,867 47.2 83.1 447 1,599
FairMOT-R34 [56] 30.5 40.8 27.3 29 127 4,401 28,999 40.2 81.6 285 1,588

Tracktor++ [8] 71.9 80.5 20.1 123 5 7,741 5,496 88.5 84.5 192 438

Table 8. Multi-Object Tracking evaluation results for the All-Objects-In-Water task.

Model | L LM M MH H | APy
F. ResNet-50-FPN | 32.8 29.8 235 405 489 | 35.1
5x Altitude @3[27] ‘ 328 299 262 415 489 | 359
Model | A AM M MR R |AP¥
F ResNet-50-FPN | 32.8 355 327 357 276 | 329
5xAngle@3[27] | 42.0 355 393 357 277 | 36.0

Table 9. Results on different altitude- and angle-domains.

ever, we note that they are not capable of running in real-
time on embedded hardware, a use-case especially impor-
tant for UAV-based SAR missions.

5.3. Multi-Object Tracking

We use a similar evaluation protocol as the MOT bench-
mark [37]. That is, we report results for Multiple Ob-
ject Tracking Accuracy (MOTA), Identification F1 Score
(IDF1), Multiple Object Tracking Precision (MOTP), num-
ber of false positives (FP), number of false negatives (FN),
recall (R), precision (P), ID switches (ID sw.), fragmenta-
tion occurrences (Frag). We refer the reader to [46] or the
appendix for a thorough description of the metrics.

We train and evaluate FairMOT [56], a popular tracker,
which is the base of many trackers submitted to the chal-
lenge [17]. FairMOT-D34 employs a DLA34 [55] as its
backbone while FairMOT-R34 makes use of a ResNet34.
Another SOTA tracker is Tracktor++ [8], which we also use
for our experiments. It performed well on the MOT20 [15]
challenge and is conceptually simple.

Surprisingly, Tracktor++ was better than FairMOT in both
tasks. One reason for this may be the used detector. Track-
tor++ utilizes a Faster-R-CNN with a ResNet50 backbone.
In contrast, FairMOT is using a CenterNet with a DLA34
and a ResNet34 backbone, respectively.

5.4. Meta-Data-Aware Object Detector

Developing meta-data-aware object detectors is difficult
since there are no large-scale data sets to evaluate their per-
formances. However, some works provide promising pre-
liminary results using this metadata [S1, 36, 27]. We pro-
vide an initial baseline from [27] incorporating the meta
data. We evaluate the performances of 5x Altitude @3- and

5x Angle@3-experts, which are constructed on top of a
Faster R-CNN with ResNet-50-FPN, respectively. Essen-
tially, these experts make use of meta-data by allowing the
features to adapt to their responsible specific environmental
domains.

As Table 9 shows, meta data can enhance the accuracy of
an object detector considerably. For example, 5x Angle@3
outperforms its ResNet-50-FPN baseline by 3.1 AP; while
running at the same inference speed. The improvements are
especially significant for underrepresented domains, such
as +9.2 and +6.4 AP5; for the acute angle (A) and the
medium angle (M), respectively, which are underrepre-
sented as can be seen from Fig. 4.

6. Conclusions

This work serves as an introductory benchmark in UAV-
based computer vision problems in maritime scenarios. We
build the first large scaled-data set for detecting and track-
ing humans in open water. Furthermore, it is the first large-
scaled benchmark providing full environmental information
for every frame, offering great opportunities in the so-far
restricted area of multi-modal object detection and track-
ing. We offer three challenges, object detection, single-
object tracking, and multi-object tracking by providing an
evaluation server. We hope that the development of meta-
data-aware object detectors and trackers can be accelerated
by means of this benchmark. Moreover, we provide multi-
spectral imagery for detecting humans in open water. These
images are very promising in maritime scenarios, having the
ability to capture wavelengths, which set apart objects from
the water background.
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