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Abstract

Multi-Source Domain Adaptation (MSDA) aims at trans-
ferring knowledge from multiple labeled source domains to
benefit the task in an unlabeled target domain. The chal-
lenges of MSDA lie in mitigating domain gaps and combin-
ing information from diverse source domains. In most ex-
isting methods, the multiple source domains can be jointly
or separately aligned to the target domain. In this work, we
consider that these two types of methods, i.e. joint and sepa-
rate domain alignments, are complementary and propose a
mutual learning based alignment network (MLAN) to com-
bine their advantages. Specifically, our proposed method
is composed of three components, i.e. a joint alignment
branch, a separate alignment branch, and a mutual learn-
ing objective between them. In the joint alignment branch,
the samples from all source domains and the target domain
are aligned together, with a single domain alignment goal,
while in the separate alignment branch, each source do-
main is individually aligned to the target domain. Finally,
by taking advantage of the complementarity of joint and
separate domain alignment mechanisms, mutual learning is
used to make the two branches learn collaboratively. Com-
pared with other existing methods, our proposed MLAN in-
tegrates information of different domain alignment mecha-
nisms and thus can mine rich knowledge from multiple do-
mains for better performance. The experiments on Domain-
Net, Office-31, and Digits-five datasets demonstrate the ef-
fectiveness of our method.

1. Introduction

The conventional machine learning approaches assume
that the training data and testing data share the same dis-
tribution, so it can be ensured that the model trained with
a large amount of data performs well on the testing data.

{kanmeina, sgshan, xlchen}@ict.ac.cn

[36, 22, 7, 15]. However, in practical applications, the test-
ing data are often distributed differently from the training
one (e.g., comes from different scenes or devices), which
causes significant performance degradation. To get a good
model, one can relabel large quantities of data for each new
scenario, which however is with high cost. Unsupervised
Domain Adaptation (UDA) is an alternative yet low-cost
way to optimize the model for a target domain by transfer-
ring knowledge from the sophisticated labeled source do-
main. In this way, no labeling is needed for a new target
domain, which is low-cost and time-efficient.

Based on the number of source domains, UDA can be
divided into two categories: Single-Source UDA methods
and Multi-Source UDA methods. In this paper, we focus
on Multi-Source Domain Adaptation (MSDA), which aims
at transferring knowledge from multiple labeled source do-
mains to benefit the task in the unlabeled target domain.
This is challenging for two reasons: 1) Domain gaps exist
between any two domains, so the model needs to deal with
diverse inter-domain discrepancies. 2) There are no labels
in the target domain, leading to insufficient supervision on
how to extract complementary information from different
source domains and how to combine them properly.

To address these challenges, recent works mainly at-
tempt to align the distributions of source and target domains
to reduce the domain discrepancies. These methods either
jointly align all domains or separately align each source do-
main and the target domain. The joint domain alignment
methods [53, 48, 17, 50] minimize the discrepancies of all
domains jointly, by using a unique objective to reduce do-
main gaps between the target domain and the combined
source domains. This induces one common classifier that
produces category predictions for all domains. Methods of
this type look for information that is shared across all do-
mains, thus a consensus prediction result for a target sam-
ple can be obtained via the common classifier. However, it
is hard to align multiple different distributions, especially

1890



when domain gaps are notable. Besides, the common infor-
mation decreases when the number of domains increases.
In one word, the joint domain alignment methods take ad-
vantage of feature interaction before decision-making but
suffer from much information loss.

The separate domain alignment methods [49, 32, 54, 33]
instead align the feature distribution of the target domain
with each source domain pair-wise and produce multiple
source-specific classification results for a target sample. At
last, all classification predictions are fused to get a final de-
cision. Methods based on pair-wise alignment strategies
simplify the alignment difficulty and make full use of shared
information between the target and each source domain.
But at the same time, each source domain interacts with the
target domain separately, without exploring the assistance
of other domains when transferring. Therefore, they can uti-
lize more available information, but each domain makes de-
cisions rather independently, which cannot utilize the com-
plementary information between multiple source domains.

The above analysis shows that the joint and separate do-
main alignment methods are complementary in terms of
their advantages. So in this paper, we present a mutual
learning based alignment network (MLAN) to combine the
two types of approaches for Multi-Source Domain Adap-
tation. Our proposed MLAN contains three modules: a
joint alignment branch, a separate alignment branch, and
a mutual learning objective between them. The joint and
the separate alignment branches mitigate domain discrepan-
cies jointly and separately, and the mutual learning module
is designed to make the two branches utilize their comple-
mentarity for better results. In the mutual learning module,
categorical and logits mutual learning objectives are pro-
posed to make the joint and separate alignment branches
fully interact. Specifically, categorical mutual learning is
designed to enable the two branches to communicate their
highly-confident predictions, while logits mutual learning
is designed for communicating about those lowly-confident
predictions.

Our contributions are summarized as follows:

* We consider the complementarity of the joint and sep-
arate domain alignment methods and design a mutual
learning network to utilize their complementarity for
MSDA. Specifically, a mutual learning module con-
sisting of categorical and logits mutual learning objec-
tives is designed to guide the collaborative learning be-
tween joint and separate domain alignment branches.

¢ Our method is evaluated on DomainNet, Office-31,
and Digits-five datasets, and achieves state-of-the-art
results.

2. Related Work

In addition to Multi-Source Domain Adaptation, our
work is also related to Single-Source Unsupervised Domain
Adaptation in terms of minimizing domain discrepancies.
Besides, our mutual learning module is related to model dis-
tillation. All these related works are detailed below.

Single-Source Domain Adaptation. By merging all
data from source domains and regarding them as a larger
source domain, Single-Source UDA methods are also ap-
plicable for the MSDA problem. In recent years, deep
Single-Source UDA methods are mainly instance-based and
feature-based. The instance-based methods [21, 9, 1] aim
to align distributions of the source and target domains at
the image level by using generative adversarial networks
(GANs) [5]. The key idea of the feature-based methods
[23, 26, 3, 31, 24, 10, 13, 43, 6, 11] is to map data from
two domains into a common space and align their distribu-
tions at the feature level. Among the feature-based methods,
the gradient inversion layer is cleverly designed by DANN
[3] to extract the domain-invariant features. Furthermore,
CDAN [24] and MADA [31] apply the category information
in the adversarial process to align feature distributions at
both the domain and class levels. GSDA [11] further mod-
els the synchronization relationship among the local distri-
bution pieces and global distribution. Besides, SRDC [43]
and RSDA [6] maintain the intrinsic discrimination of target
data when aligning feature distributions.

Multi-Source Domain Adaptation. MSDA methods
mainly contain joint domain alignment ones[53, 48, 18] and
separate domain alignment ones [49, 32, 54, 33]. For the
joint domain alignment methods, interlinked with Single-
Source UDA approaches, MDAN [53] aims to learn fea-
ture representations that are invariant to the multiple do-
main shifts while still being discriminative for the learning
task. LtC-MSDA [48] utilizes class prototypes of differ-
ent domains to construct a knowledge graph and combines
information from different domains by using Graph Con-
volutional Networks (GCN). DRT [18] adapts the model’s
parameters for each sample to simplify the joint alignment
between source domains and target domain. The separate
domain alignment methods are mainly inspired by the dis-
tribution weighted combining rule [27]. DCTN [49] min-
imizes the discrepancy between the target and each source
domain pair-wise. It produces multiple classification results
for a target sample by different source-specific classifiers,
and these results are then fused to get a final prediction.
M3SDA [32] argues that there are also distribution differ-
ences between source domains, so the constraint of align-
ing different source distributions is also taken into account.
MDDA [54] considers distances on both the domain and
instance levels, so source samples similar to the target are
selected and used to finetune the source-specific classifiers.
Despite considerable progress, existing works only consider
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Figure 1: The architecture of our proposed MLAN. Our network is composed of three modules: a joint alignment branch,
a separate alignment branch, and a mutual learning objective between them. The joint alignment branch aligns the target
domain and all source domains jointly, while the separate alignment branch aligns the target domain and each source domain
separately. Based on the complementarity of the two branches, the categorical mutual learning objective is designed for
collaborating between those highly-confident samples from two branches, while logits mutual learning objective is designed
for collaborating between those lowly-confident samples from two branches.

one type of alignment mechanism, and ML-MSDA [20] fur-
ther explores the complementarity between different align-
ment strategies leading to better domain adaptation perfor-
mance. In this work, we use mutual learning to combine
the two types of approaches, which shares a similar idea as
ML-MSDA [20] but largely differs from it in the design of
the mutual learning module.

Model Distillation. The mutual learning module in our
method is associated with model distillation. Model distilla-
tion [8] is an effective and widely used technique to transfer
knowledge from a teacher to a student network in a vari-
ety of tasks [51, 2, 42, 14, 19, 35, 40]. Usually, the well-
trained large model is used as the teacher, and the small
model is used as the student. Besides, with a collection
of student networks, DML [52] is proposed to make them
learn collaboratively and teach each other throughout the
training process. Inspired by DML [52], mutual distillation
is exploited to design our logits mutual learning to make
the joint and separate alignment branches learn collabora-
tively. In particular, the logits mutual learning loss in our
work is unidirectional for a single sample to accommodate
the unsupervised task, which is slightly different from the
bidirectional one used in DML [52].

3. Method
3.1. Overview

In unsupervised multi-source domain adaptation, there
are N labeled source domains and one unlabeled target do-
main, of which each draws from different distributions. The
labeled images from the j** source domain are written as

(Xs,,Ys,), where X, = {a!

Sj

X, | .
}i—y denotes the images
N .

and Y;; = {y, }L:‘fl denotes the category labels. Simi-

larly, the target image set is denoted as X; = {x;}‘é;‘ All
domains share the same category set, and M is the total
number of classes. The goal of MSDA is to design a clas-
sifier that works for the target domain, by utilizing all the
labeled source data and unlabeled target data.

Aiming for Multi-Source Domain Adaptation (MSDA),
we propose MLAN to utilize the complementarity of joint
domain alignment and separate domain alignment. The
overall framework is shown in Fig.1. Our proposed MLAN
consists of three modules, including a joint alignment
branch, a separate alignment branch, and a mutual learning
objective between them. In this section, we will first intro-
duce the two branches and then present the mutual learning
method that allows them to learn collaboratively.
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Algorithm 1 Algorithm for MLAN

Input: labeled images from NN source domains {Xs,,Ys, };V:l;
unlabeled images of the target domain X;; feature extrac-
tors F' = {7 F*¢P}; classifiers C' = {C7™, C*°?}; dis-
criminators D = {Dj nt D*eP}; confidence threshold 7; loss
weight o; iteration number IterA, IterB.

Output: well-trained feature extractors F'™*, classifiers C'*, and
discriminators D*.

1: Pre-train C and F using source data to get a warm-up.

2: while not converged do

3: /I Adversarially Training Each Branch

4: for 1:IterA do

5: Calculate the adversarial and classification loss of the
joint alignment branch by Eq.(1)(2)(3);

6: Calculate the adversarial and classification loss of
each sub-branch of the separate alignment branch by
Eq.(4)(5)(6):

7: Backward to update D and F'.

8: end for

9: /I Categorical and Logits Mutual Learning

10: Calculate pseudo labels for the target samples to get

(XP,Y}) by source-guided K-means clustering.
11: for 1:IterB do

12: Calculate the categorical mutual learning loss by
Eq.(12) with highly-confident samples.

13: Calculate the logits mutual learning loss by Eq.(15)
with lowly-confident samples.

14: Calculate the classification loss of the joint and sepa-
rate alignment branches by Eq.(3)(6).

15: Backward to update C' and F'.

16: end for
17: end while

3.2. The Joint Alignment Branch

The joint alignment branch minimizes the discrepancies
of all domains jointly, by aligning the target domain with
the combined source domains. It contains a feature extrac-
tor F™t, a common classifier C7™ for the category classi-
fication of all domains, and a domain discriminator D¢,

Specifically, given an image z, F’"' encodes = as
fi™ = Fi(z). On one hand, the discrepancies among
all domains should be minimized, so the samples from the
target domain can be classified by the common classifier
C7™ based on the domain-agnostic feature f7™. To reduce
the domain discrepancies, an adversarial learning strategy is
exploited, i.e., a domain discriminator Dint s designed to
distinguish the target domain and source domains, while the
feature extractor F7™! tries to confuse the domain discrimi-
nator to get domain invariant feature. For the discriminator
DIt the discriminating loss is:

LImH(DI™M) = Egex, [DI™(77, p7") — 0]

. . . 1
+Ez€Xt [Djnt(f]nt7pjnt) _ 1J2 .

where X is the set of samples from all source domains,
and p’™ e RIM| is the softmax output by feeding f7"* into
classifier C7*. The loss is a combination of LSGANs [28]
and CDAN [24]. Specifically, taking a feature and its cor-
responding category probabilities as inputs, D’/"* classifies
domains by outputting O and 1 when they come from the
source domains and the target domain, respectively.
Then, for the feature extractor F7™t, the confusing loss
is:
. . . ) ) 112
Ly (F™) = Egex, [Df"t(fﬂm,pﬂm) - 5}
(@)

. ) ) 172
+E3¢6Xt I:D]nt(fjnt7pjnt) _ §:| .

FI"t tries to confuse DI by forcing it to output 5 when-
ever the feature and the category probabilities come from
the target domain or not, to generate domain-agnostic fea-
tures that can’t be distinguished by D™,

On the other hand, the extracted feature should be dis-
criminative for the classification task, so a classification loss
is imposed on the softmax output of labeled source domain
samples based on the classifier C7"¢:

N
n ) ) 1 )
LIHCT FIM) = =3 Eyecx,, vip) e @™ 0)] s G)
j=1

where L. is the cross-entropy loss function between the
network prediction p’™ and the ground truth label y.

3.3. The Separate Alignment Branch

The separate alignment branch aligns the target domain
and each source domain in a pair-wise manner. This branch
consists of N sub-branches, and each sub-branch is respon-
sible for domain alignment between the target domain and
one source domain.

Specifically, for the j* sub-branch, the feature f; ep
from the feature extractor F;”” is enforced to be domain
invariant as well as discriminative. It is constrained by clas-
sification loss together with adaptation loss similar as that in
Eq.(2) and (3) of the joint alignment branch. Specifically,
the domain classification loss for D" is:

. 2
[:ZZZZ,J (D;ep) _ ExEXSj [D;ep(f;ep7pjep) _ 0] “
2
+Ezex, [Djep(ffep,pjep) - 1] ;
and the confusing loss for F;;” is:
) 112
sep, se Se. se Se
Eadlzﬂ(Fj P) :Ezeij {Dj P(fj P pSePy 5}
12 ®
sep, psep __sep
+]ECL‘EXt |:Dj (f] 710]- )_§:| .
The classification loss of the ;¢ branch is:
LTI CEP ) = B yex, vy (L@ )]s ©)

where p;” € RIM| s the softmax output from C;7.
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As there are multiple classifiers, one for each source-
target pair, the final prediction of a given target sample is
obtained by combing the predictions from all classifiers.
Different from the straightforward average of multiple pre-
diction results, in our method, the final result is obtained
as the weighted linear combination of multiple prediction
results from NV sub-branches:

N
PP = wip, @)
j=1

where p>? € RIM! is the predicted class probabilities of the

4" sub-branch, and wj is the weight for prediction from the

4" sub-branch which considers the similarity between the

jt" source domain and target domain as well as the predic-

tion certainty for each sample. Specifically, w; is calculated
as below: _
wszmwger

Wj = ®)
N wslmwce'r
i=1 W W,

Here, wj»im reflects the similarity between the jth source
domain and the target domain, and it should be large if the

two domains are similar. So, it is calculated as that in [49]
L8ep.d (D;;ep)

ie. wj-im = et w;" denotes the prediction
k=1 Laar (Pr) ver
certainty, which is calculated as w?” — ¢ Hj ), where

H(+) is the entropy of a probability distribution. Note that
w;°" varies depending on different samples, and the sample
subscript is omitted for simplicity.

3.4. Mutual Learning

The mutual learning module is designed to make the two
branches complement each other for better results. The
two branches not only can authenticate each other on those
highly-confident target domain samples but also can com-
municate about those uncertain ones. So, the mutual learn-
ing module is equipped with two kinds of objectives aim-
ing for dealing with highly-confident and lowly-confident
target domain samples respectively, i.e. categorical mutual
learning objective and logits mutual learning objective. The
overall loss of mutual learning is:

Lmut(ca F) = Ecat(C7 F) + Oé'clog(cv F)7 (&)

where L. (C, F') is the loss for categorical mutual learn-
ing, L04(C, F) is for logits mutual learning, and « is a hy-
perparameter that balances two losses.

Categorical Mutual Learning. When the joint and sep-
arate alignment branches give consistent predictions to a
target sample and at least one branch with high confidence,
we can safely think that the classification result for this
sample is reliable. Under this circumstance, the pseudo la-
bel is directly assigned to the target sample for training the
two branches. To generate more robust pseudo labels, the
pseudo label of a target sample is assigned by considering
both the prediction p/™!/p*¢P from source classifiers and the
clustering result of the target domain detailed as below.

Step 1: categorical prediction from the joint align-
ment branch. Since the domain discrepancies between
source and target domains are reduced, so the labeled source
domains and unlabeled target domain are both used for cal-
culating categorical prediction of target domain samples.
K-means clustering is firstly applied on target domain fea-
tures, with the cluster centers initialized by M source do-
main centers (e.g. the k" source center is the average of
all features of class k in the source domains). This type of
clustering is denoted as source-guided K-means clustering.
After clustering, the updated category centers are denoted
as {¢}""}M | Then, each target sample is assigned with the
class label according to its nearest cluster center as follows:

it es<cos((9{;nt)

q, = i (10)
M s J
d>im €’ cos(6:77)

< jnt cj~nt> . L
= W denotes the cosine similar-
C'Ic

ity between the target feature f Jnt and the k" cluster center
c,int, and s is a hyperparameter which is set to 20 following
the works for face recognition [34, 47]. Thus ¢mt e RIMI
represents the predicted category probabilities for the target
sample, with the k*" dimension corresponds to the proba-
bility it belongs to category k.

Step 2: categorical prediction from the separate
alignment branch. Similar as that in step 1, each sub-
branch firstly does the source-guided K-means clustering
individually with ¢;*” denoting the predicted category prob-

where cos(6]"")

abilities of the j*" sub-branch. Then, the final prediction
by considering all the separate alignment branches is calcu-
lated similarly to that in Eq.(7):

N
¢ =Y wig;”, (1)
j=1

where w; is calculated similarly to that in Eq.(8).

Step 3: pseudo category labels for those confident tar-
get domain samples. Now, for the target sample, two pre-
dicted category labels 7"t and §*¢P are obtained from the
two branches, with ¢’™ and ¢°°”? denoting corresponding
predicted category probabilities. If the two branches give
consistent predictions (i.e. §/" = **?) and the maximum
category probability of either branch exceeds ~, the pseudo
label of this target domain sample is assigned as 377,

For these target domain samples assigned with category
pseudo labels (X7, Y/}F), their classification loss is calcu-
lated as:

Leat(C, F) = LIMH(CI™E FInty 4 £32(C5eP F5eP) (12)

where
Lt (CM ) =By gyeixp gy Lee@ ™ )], (1)
and
N
£z(elzt3(csep’ FseP) = ZE(I,Q)G(Xf,YtP) [ﬁce(p;ep,ﬁl))] . (14
=1
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Logits Mutual Learning. When the two branches make
different decisions, or they make consensus predictions but
both with low certainty, the pseudo labels are no longer re-
liable. In this circumstance, i.e. when target samples have
not been assigned with pseudo labels, mutual distillation is
introduced to make them learn collaboratively.

To encourage each branch to learn the advantage of the
other, the branch with higher confidence prediction super-
vises the other. Therefore, the distillation is unidirectional
for a given target sample, while bidirectional for the whole
distillation process. Here, the entropy of predicted cate-
gory probabilities is used to measure the confidence, with
lower entropy meaning higher confidence. For example, for
a given target sample, if the joint alignment branch gets a
lower entropy prediction, then its classifying output is used
to supervise the separate alignment branch, and vice versa.

Specifically, Kullback Leibler (KL) divergence loss is
used to constrain the logits of two branches here. The logits
mutual learning loss is:

L1og(C, F) = Eye (o1 (prer) < (pint )} K LP*P[[P7™")
It |per),

15)
+ Epefalm(pint)y<m(prer)} K L(p
where p’"* and p*°? are the predicted category probabilities
from the two branches. K L(-) is the KL Divergence be-
tween two probability distributions, and H (+) is the entropy
of a probability distribution. The first term of Eq.(15) is
the logits mutual learning loss when the separate alignment
branch is more confident than the joint alignment branch,
while the second term is the logits mutual learning loss
when the joint alignment branch is more confident than the
separate alignment branch.

With Eq.(12) and Eq.(15), we can get the overall loss
of the mutual learning module, which is shown in Eq.(9).
The whole model C, F, D can be trained by optimizing the
mutual learning module and the two branches alternately,
as in Alg.1. The mutual learning module is only used for
training, and during testing, the final prediction of a target
domain sample is calculated as the average of p/™* and p*°P
from the joint and separate alignment branches:

p=05x(p"" +p*P). (16)

4. Experiments

We conduct experiments on three commonly used
datasets including DomainNet, Office-31, and Digits-five to
compare the proposed method with existing ones. Besides,
we carry out the ablation study on DomainNet to evaluate
the effectiveness of our method design.

4.1. Datasets and Settings

Datasets. DomainNet [32] is a large scale dataset, with
six domains, i.e. clipart (clp), infograph (info), painting
(pnt), quickdraw (qdr), real (rel) and sketch (skt). There

are 345 categories, and ~0.6 million images in this dataset.
Office-31 [37] is a classical and widely used dataset with
4652 images and 31 categories. It consists of objects from 3
different domains, i.e. Amazon (A), Webcam (W) and Dslr
(D). Digits-five contains five digit sub-datasets: MNIST
(mt) [16], MNIST-M (mm) [4], SVHN (sv) [29], USPS (up)
[12], and Synthetic Digits (syn) [4]. Each sub-dataset is
considered as one domain, containing images of numbers
ranging from 0 to 9. We follow the same setting in LtC-
MSDA [48] to sample the data for Digits-five and use the
default train/test setup for other datasets. All testing data
are used for evaluations as default.

Implementation Details. The proposed algorithm is
implemented in PyTorch. For model architecture, LeNet,
ResNet-50, and ResNet-101 are exploited as the back-
bones for Digits-five, Office-31, and DomainNet respec-
tively, which are the same as the compared methods. Each
feature extractor includes a shared backbone and several
branch-specific layers as shown in Fig.1. Note that the
model size (number of parameters) of our proposed MLAN
is only about 1.07 times that of DCTN [49] when using
ResNet-101 as the backbone, i.e. similar efficiency. For
the training process, LeNet is trained from scratch. ResNet-
50 and ResNet-101 are initialized by ImageNet pre-trained
weights. All models are firstly trained with only source data
to get a warm-up. Then, the mutual learning module and the
two branches are optimized alternately as in Alg.1. Adam
optimizer is used to update LeNet with the learning rate of
2 x 1074, and to update ResNet-50 and ResNet-101 with a
small learning rate of 10~°. The threshold v for determin-
ing pseudo labels is set to 0.9 as in [49, 38], and the weight
« for balancing the categorical and logits mutual learning
losses is set to 1.0 as discussed in [8]. As for training time,
it only takes a few hours to train a transferring task after the
warm-up for a small dataset ( e.g. Digits-five or Office-31),
and when the dataset is larger, the training time becomes
longer (e.g. an average of 30 hours for DomainNet).

4.2. Comparison with State-of-the-arts

Experiments on DomainNet. We first compare the pro-
posed method to the existing ones on the most challenging
dataset DomainNet. Three categories of DA approaches are
compared including Single-Best methods, Source-Combine
methods, and Multi-Source methods. The comparison re-
sults are shown in Tab.1. As can be seen, Source-Combine
methods are better than Single-Best methods, and Multi-
Source methods perform the best. This indicates that the
data of multiple source domains provides richer information
for the task of the target domain, and elaborately designed
algorithms can make better use of multiple source domains.

Among Multi-Source methods in Tab.1, MDAN [53],
LtC-MSDA [48] and DRT+ST [18] are based on joint do-
main alignment, and other methods such as DCTN [49],
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Table 1: Comparison with existing methods on DomainNet dataset in terms of top-1 classification accuracy (mean+std%)

Standards Methods — clp — inf — pnt — qdr — rel — skt Avg
Source-only 39.6 £ 0.6 82+0.38 339+ 0.6 11.8+0.7 41.6 £0.8 23.1+0.7 26.4

DAN [23] 39.14+0.5 114+ 0.8 3334+ 0.6 162+ 04 42.1+0.7 29.7+0.9 28.6

Single JAN [26] 353407 9.1+0.6 32.54+0.7 143+ 0.6 43.1+0.8 257+ 0.6 26.7
Best DANN [3] 379 £ 0.7 11.4+09 3394+ 0.6 137+ 0.6 41.5+0.7 28.6 + 0.6 27.8
ADDA [44] 39.54+0.8 145+ 0.7 29.1+0.8 149+0.5 41.94+0.8 30.7 + 0.7 28.4

MCD [39] 42.6+0.3 19.6 + 0.8 426+ 1.0 3.8+ 0.6 50.5+ 0.4 33.8+0.9 322

Source-only 476 £0.5 13.0£04 38.11+0.5 133104 51.9+09 337105 329

DAN [23] 454 +0.5 12.8 £ 0.9 36.2+0.6 153+04 48.6 + 0.7 34.04+0.5 32.1

Source JAN [26] 409+ 0.4 11.14+0.6 354405 12.1+0.7 458 + 0.6 3234+0.6 29.6
Combine DANN [3] 455+ 0.6 13.1 +0.7 37.0+0.7 13.24+0.8 48.9 + 0.7 31.8 £ 0.6 32.6
ADDA [44] 475+0.8 114 +0.7 36.7 £ 0.5 147+ 0.5 49.1+0.8 335405 322

MCD [39] 543 4+ 0.6 22.1+0.7 457+ 0.6 7.6 +0.5 58.4+ 0.7 435+ 0.6 38.5

MDAN [53] 524+0.6 21.3+0.8 469+ 04 8.6+ 0.6 549 +0.6 46.5+0.7 384

M3SDA [32] 58.6 £ 0.5 26.0 £ 0.9 5234+ 0.6 6.3+ 0.6 62.7+0.5 49.5+0.8 42.6

MDDA [54] 59.4 4+ 0.6 23.8+0.8 53.24+0.6 12.5+0.6 61.8+0.5 48.6 +£0.8 43.2

Multi- ML-MSDA [20] 61.44+0.8 262 +04 51.9+0.2 19.1+0.3 57.0+ 1.0 50.3 +0.7 443
Source LtC-MSDA [48] 63.1+£0.5 28.7+0.7 56.1 +0.5 163+ 0.5 66.1 + 0.6 53.8+0.6 474
DCTN [49] 69.6 + 0.7 2754+ 0.6 573+ 0.6 17.8 £ 0.5 725+ 0.6 553405 49.8

DRT+ST[18] 71.0+0.2 31.6 + 0.4 61.0 +0.3 1234+04 71.44+0.2 60.7 + 0.3 51.3

MLAN (ours) 714+ 0.2 293+0.3 59.5+0.2 284+ 0.5 73.9 + 0.1 587+ 04 53.5

Table 2: Classification accuracy (%) on Office-31 dataset

Standards Methods —+D | »w | »A | Avg
Source-only 99.3 | 96.7 | 62.5 | 86.2

DDC [45] 982 | 950 | 674 | 86.9

Single DAN [23] 99.5 | 96.8 | 66.7 | 87.7
Best CORAL [41] 99.7 | 98.0 | 653 | 87.7
DANN [3] 99.1 | 969 | 68.2 | 88.1

RTN [25] 99.4 | 96.8 | 66.2 | 87.5

Source DAN [23] 99.6 | 978 | 67.6 | 883
Combine CORAL [41] 99.3 | 98.0 | 67.1 | 88.1
DANN [3] 99.7 | 98.1 | 67.6 | 885

DCTN [49] 993 | 982 | 642 | 87.2

Multi- M3SDA [32] 99.3 | 98.0 | 67.2 | 88.2
Source LtC-MSDA [48] | 99.4 | 97.7 | 68.6 | 88.6
M3SDA-B[32] | 99.6 | 99.3 | 69.4 | 89.5

MFSAN [55] 99.5 | 985 | 72.7 | 90.2

MLAN (ours) 99.6 | 98.8 | 75.7 | 914

M?3SDA [32], and MDDA [54] are based on separate do-
main alignment. ML-MSDA [20] is a method that also
combines two domain alignment mechanisms. We re-
implement DCTN [49] on DomainNet, achieving an aver-
age accuracy of 49.8% with a long time (30 epochs) warm-
up, and the results of other compared methods are directly
copied from the works [48, 18].

Our method MLAN achieves an average accuracy of
53.5% on 6 transfer tasks of DomainNet, which exceeds
existing methods by a large margin. MLAN outperforms
the state-of-the-art method of joint domain alignment i.e.
DRT+ST [18] by 2.2% and state-of-the-art method of sep-
arate domain alignment i.e. DCTN [49] by 3.7%, which
shows that combining the two domain alignment mecha-
nisms is useful. Also, our method is 9.2% better than ML-
MSDA [20], demonstrating the superiority of the mutual
learning module in our MLAN. In addition, there is a large
difference between MLAN and other approaches for the ‘—
qdr’ task. Based on some initial investigation, we think this
improvement comes from two aspects, mutual learning and
pseudo labeling on the target domain. The effectiveness of

mutual learning has been analyzed in Tab.4. Besides, when
there is a large gap between the ‘qdr’ target domain and
other source domains, our source-guided K-means cluster-
ing can utilize guidance from the source domains and the
structure information from the target domain, to effectively
improve the quality of the pseudo labels.

Experiments on Office-31. As shown in Tab.2, on
Office-31, we compare the proposed method to recent meth-
ods based on the ResNet-50 backbone. Among Muti-
Source methods, DCTN [49], M3SDA(-3) [32], and MF-
SAN [55] utilize the separate domain alignment, and the
experimental results are directly copied from the works
[55, 30, 46]. LtC-MSDA [48] applies the joint domain
alignment, and its results are obtained by re-implementing
the method on Office-31 dataset based on the official open-
source code. On the whole, the conclusion on Office-31 is
similar to that on DomainNet, but with smaller performance
gaps between different methods as Office-31 is easier than
DomainNet. Specifically, our proposed MLAN achieves
an average classification accuracy of 91.4%, which out-
performs other existing methods. In particular, our model
achieves 3% accuracy improvement than the state-of-the-art
method MFSAN [55] on the ‘— A’ task. The performance
of MLAN on Office-31 also shows the superiority of com-
bining two domain alignment methods.

Experiments on Digits-five. The experimental results
are shown in Tab.3. Digits-five only contains 10 classes of
numbers, which is much easier than the object datasets. For
some tasks such as ‘— mt’ and ‘— up’ , the performance
is almost saturated. So, most methods perform well on this
dataset. Even so, our method still suppresses the other four
Multi-Source methods and achieves comparable results as
DRT+ST [18], showing the advantage of our method.
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Table 3: Comparison with existing methods on Digits-five dataset in terms of top-1 classification accuracy (mean=std%)

Standards Methods — mm — mt — up — sV — syn Avg
Source-only 592+0.6 | 972+£0.6 | 847+0.8 | 777108 | 852+0.6 | 80.8

Single DAN [23] 63.8+£0.7 | 963£0.5 | 942+09 | 625+0.7 | 854+0.8 | 80.4
Best CORAL [41] 625+0.7 | 972+0.8 | 935+0.8 | 644+0.7 | 828 +0.7 | 80.1
DANN [3] 7134+£06 | 97.6+08 | 9234+09 | 63.5+08 | 854+0.8 | 82.0

ADDA [44] 71.6+05 | 979408 | 92.84+0.7 | 7554+0.5 | 865+ 0.6 | 84.8

Source-only 634+0.7 | 905+08 | 88.7£09 | 63.5+09 | 824£0.6 | 77.7

DAN [23] 679+0.8 | 975+£0.6 | 935+0.8 | 67.8+0.6 | 86.9+0.5 | 82.7

Source DANN [3] 708 £08 | 979+0.7 | 9354+08 | 685+£0.5 | 8744+09 | 83.6
Combine JAN [26] 659+0.7 | 972+£0.7 | 954£0.8 | 753£0.7 | 86.6 £0.6 | 84.1
ADDA [44] 723407 | 979406 | 93.1+08 | 75.0+0.8 | 86.7+ 0.6 | 85.0

MCD [39] 725407 | 96.24+08 | 9534+0.7 | 7894+0.8 | 87.54+0.7 | 86.1

MDAN [53] 69.5+03 | 980£09 | 924+0.7 | 692+0.6 | 874+0.5 | 833

DCTN [49] 705+£12 | 962+0.8 | 9284+03 | 77.6 £ 04 | 86.8+0.8 | 84.8

Multi- M3SDA [32] 728+ 1.1 | 9844+0.7 | 96.1+08 | 81.3+09 | 89.6+0.6 | 87.7
Source MDDA [54] 786+£06 | 98.8+04 | 9394+05 | 793+£0.8 | 89.7+0.7 | 88.1
LtC-MSDA [48] | 856£0.8 | 990+£04 | 983+04 | 832+0.6 | 93.0+0.5 | 91.8
DRT+STI[18] 81.0+03 | 993+0.1 | 984+0.1 | 86.7+04 | 93.9+0.3 | 91.9

MLAN (ours) 86.3+0.3 | 98.6+0.0 97.5+£02 | 828+0.1 | 93.0+£0.3 | 91.6

Table 4: Ablation study for the mutual learning module

Methods — clp| — inf| — pnt| — qdr| — rel| — skt | Avg
joint 704 | 282 | 58.1 222 | 72.6 | 559 [513
separate 70.0 | 285 | 58.6 | 255 | 725 | 56.7 |51.9
w. categorical | 71.1 | 28.8 | 58.9 264 | 73.7 | 58.0 |52.8
MLAN 714 | 293 | 595 | 284 | 739 | 58.7 |53.5

4.3. Ablation Study and Sensitivity Analysis

Effectiveness of Categorical and Logits Mutual
Learning. Tab.4 investigates each part of our MLAN
method on DomainNet. ‘joint’ and ‘separate’ mean the joint
alignment branch and the separate alignment branch, re-
spectively. To compare more fairly, we train them with their
own pseudo labels generated by source-guided K-means
clustering. ‘w. categorical’ combines the two branches with
only the categorical mutual learning objective, and MLAN
further adds the logits mutual learning objective.

As shown in Tab.4, MLAN performs 2.2% better than
‘joint’ and 1.6% better than ‘separate’. Also, ‘w. cate-
gorical’ is worse than MLAN but better than both of the
two branches. These results show that our mutual learning
module is effective. Besides, both the categorical and the
logits mutual learning objectives improve the performance,
demonstrating that the two branches are complementary on
highly-confident samples as well as lowly-confident sam-
ples. More analyses of the complementarity between the
two branches are shown in the supplementary material.

Sensitivity of Hyperparameters. Fig.2a and Fig.2b
show the sensitivity of two hyperparameters « in Eq. (9)
and the threshold ~ for pseudo labeling. As can be seen,
MLAN is not sensitive to o when it varies around 1. The
performance decreases when it is 0, illustrating the logits
mutual learning for those lowly-confident samples is bene-
ficial. For ~, there is a clear upward trend when  becomes
larger, which means that it is better to select fewer samples
for pseudo labeling to avoid wrong labeling.

58.51
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Figure 2: Sensitivity analysis experiments of « and ~ (All
results are reported on the ‘— skt’ task of DomainNet).

5. Conclusion and Future Work

This work presents a new mutual learning method for
MSDA to utilize the complementarity of the joint and sep-
arate domain alignment mechanisms. Categorical and log-
its mutual learning objectives are designed to make the two
types of methods learn collaboratively. Extensive experi-
ments demonstrate the superiority of our method. In the fu-
ture, we will explore the complementarity from more chal-
lenging domains with larger domain discrepancies.
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