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Abstract
Although few-shot meta learning has been extensively

studied in machine learning community, the fast adaptation
towards new tasks remains a challenge in the few-shot learn-
ing scenario. The neuroscience research reveals that the ca-
pability of evolving neural network formulation is essential
for task adaptation, which has been broadly studied in recent
meta-learning researches. In this paper, we present a novel
forward-backward meta-learning framework (FBM) to facil-
itate the model generalization in few-shot learning from a
new perspective, i.e., neuron calibration. In particular, FBM
models the neurons in deep neural network-based model as
calibrated units under a general formulation, where neuron
calibration could empower fast adaptation capability to the
neural network-based models through influencing both their
forward inference path and backward propagation path. The
proposed calibration scheme is lightweight and applicable
to various feed-forward neural network architectures. Ex-
tensive empirical experiments on the challenging few-shot
learning benchmarks validate that our approach training
with neuron calibration achieves a promising performance,
which demonstrates that neuron calibration plays a vital role
in improving the few-shot learning performance.

1. Introduction
Learning to fast adaptation is an essential ability of hu-

man intelligence, with which humans can draw inferences
about new tasks by effectively leveraging their previously
acquired knowledge and prior learned skills. In stark con-
trast, it is a challenging task for artificial learning systems
to effectively deal with new tasks with limited amounts of
inputs. For example, the training of deep neural network
models relies heavily on large-scale labeled training data
in order to generalize well on the targets. To address this
challenge, transfer learning [29] has been proposed exploit-
ing source tasks to train a base-learner and then fine-tune
the model to learn target task through knowledge transfer.
Specifically, multi-task learning [5] is regarded as a form of

inductive transferring learner. The inductive bias is distilled
by the auxiliary tasks and then derives the hypothesis of
the targets. Nonetheless, aforementioned techniques require
strong assumptions over the training model. For instance, a
common form of inductive bias in multi-task learning is `1
regularization that results in a sparse solution. While these
approaches can partially facilitate knowledge adaptation, the
biased learner toward a specific hypothesis degrades model
generalization. This motivates us to empower generaliza-
tion capability to the model from a different perspective,
such as learning an effective strategy of fast adaptation in
meta-learning schemes.

Recent meta-learning algorithms [10, 9] have studied how
deep neural network-based models distill the knowledge of
previous learned tasks and then adapt to new tasks with only
a few examples [41, 8]. Recent studies have adopted distinct
perspectives of neural network training process to facilitate
fast adaptation in few-shot learning scenario. For example,
structure-based models [22, 38] generally learn the update
direction and step-size for individual tasks via operating
task-specific parameterization of neural model. In contrast,
context-based models [25, 32] typically guide the learning
process via exploiting context input of specifical tasks. De-
spite their promising properties under certain circumstances,
these algorithms suffer from two drawbacks: a) learning
framework requires a bunch of similar tasks to maximize
the generalization of multiple tasks; b) training input is typi-
cally optimized by the fix-structured feature extractor, which
might be prone to over-fitting in few-shot learning scenarios.

This work tackles the few-shot learning problem from a
novel view that is distinct to all the aforementioned attempts,
i.e., seeking a better model generalization with neuron cal-
ibration. Specifically, we refer to neuron calibration as a
process of mathematically adjusting the transformation func-
tions in the layers of neural networks [11]. Considering that
task adaptation in contemporary deep learning-based model
is closely related to the plasticity of deep neural networks,
our proposed neural calibration approach aims to regularize
the learning process to facilitate task adaptation via posing
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a trainable soft mask on both the latent feature and model
parameter, which thence influences the feed-forward infer-
ence pass and the backward propagation pass simultaneously.
This work is inspired by the earlier work that seeks optimal
model generalization through calibrating neural network pa-
rameters or labels [36], as well as a recent continual learning
work that learns feature calibration via retaining task-specific
embedding [30]. Compared to those works, we attempt to
solve few-shot learning problem with a general calibration
formulation in meta-learning schema [4]. Instead of reserv-
ing task-specific parameters for preserving task knowledge,
we learn the task-agnostic calibration formulation that could
be applied to various feed-forward neural network architec-
tures. The contributions of our work are three-fold:

• We introduce a general and light-weight neuron cali-
bration approach to tackle few-shot learning problems
with feed-forward deep neural network-based function
approximation.

• A novel meta-learning paradigm is formulated to
train the calibrated model with a bi-level optimization
scheme to achieve a better generalization in few-shot
learning scenarios.

• Extensive empirical experiments on the challenging
few-shot learning benchmarks demonstrate the effec-
tiveness of the proposed algorithms with significant
margins on all the evaluation datasets.

2. Related Work
It is a challenging task to design an effective model in few-

shot learning scenario [25], since the distributions of the new
tasks are unknown in advance and there are only few-shot
instances available in each task. Meta-learning has been in-
troduced to tackle this issue from two distinct perspectives of
deep neural network learning: 1) Metric-based approaches
aim to learn a suitable embedding space with a neural net-
work so that nearest neighbor classification works well given
a metric in this space [41, 37, 40, 28, 33]. 2) Gradient-
based approaches [8, 25, 31, 45], e.g., MAML, search for
the optimal model parameterization across tasks such that
fine-tuning from the base learner leads to fast adaptation
to new tasks. The two research have critical differences:
1) Gradient-based methods usually exploit a linear model
with classification loss objectives (e.g., cross entropy), while
metric-based methods aim to optimizing the representation
for each class and utilize a nearest neighbor classifier for
label prediction according to the metric similarity between
an input and class representation. 2) Metric-based meth-
ods are known to be less prone to over-fitting and perform
better than gradient-based methods (due to biased classi-
fier [15]). Although gradient-based approaches are more
challenging to study, optimization-based technique is more

widely applicable to different scenarios than metric-based,
e.g., reinforcement learning [42, 24].

Our study focuses on the optimization-based meta-
learning, where there are generally two research categories:
1) context-based approaches train a recurrent neural network
with the temporal context and adjust parameter optimization
with meta-learning schema [23, 1, 32]; 2) structure-based
approaches [22, 38] introduce the task-specific parameteri-
zation into the transformation function of neural networks
to facilitate knowledge transfer. It is worth mentioning two
inspiring related approaches: Meta Transfer Learning [38],
which calibrates the transformation function in the forward
inference path of neural network, and Meta-SGD [25], which
calibrates the per-parameter learning rate in the backward
learning pass. Nonetheless, either one of the algorithms
devises a promising strategy from a different and isolated
perspective of neuron calibration, and thus may perform
insufficiently in few-shot learning problems.

In this paper, we introduce a general and light-weight
neuron calibration formulation to tackle few-shot learning
problems with deep neural network-based function approx-
imation. To improve model generalization, we develop a
novel forward-backward training schema, where neuron cal-
ibration is performed simultaneously on the forward infer-
ence pass and backward propagation pass. We formulate a
meta-learning framework that alternates the learning of the
calibrated model under an interleaved optimization scheme,
which potentially generalizes well with greater effectiveness
than many conventional approaches.

3. Elements of Meta Learning
We introduce the problem setup and notations of meta-

learning, following three neural network adaptation skele-
tons on meta-learning [41, 32, 8, 28].

3.1. Meta-Learning for Few-shot Learning

The goal of few-shot meta-learning is to leverage the
knowledge from a batch of tasks for fast adaptation onto
the target tasks [32]. To achieve this goal, the training, vali-
dation and testing dataset have disjoint label spaces during
the learning process. Follow the conventional setting of
MAML [8], we define a batch of tasks for training {Tt}Bt=1.
For each task Tt, we acquire two separate data splits Dtrt
and Dtst for the purpose of the interleaved optimization in
meta-train phase, which is formally given by

Outer Loop: θ ← θ − αout∇θ
B∑
t=1

L(θ̂(t),Dtst )

Inner Loop: s.t. θ̂(t) ← θ − αin∇θL(θ,Dtrt )

(1)

where αin and αout are learning rates for the inner-loop
update and outer-loop update, respectively, and L(θ,D) de-
notes the empirical loss function occurred by model θ on
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Figure 1. Illustration of three meta-learning approaches: (a) All
tasks share a single set of model parameters that are optimized with
single learning rules. (b) Each task will add additional task-specific
parameters while original weights are frozen. (c) Our approach,
where fast adaptation is achieved via calibrating a subset of model
parameter and feature map in each layer of neural network. The
figure shows that meta-learner decides to re-use the first layer of
network and re-scale some parts of the following two layers.

the dataset D. In Eq. (1), the goal of inner-loop update is
to optimize the task-specific base-learner using data split
Dtrt , and then temporal model θ̂(t) learned on specific tasks
is used to guide the optimization of the base-learner on dis-
joint data Dtst in the outer-loop update. Specifically, the
base-learner is fine-tuned on the data split Dtrt and its corre-
sponding loss L(θ,Dtrt ) is computed with model θ to derive
an intermediate parameter θ̂(t) for each task t. After that,
the outer loop exploits temporal parameter θ̂(t) to optimize
the base-model θ upon the loss function L(θ̂(t),Dtst ) on test
data Dtst . In other word, the gradient to update θ is actually
estimated by θ̂(t). Given new tasks sampled from the unseen
testing dataset, meta-test phase aims to evaluate the model
adaptation capability via a limited number of the update on
the trained model. So we can use the meta-test phase to im-
plement the fine-tuning over the “pretrained" model learned
on the meta-train phase.

3.2. Model Adaptation

As illustrated in Figure 1(a), one straightforward solution
of meta-learning is to utilize a single set of model parameters
θ for all tasks and optimize θ using gradient descent over
a collection of tasks. Following this direction, the perfor-
mance of new tasks is affected by the knowledge acquired
from the previous learned tasks. Therefore, well-learned ini-
tial model parameters are essential for ensuring reasonable
performance for new tasks [8]. Specifically, promising result
would be guaranteed only if the previous learned experience
was well transferred to new tasks. Nonetheless, there is
no guarantee for training effectiveness on the initial model,
since dissimilar tasks may disturb the training process.

Figure 1(b) presents an alternative way of few-shot learn-

ing via augmenting neural networks with external mem-
ory [41]. Generally, this method keeps previous learned
model θ fixed when extending model parameter for new
tasks, i.e., θ(t) = θ(t−1) ∪ ψt, which memorizes the new
knowledge with the new parameter ψt allocated for new task
at time t. As introducing new ψt for each task is usually
hand-crafted, current work often adopts simple heuristics,
e.g., by adding extra channels on top of current network
structure or adding extra support vectors into the dictionary.
By doing this, the learner will suffer from expensive mem-
ory overhead and poor scalability. In addition, the isolated
parameters will fail to exploit the relationship between the
related tasks for achieving better generalization.

Our proposed technique is related to gradient-based meta-
learning [8], the primary goal of which is to improve the
generalization capability through posing efficient optimiza-
tion strategies throughout the meta-learning process. Unlike
prior related work [8] that exploits a shared model across
all tasks, our work aims to seeking optimal calibration for
neural-network based models through approximating neuron
transformation function [13, 19, 36], as shown in Figure 1(c),
so that the calibrated model could generalize well across
different tasks. Motivated by recent approaches that success-
fully exploit neural calibration schema to address machine
learning problem [19, 36], we attempt to tackle few-shot
learning problem with neuron calibration. Instead of reserv-
ing task-specific parameters for preserving the knowledge of
each task, we propose a task-agnostic calibration formula-
tion, which boosts model generalization through influencing
forward pass and backward pass of deep neural networks.

4. Calibrating CNNs
We introduce a general neural calibration framework for

solving the few-shot learning problem on image classifica-
tion, where the models are parameterized by feed-forward
neural networks. By applying neural calibration, we aim
to adapt the transformation functions in the deep neural
network layers, with the hope that our proposed learning
paradigm with neuron calibration could effectively achieve
a stable consolidation of knowledge from multiple tasks and
thus enable a fast adaptation towards new tasks. Specifically,
in this work, we formalize the calibration of two common
transformation operations in feed-forward deep neural net-
works: feed-forward inference and backward propagation
optimization. Figure 2 provides an illustrative example of
the forward-backward neural calibration procedure.

4.1. Forward Inference Calibration

We introduce a general forward inference calibration mod-
ule on the neural network layers, i.e., feature calibration mod-
ule. Before applying feature calibration module, the trans-
formation function at the i-th layer Fθi is parameterized by
θi and produces the i-th layer feature map hi = Fθi(hi−1)
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Figure 2. Overview of our proposed Forward-Backward Meta Cal-
ibration for Few-shot Learning framework. FBM consists of two
types of calibration modules: feature calibration module (FCM)
and gradient calibration module (GCM), which are sequentially
applied to the layers in the base model (as shown in the figure) to
calibrate the feature maps and model weights, respectively.

from the network transformation function. The neural net-
work function before calibration is denoted as the base net-
work. Then, the feature calibration module learns to scale the
feature maps predicted by transformation function on each
network layer. Let Ωλi

(·) denote the feature calibration func-
tion employed by the i-th layer, parameterized by λi. The
output features of the neuron transformation at each layer
are processed by the feature calibration module to generate
the calibrated feature map for that layer. Overall, the feature
calibration unit is modularized by an element-wise multi-
plication operation, which is applied between the feature
maps and the calibrator parameters. When calibrating the
i-th layer of a neural network, we use h̃i to denote the feature
maps after applying feature calibration, i.e., h̃i = Ωλi

(hi).
Formally, the feature calibration function is defined in the
following manner,

Ωλi
(hi) ={

tile(λi)� hi, ψi ∈ RO and hi ∈ RH×W×O(Conv Layer)

λi � hi, ψi ∈ RO and hi ∈ RO (FC Layer)
(2)

where � denotes element-wise multiplication, O denotes
the number of channel, and (H,W ) the resolution of output
feature maps. To reduce the size of the calibrator parameters
for efficient computation, we specify the calibrator size to
be much smaller than the original size of hi. The calibration
for the convolutional layers and fully connected layers are

specified to work at per-channel-level and per-feature-level,
respectively. To scale up the shape of the calibrator param-
eters λi to match that for hi, a tile(·) function is applied on
the calibrator parameter λi. With the aforementioned feature
calibration approach, the calibrator module plays a crucial
role during the model training process: at the forward infer-
ence path, it scales the value of the feature maps from the
base network to regularize the transformation function; at
the backward optimization path: it serves as a prioritized
weight to regularize the model update (e.g.,5θiL is derived
in the form of5h̃i

L · 5θi(hi � tile(λi)), scaled by λi).
In the end, the original feature map and calibrated one

from (2) get added up in an element-wise manner by a resid-
ual connection. This is followed by normalization and acti-
vation operations to produce a final output for that layer. In
summary, the overall calibration process for the i-th layer
could be formulated as follows,

hi =σ (BN (Ωλi
(Fθi (hi−1))⊕Fθi (hi−1))) , (3)

where BN (·) denotes the batch normalization, ⊕ denotes
an element-wise addition operator, and σ(·) is an activation
function. After that, hi is sent as input to the i+ 1-th layer
in the feed-forward neural network. All the aforementioned
calibrator parameters are initialized with a value of 1.0 at the
start of training. We demonstrate an example case of apply-
ing feature calibration on a CNN-based model in Figure 2.

Discussion: For the neural network model, the role the cal-
ibration module performs on the depth adapts to the needs
of the feature transformation. In the early layers, it learns
to activate informative features in a label-agnostic manner,
strengthening the quality of the basic-level feature maps. In
the following layers, the feature map becomes abstract and
specialized for the specific tasks. The feature calibration
module poses a trainable soft mask on the feature maps,
which then influences the model inference process through
the forward inference path. In addition, the proposed forward
calibration module is model-agnostic, and could be deployed
into various convectional neural network, e.g., VGG [35],
ResNet-12 [14], Inception-V3 [39], etc.

4.2. Backward Optimization Calibration

We introduce a general module of backward optimization
calibration, i.e., gradient calibration module, which aims to
scale the gradients of the parameters in back-propagation
step. Specifically, we denotes the gradient as gi = ∇θiL,
where L is the loss function and θi is the model parameter at
layer i. Let Ωφi

(·) denote the gradient calibration function
applied on the i-th layer of the network, which is parameter-
ized by φi. Similar with forward inference calibration, the
gradient calibration operation is formalized by the element-
wise multiplication between the gradients and the calibrator

2093



parameters, which is defined as,

Ωφi(gi) =

{
tile(φi)� gi, φi ∈ RO×I (Conv Layer),

tile(φi)� gi, φi ∈ RO (FC Layer),

where � is the element-wise product between matrices of
the same shape. The soft mask φi proposes to carry out
adaptive optimization through calibrating gradient descent
of parameters on each layer of transformation function. Sim-
ilarly, calibration for the convolutional layers and fully con-
nected layers is specified to work at per-channel-level and
per-feature-level, respectively.

By applying the backward optimization calibration on
backward propagation path, the gradient descent rule at the
i-th layer could be formulated as follows,

θi ← θi − α · g̃i, s.t. g̃i = Ωφi(gi)

where α > 0 is the learning rate, gi and g̃i are denoted as the
gradients before and after applying gradient calibration, re-
spectively. The calibrator parameters in gradient calibration
module are initialized with binary value of 1 at the beginning
of training. Specifically, the probability of each φi being 1

is parameterized based on φi ∼ σ(mi) = B
(

exp(mi)∑
i exp(mi)

)
where B denotes the Bernoulli sampling. We can approxi-
mately differentiate the Bernoulli sampling of activation via
the Gumbel-Softmax estimator [16]:

φi ←

(
exp(mi+gi

τ )∑
i exp(mi+gi

τ )

)
, gi ∼ Gumbel(0, 1), (4)

where τ > 0 is a temperature hyperparameter. This repa-
rameterization allows us to backpropagate through binary
activation directly. At the limit of τ ≈ 0, Eq. (4) follows the
behavior of one-hot vector. Each logit determines whether to
activate the gate of a filter or not. The final output is obtained
by blocking the original gradient with the activation. We
illustrate an example case of applying backward calibration
operation on a convolutional layer in Figure 2.

Discussion: Without losing generalization, backward opti-
mization calibration could be applied for any convolutional
layers of interest. Given a network with any depth of layers,
backward calibration enables the adaptive update on each
layer of neural network. The candidate choices for each
layer include the freeze and adapt. The freeze choice (i.e.,
φi → 0) will freeze the parameters and prevent the gradient
change of the weights, while the adapt choice (i.e., φi > 0)
will scale the parameter change.

5. Bi-level Learning Framework
We formulate the meta-learning procedure to train the cali-

brated model under an interleaved optimization scheme [10],
with the parameters from the base model and those from

Algorithm 1: Forward-Backward Meta Adaptive
Learning (FBM)

1 Input: task distribution p(T ), model parameter θ,
calibration parameters φ and λ,
hyperparameters αin and αout;

2 Initialize model θ and calibrator φ and λ;
3 while not done do
4 Sample a batch of tasks Tt from p(T );
5 for all Tt do
6 fθt(x, λt)← Softmax(Ωλt(Fθt(x)));
7 Ltr(Tt) ← 1

|Dtr
t |

∑
(x,y)∈Dtr

t
`(fθt(x, λt),y);

8 θ̂t ← θt − αin · Ωφt(∇θLtr(Tt));
9 Lte(Tt) ← 1

|Dte
t |

∑
(x,y)∈Dte

t
`(fθ̂t(x, λt),y);

10 end
11 (θt+1, φt+1, λt+1)←

(θt, φt, λt)− αout∇(θ,φ,λ)Lte(Tt);
12 end

the calibration module being optimized by their respective
update rules. As shown in Algorithm 1, there are two loops:

Outer Loop: (θ∗t , φ
∗
t , λ

∗
t ) = arg min

(θ,φ,λ)

L(θ̂t, (φt, λt),Dtst )

Inner Loop: s.t. θ̂t = arg min
θ
L(θt, (φt, λt),Dtrt )

(5)
where (φ∗, λ∗) denote the optimal calibrator parameters
given the task-specific base parameter θ̂t. In the interleaved
optimization, base model θ is used to initialize the learner for
any new tasks, φ and λ are two calibration parameters that
operate on the forward inference and backward optimization,
respectively. At the inner loop, the base model is learned on
the training dataDtrt to fine-tune a task-specific parameter θ̂t.
At the outer loop, we leverage θ̂t to optimize the calibrator
and base model via employing the loss function on test data
Dtst in order to generalize well over multiple tasks. In both
loops of optimization, L(·) denotes the cross-entropy loss
for image classification problem.

Optimizing the objective (5) involves explicit optimiza-
tion of both model parameters and calibration parameters,
which are task-agnostic. The learning process is explicitly
taken into consideration in two distinct aspects of neuron op-
erations: forward inference and backward optimization. The
former aims to achieve the adaptive inference by calibrating
feature map from each layer of transformation, while the lat-
ter proposes to carry out the adaptive optimization by scaling
gradient descent on each layer of model parameter. During
the interleaved optimization process, we fix the (φ, λ) and
then take gradient with regard to θ as follows:

θ̂t ← θt − αin · ∇θL(θt, (φt, λt),Dtrt )

After that, we continue to optimize the calibrator and base
model when the inference takes place with the intermediate
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model parameters,

φt+1 ← φt − αout · ∇φL(θ̂t, (φt, λt),Dtet )

λt+1 ← λt − αout · ∇λL(θ̂t, (φt, λt),Dtet )

θt+1 ← θt − αout · ∇θL(θ̂t, (φt, λt),Dtet )

where αin and αout are learning rates for the inner loop
update and outer loop update, respectively. By employing
the calibrated parameterization of the neural network-based
model and optimizing it with the interleaved learning scheme,
our method could potentially improve the generalization ca-
pability in the few-shot learning problem with greater effec-
tiveness than many conventional approaches. We present the
detailed algorithm in Algorithm 1.

6. Experiments
We evaluate the proposed algorithm in terms of few-shot

classification accuracy and model robustness. Below we
describe the datasets and detailed settings, followed by a
comparison to state-of-the-art methods and ablation study.

6.1. Datasets and Setting

The proposed method is evaluated on three datasets:
FC100 dataset [28], derived from CIFAR-100 [18], in-

cludes 100 classes of images with 600 images for each class.
These classes are randomly partitioned into 60 classes for
meta-training, 20 classes for meta-validation, and 20 classes
for meta-testing.

Mini-Imagenet dataset [41] is a subset of data sampled
from the Imagenet [6]. It includes 100 classes with 600
examples for each class. All image examples are cropped to
84× 84 pixels and the whole dataset is randomly split into
64 training classes, 16 validation classes and 20 test classes.

Omniglot is a character recognition dataset [20]. It spans
1623 characters from 50 different alphabets with 20 images
for each class. Following the setting in [34], 1200 characters
for training and the remain ones for testing, and augment the
dataset by randomly rotating multiple times of 90 degrees.

Architecture: Motivated by the related work [8, 38], we
utilize two feature extractors: Conv-4 (4-layer CNNs) and
ResNet-12, and both extractors exploit a FC-layer for the
last layer’s output. For Conv-4, the network structure, ob-
jective function and learning strategies follow the setting
of MAML [8]; for ResNet-12, the learning setting and ob-
jective function follow the setting of MTL [38]. We show
the model capacity in terms of trainable parameter sizes for
different models in Table 1. The results demonstrate that our
proposed calibration approach leads to moderate increases
in parameter size compared to its corresponding backbone
models for all the architectures. The parameter increase is
approximately 10% ∼11% for the CNN-based models, and
specifically that for the last FC-layer is much more smaller,
i.e., much less than 1%.

Architecture Backbone FBM Increase# Params # Params
Conv-4 (Ominiglot) 119,429 132,042 10.56%
Conv-4 (ImageNet) 32,645 35,946 10.11%
ResNet-12 (ImageNet) 7,994,565 8,866,501 10.91%
ResNet-12 (FC100) 7,994,565 8,866,501 10.91%

Table 1. Light-weight model complexity w.r.t parameter size for
various network architectures. FBM results in moderate parameter
increase over its backbone architectures in all testified datasets.

We utilize meta-training and meta-validation data to learn
meta learner, and exploit meta-testing data to evaluate its
performance. In N -way K-shot setting, we first randomly
sample N classes from the training classes, and then ran-
domly sample K instances for each class to build a task.
Therefore, each iteration of meta-train uses NK labeled in-
stances to do the classification. We tune the learning rate
from {10−5, 10−4 · · · , 10−2} for both the inner loop αin
and outer loop αout. Meanwhile, the inner update step is set
to be {10, 15, 20} on all datasets. All training and evalua-
tion experiments are performed using TITAN X GPUs. The
whole learning process takes around 1 GPU day.

6.2. Comparison Results

The experimental results on Omniglot are shown in Ta-
ble 2, where the proposed technique achieves state-of-the-
art performance. Specifically, FBM outperforms most of
baselines on all evaluation metrics, which validates the ef-
ficiency of the proposed adaptive learning algorithm. In
particular, FBM achieves a better performance than its back-
bone MAML with calibrated transformation function (e.g.,
99.76% vs. 98.70%, and 96.45 vs. 95.8% in 5-way and
20-way 1-shot setting), which demonstrate that the proposed
neuron calibration can improve model generalization in few-
shot learning scenario.

The experimental results on MiniImagenet and FC100
are shown in Table 3 and Table 4, respectively. We deploy
FBM on two state-of-the-art backbones, i.e., MAML and
MTL. The results show that FBM outperforms original
backbones on all benchmark datasets, achieving the new
state-of-the-art performance on FC100 (i.e., 44.8% and
57.0% on the setting of 5-way 1-shot and 5-shot) and
Omniglot (i.e., 99.76% and 99.93% on 5-way 1-shot
and 5-shot). In specific, the FBM improves MTL by a
large margin on FC100 (e.g., 44.8% vs 43.7% on 5-way
1-shot, 57.0% vs 55.4% on 5-way 5-shot). For MiniIm-
agenet, FBM obtains a better or comparable accuracy
to the baselines on same feature extractor (e.g., 61.38%
vs 59.74% and 57.48% with ALFA and MTL on ResNet-12).

In this paper, we aim to design an effective optimization-
based meta-learning technique. From the comparison result,
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Models Backbone 5-way 20-way
1-shot (%) 5-shot (%) 1-shot (%) 5-shot (%)

Neural Statistician [7] Statistic 98.1 99.5 93.2 98.1
Memory Mod. [17] LSTM 98.4 99.6 95.0 98.6
Hyper-representation [10] Conv-5 98.6 99.5 95.5 98.4
MT-net [22] Conv-5 99.10 ± 0.30 - 96.20 ± 0.40 -
SNAIL [26] ResNet-12 99.07 ± 0.16 99.78 ± 0.09 97.64 ± 0.30 99.26 ± 0.18

Matching Networks [41] Conv-4 98.1 99.7 93.8 98.5
ProtoNet [37] Conv-4 97.4 99.7 96.0 98.9
mAP-SSVM [40] Conv-4 98.6 99.6 95.2 98.6
MetaGAN + MAML [43] Conv-4 99.10 ± 0.3 99.70 ± 0.21 96.40 ± 0.27 98.90 ± 0.18
Meta-SGD [25] Conv-4 99.53 ± 0.26 99.92 ± 0.09 95.93 ± 0.38 98.97 ± 0.20
MAML [8] Conv-4 98.70 ± 0.40 99.90 ± 0.10 95.80 ±0.30 98.90 ± 0.20
FBM + MAML (Ours) Conv-4 99.76 ± 0.25 99.93 ± 0.05 96.45 ± 0.36 98.96 ± 0.14

Table 2. Results on Omniglot data set on 5-way and 20-way with 1-shot and 5-shot accuracy (%).

Models Backbone
5-way

1-shot (%) 5-shot (%)

Match Networks [41] Conv-4 43.56 ± 0.84 55.31 ± 0.73
Meta-LSTM[32] Conv-4 43.44 ± 0.77 60.60 ± 0.71
mAP-SSVM [40] Conv-4 50.32 ± 0.80 63.94 ± 0.72
REPTILE [27]† Conv-4 49.70 ± 1.83 65.91 ± 0.84
FLATIPUS [9] Conv-4 50.13 ± 1.86 −
Hier-MAML [12] Conv-4 49.40 ± 1.83 −
Meta-SGD [25]∗ Conv-4 49.10 ± 1.87 64.05 ± 0.84
MAML [8] Conv-4 48.70 ± 1.84 63.11 ± 0.92
FBM + MAML(Ours) Conv-4 50.62 ± 1.79 64.78 ± 0.35
SNAIL [26] ResNet-12 55.71 ± 0.99 68.88 ± 0.92
L2F [3]+ ResNet-12 57.48 ± 0.49 74.68 ± 0.43
TADAM [28] ResNet-12 58.50 ± 0.30 76.70 ± 0.30
ALFA [2] ResNet-12 59.74 ± 0.49 77.96 ± 0.41
MTL [38] ResNet-12 60.20 ± 1.80 74.30 ± 0.90
FBM + MTL(Ours) ResNet-12 61.41 ± 1.87 76.11 ± 0.92

Table 3. Results on MiniImagenet data set on 5-way 1-shot and
5-shot accuracy (%). "*" denotes re-run results on the same train-
ing/test split used in our setting. "+" and "†" indicate the MiniIma-
genet result from [2] and [44], respectively.

FBM outperforms gradient-based techniques significantly
in both Conv-4 and ResNet-12 backbones. In addition, we
conduct the running-time comparison on two benchmark
datasets. The results in Table 5 show that FBM+MAML
actually runs slightly more time than MAML on two datasets.
Nonetheless, additional time overhead could be compensated
for the performance improved by FBM.

6.3. Ablation Study

Controlling the Depth of Calibration: We start with ana-
lyzing the effectiveness of the calibration on different layers

Models Backbone
5-way

1-shot (%) 5-shot (%)

ProtoNet [37]∗ Conv-4 35.3 ± 0.6 48.6 ± 0.6
MAML [8] Conv-4 38.1 ± 1.7 50.4 ± 1.0
FOMAML [8] Conv-4 37.7 ± 1.9 49.1 ± 1.0
iMAML [31] Conv-4 38.4 ± 1.7 49.4 ± 0.8
REPTILE [27] Conv-4 38.4 ± 1.9 50.5 ± 0.9
META-RKHS [44] Conv-4 41.2 ± 2.2 51.5 ± 0.9
ProtoNet [37]† ResNet-12 37.5 ± 0.6 52.5 ± 0.6
TADAM [28] ResNet-12 40.1 ± 0.4 56.1 ± 0.4
MetaOptNet-SVM [21] ResNet-12� 41.1 ± 0.6 55.5 ± 0.6
MTL [38] ResNet-12 43.7 ± 1.8 55.4 ± 0.9
FBM + MTL(Ours) ResNet-12 44.8 ± 1.9 57.0 ± 1.0

Table 4. Results on FC100 dataset on 5-way with 1-shot and 5-
shot accuracy (%). "∗" and "†" indicate results from [28] and [21],
respectively. "ResNet-12�" is a variant of ResNet with number
of filters changed from (64,128,256,512) to (64,160,320,640) is
trained with data augmentation [21].

Model MiniImagenet Omniglot

MAML 7.31 29.33
FBM + MAML 7.50 31.67

Table 5. Running time (GPU hours) comparison on two datasets

of neural network. We conduct the ablation study experiment
with ResNet-12 and evaluate the model on MiniImageNet
and FC100. Specifically, we froze the calibrator in specific
layers of backbone and disabled their scaling functions, e.g.,
θ[1,2,3] denotes that the calibrators from the layer 1 to layer 3
are frozen. The results in Table 6 show that the more layers
with neuron calibration, the better performance the model
achieves, which demonstrates the effectiveness of neuron
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MiniImageNet
MTL FBM + MTL

θ[1,2,3,4] θ[1,2,3] θ[1,2] θ[1] θ (Ours)

60.2 60.4 60.6 61.0 61.4

FC100
MTL FBM + MTL

θ[1,2,3,4] θ[1,2,3] θ[1,2] θ[1] θ (Ours)

43.7 44.2 44.5 44.6 44.8

Table 6. Accuracy comparison with respect to the layers of adaptor
on MiniImagenet and FC100 in the setting of 5-way 1-shot.

calibration in the few-shot learning. Based on this observa-
tion, we apply the neuron calibration to all layers of neural
network in the following empirical experiment.

Effect of Calibration Components: We conduct ablation
study to explore the impact of forward calibration module
and backward calibration module, separately. Specifically,
we evaluate the model equipped with either forward calibra-
tion (i.e., FM + MTL) or backward calibration (i.e., BM
+ MTL) and present the result in Table 7. We observe
that equipped with forward inference calibration, the per-
formance is apparently better than the original model where
the update rule is essentially identical to the baselines except
their difference in model inference architecture. In contrast,
the model with backward calibration that updates partial
parameters following the original proposed inference archi-
tecture results in the accuracy scores that are close to original
model. Overall, the results demonstrate that calibrating on
latent feature and model parameter is a promising direction.

MTL FM+MTL BM+MTL FBM+MTL

MiniImageNet 60.2 61.1 60.5 61.4

FC100 43.7 44.5 44.0 44.8

Table 7. Ablation study results on exploring calibration module
properties on MiniImagenet and FC100 in the setting of 5-way
1-shot.

Effect of Inner-Loop Step: We make analysis on the fast
adaptation capability of our method by varying the number
of inner update steps. Specifically, we measure the model
performance when trained for a specified number of inner-
loop steps and report the results in Table 8. Regardless
of the number of steps, the calibrated model consistently

Inner-loop Steps 5 10 15 20

MTL 38.23 40.50 41.21 43.69
FBM + MTL 39.51 41.35 43.81 44.80

Table 8. Accuracy (%) comparison between MTL and the proposed
FBM on FC100 5-way 1-shot.

outperforms the original model that performs fast adaptation
with various inner update steps.

Effect of Activation Sparseness: In the Gumbel-softmax
estimator, the hyperparameter τ determines the sparseness of
activation. When τ → 0, the Gumbel-softmax computation
smoothly approaches the operator arg max, and the activa-
tion φi approaches one-hot; when τ → ∞, the Gumbel-
softmax distribution becomes identical to the categorical
input distribution m. Specifically, we study the impact of
activation sparseness and set τ to be {0.1, 0.5, 1, 5, 10}, and
run the algorithm under each value of τ . We show the com-
parison result in Figure 3.
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Figure 3. Ablation study on activation sparseness

We observe that the calibrated model maintains a better
or comparable performance under various values of τ . We
also observe that the performance on Omniglot has a slight
drop with τ increased. The reason is that the calibrator
with an increased τ allows the learner to update more model
parameters. This may cause over-fitting in few-shot learning
and harm the model generalization. The performance shows
that the sparse activation on the neural structure is able to
enhance the generalization with greater effectiveness.

7. Conclusion

This paper shows that the proposed framework trained
with forward-backward meta optimization achieves promis-
ing performance for tackling few-shot learning problems.
The calibration operation on the DNN neurons proves highly
efficient for adapting the new task’s learning experience.
The superiority is mainly achieved in the extreme one-shot
cases on three challenging benchmarks. In terms of learning
schemes, the calibration learning shows consistently good
performance in baseline comparison and ablation study. On
the more challenging benchmark, it leads to being incredibly
helpful for boosting generalization capability. This design
is light-weighted and can be applied to various CNN-based
model architectures. Moreover, the calibration formulation
is task-agnostic and could be generalized well whenever the
task’s complexity could be to evaluate.

2097



References
[1] Marcin Andrychowicz, Misha Denil, Sergio Gomez Col-

menarejo, Matthew W. Hoffman, David Pfau, Tom Schaul,
and Nando de Freitas. Learning to learn by gradient descent
by gradient descent. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 3981–3989, Barcelona, Spain,
2016.

[2] Sungyong Baik, Myungsub Choi, Janghoon Choi, Heewon
Kim, and Kyoung Mu Lee. Meta-learning with adaptive hy-
perparameters. In Advances in Neural Information Processing
Systems (NeurIPS), virtual, 2020.

[3] Sungyong Baik, Seokil Hong, and Kyoung Mu Lee. Learn-
ing to forget for meta-learning. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2376–2384, Seattle, WA, 2020.

[4] Ondrej Bohdal, Yongxin Yang, and Timothy Hospedales.
Meta-calibration: Meta-learning of model calibration us-
ing differentiable expected calibration error. arXiv preprint
arXiv:2106.09613, 2021.

[5] Rich Caruana. Multitask learning. Mach. Learn., 28(1):41–75,
1997.

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 248–255, Miami, FL, 2009.

[7] Harrison Edwards and Amos J. Storkey. Towards a neural
statistician. In Proceedings of the 5th International Confer-
ence on Learning Representations (ICLR), Toulon, France,
2017.

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep networks.
In Proceedings of the 34th International Conference on Ma-
chine Learning (ICML), pages 1126–1135, Sydney, Australia,
2017.

[9] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic
model-agnostic meta-learning. In Advances in Neural In-
formation Processing Systems (NeurIPS), pages 9537–9548,
Montréal, Canada, 2018.

[10] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo
Grazzi, and Massimiliano Pontil. Bilevel programming for hy-
perparameter optimization and meta-learning. In Proceedings
of the 35th International Conference on Machine Learning
(ICML), pages 1568–1577, Stockholmsmässan, Stockholm,
Sweden, 2018.

[11] Charles D Gilbert and Wu Li. Top-down influences on visual
processing. Nature Reviews Neuroscience, 14(5):350–363,
2013.

[12] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and
Thomas L. Griffiths. Recasting gradient-based meta-learning
as hierarchical bayes. In Proceedings of the 6th International
Conference on Learning Representations (ICLR), Vancouver,
Canada, 2018.

[13] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger.
On calibration of modern neural networks. In Proceedings
of the 34th International Conference on Machine Learning,
(ICML), pages 1321–1330, Sydney, Australia, 2017.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceedings
of the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, Las Vegas, NV, 2016.

[15] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 831–839,
Long Beach, CA, 2019.

[16] Eric Jang, Shixiang Gu, and Ben Poole. Categorical repa-
rameterization with gumbel-softmax. In Proceedings of the
5th International Conference on Learning Representations
(ICLR), Toulon, France, 2017.

[17] Lukasz Kaiser, Ofir Nachum, Aurko Roy, and Samy Bengio.
Learning to remember rare events. In Proceedings of the
5th International Conference on Learning Representations
(ICLR), Toulon, France, 2017.

[18] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009.

[19] Ananya Kumar, Percy Liang, and Tengyu Ma. Verified un-
certainty calibration. In Advances in Neural Information
Processing Systems (NeurIPS), pages 3787–3798, Vancouver,
Canada, 2019.

[20] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B.
Tenenbaum. Human-level concept learning through prob-
abilistic program induction. Science, 350(6266):1332–1338,
2015.

[21] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and
Stefano Soatto. Meta-learning with differentiable convex
optimization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
10657–10665, Long Beach, CA, 2019.

[22] Yoonho Lee and Seungjin Choi. Gradient-based meta-
learning with learned layerwise metric and subspace. In
Proceedings of the 35th International Conference on Ma-
chine Learning (ICML), pages 2933–2942, Stockholmsmäs-
san, Stockholm, Sweden, 2018.

[23] Ke Li and Jitendra Malik. Learning to optimize. In Pro-
ceedings of the 5th International Conference on Learning
Representations (ICLR), Toulon, France, 2017.

[24] Yuxi Li. Deep reinforcement learning: An overview. arXiv
preprint arXiv:1701.07274, 2017.

[25] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-
sgd: Learning to learn quickly for few-shot learning. arXiv
preprint arXiv:1707.09835, 2017.

[26] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter
Abbeel. A simple neural attentive meta-learner. In Pro-
ceedings of the 6th International Conference on Learning
Representations (ICLR), Vancouver, Canada, 2018.

[27] Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

[28] Boris N. Oreshkin, Pau Rodríguez López, and Alexandre
Lacoste. TADAM: task dependent adaptive metric for im-
proved few-shot learning. In Advances in Neural Information
Processing Systems (NeurIPS), pages 719–729, Montréal,
Canada, 2018.

2098



[29] Sinno Jialin Pan and Qiang Yang. A survey on transfer learn-
ing. IEEE Trans. Knowl. Data Eng., 22(10):1345–1359, 2010.

[30] Quang Pham, Chenghao Liu, Doyen Sahoo, and Steven C. H.
Hoi. Contextual transformation networks for online continual
learning. In Proceedings of the 9th International Conference
on Learning Representations (ICLR), Virtual Event, Austria,
2021.

[31] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and
Sergey Levine. Meta-learning with implicit gradients. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
pages 113–124, Vancouver, Canada, 2019.

[32] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. In Proceedings of the 5th International
Conference on Learning Representations, (ICLR), Toulon,
France, 2016.

[33] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol
Vinyals, Razvan Pascanu, Simon Osindero, and Raia Had-
sell. Meta-learning with latent embedding optimization. In
Proceedings of the 7th International Conference on Learning
Representations (ICLR), New Orleans, LA, 2019.

[34] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan
Wierstra, and Timothy P. Lillicrap. Meta-learning with
memory-augmented neural networks. In Proceedings of the
33nd International Conference on Machine Learning (ICML),
pages 1842–1850, New York City, NY, 2016.

[35] Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. In
Proceedings of the 3rd International Conference on Learning
Representations (ICLR), San Diego, CA, 2015.

[36] Pravendra Singh, Vinay Kumar Verma, Pratik Mazumder,
Lawrence Carin, and Piyush Rai. Calibrating cnns for lifelong
learning. In Advances in Neural Information Processing
Systems (NeurIPS), virtual, 2020.

[37] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical
networks for few-shot learning. In Advances in neural infor-
mation processing systems (NIPS), pages 4077–4087, Long
Beach, CA, 2017.

[38] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele.
Meta-transfer learning for few-shot learning. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 403–412, Long Beach, CA, 2019.

[39] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In Proceedings of
the 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2818–2826, Las Vegas, NV, 2016.

[40] Eleni Triantafillou, Richard Zemel, and Raquel Urtasun. Few-
shot learning through an information retrieval lens. In In
Advances in Neural Information Processing Systems (NIPS),
pages 2255–2265, Long Beach, CA, 2017.

[41] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray
Kavukcuoglu, and Daan Wierstra. Matching networks for one
shot learning. In Advances in neural information processing
systems (NIPS), pages 3630–3638, Barcelona, Spain, 2016.

[42] Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-
gradient reinforcement learning. In Advances in neural in-
formation processing systems (NeurIPS), pages 2402–2413,
Montréal, Canada, 2018.

[43] Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua Ben-
gio, and Yangqiu Song. Metagan: An adversarial approach
to few-shot learning. In Advances in Neural Information
Processing Systems (NeurIPS), pages 2371–2380, Montréal,
Canada, 2018.

[44] Yufan Zhou, Zhenyi Wang, Jiayi Xian, Changyou Chen, and
Jinhui Xu. Meta-learning with neural tangent kernels. In
Proceedings of the 9th International Conference on Learning
Representations (ICLR), Virtual Event, Austria, 2021.

[45] Luisa M. Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, Katja
Hofmann, and Shimon Whiteson. Fast context adaptation
via meta-learning. In Proceedings of the 36th International
Conference on Machine Learning (ICML), pages 7693–7702,
Long Beach, CA, 2019.

2099


