
Adversarial Open Domain Adaptation for Sketch-to-Photo Synthesis
Supplementary Material

Xiaoyu Xiang1*, Ding Liu2, Xiao Yang2, Yiheng Zhu2, Xiaohui Shen2, Jan P. Allebach1

1Purdue University, 2ByteDance Inc.
{xiang43,allebach}@purdue.edu,

{liuding,yangxiao.0,yiheng.zhu,shenxiaohui}@bytedance.com

Contents

A. Experimental Details 1
A.1. Architecture 1
A.2. Objective Function 2
A.3. Datasets . 2
A.4. Implementation Details 3

B. Experimental Results 3
B.1. Comparison on QMUL-Sketch Dataset . . . 3
B.2. More Sketch-to-Photo Results 4

A. Experimental Details
In this section, we first illustrate the architectures of

our framework, including generators, discriminators, and a
classifier in Section A.1. Then, we present the objective
functions for training them in Section A.2. The training set-
tings of each dataset and additional implementation details
are described in Section A.3 and Section A.4.

A.1. Architecture

Note that our proposed solution is not limited to cer-
tain network architecture. In this work, we select the Cy-
cleGAN [22] as a baseline to illustrate the effectiveness
of our proposed solution. Thus we only modify the Gp

into a multi-class generator and keep the rest structures un-
changed, as introduced below.
Photo-to-Sketch Generator Gs We adopt the architecture
of the photo-to-sketch generator from Johnson et al. [8].
It includes one convolution layer to map the RGB image
to feature space, two downsampling layers, nine residual
blocks, two upsampling layers, and one convolution layer
that maps features back to the RGB image. Instance nor-
malization [19] is used in this network. This network is also
adopted as the sketch extractor for the compared method in
the main paper Section 3.1.

*The author was with Purdue University when conducting the work in
this paper during an internship at ByteDance. She is now with Facebook.

7x7 conv, 3, 64, stride=1
norm, Relu

3x3 conv, 64, 128, stride=2
norm, Relu

3x3 conv, 128, 256, stride=2
norm, Relu

AdaIN Residual Block
conv, AdaIN, Relu, conv, AdaIN

3x3 conv, 256, 256, stride=1

3x3 conv, 256, 512, stride=1
PixelShuffle(2), norm, Relu

3x3 conv, 128, 256, stride=1
PixelShuffle(2), norm, Relu

7x7 conv, 64, 3, stride=1
tanh

Input size:
(𝐵, 3,𝐻,𝑊)

Output size:
(𝐵, 128,𝐻/2,𝑊/2)

Output size:
(𝐵, 64,𝐻, 𝑊)

Output size:
(𝐵, 256,𝐻/4,𝑊/4)

Output size:
(𝐵, 256,𝐻/4,𝑊/4)

Output size:
(𝐵, 128,𝐻/2,𝑊/2)

Output size:
(𝐵, 64,𝐻, 𝑊)

Output size:
(𝐵, 3,𝐻,𝑊)

×9
Class label

Figure 1: The architecture of our multi-class sketch-to-
photo generator.

Multi-class Sketch-to-Photo Generator Gp The overall
structure of this network is similar to Gs: a feature-mapping
convolution, two downsampling layers, a few residual
blocks, two upsampling layers, and the RGB-mapping con-
volution. We make the following modifications on the resid-
ual blocks and upsampling layers for the multi-class photo
generation, as illustrated in Figure 1. To make the network
capable of accepting class label information, we change the
normalization layers of the residual blocks into adaptive in-
stance normalization (AdaIN) [7]. The sketch input serves

as the content input for AdaIN, and the class label is the
style input ensuring that the network learns the correct tex-
tures and colors for each category. In addition, we use con-
volution and PixelShuffle layers [17], instead of commonly
used transposed convolution, to upsample the features. The
sub-pixel convolution can alleviate the checkerboard arti-
facts in generated photos while reducing the number of pa-
rameters as well as computations [1].
Discriminators We use the PatchGAN [11, 10] classifier
as the architecture for the two discriminators in our frame-
work. It includes five convolutional layers and turns a
256×256 input image into an output tensor of size 30×30,
where each value represents the prediction result for a
70×70 patch of the input image. The final prediction output
of the whole image is the average value of every patch.
Photo Classifier We adopt the architecture of HRNet [20]
for photo classification and change its output size of the
last fully-connected (FC) layer according to the number of
classes in our training data. This network takes a 256× 256
image as input and outputs an n-dim vector as the predic-
tion result. We choose the HRNet because of its superior
performance in maintaining high-resolution representations
through the whole process while fusing the multi-resolution
information at different stages of the network.

A.2. Objective Function

The loss for training the generator is composed of four
parts: the adversarial loss of photo-to-sketch generation
LGs

, the adversarial loss of sketch-to-photo translation
LGp

, the pixel-wise consistency of photo reconstruction
Lpix, and the classification loss for synthesized photo Lη:

LGAN = λsLGs
(Gs, Ds, p) + λpLGp

(Gp, Dp, s, ηs)

+ λpixLpix(Gs, Gp, p, ηp) + ληLη(R,Gp, s, ηs), (1)

where

LGs(Gs, Ds, p) = −Ep∼Pdata(p)[logDs
(Gs(p))], (2)

LGp
(Gp, Dp, s, ηs) = −Es∼Pdata(s)[logDp

(Gp(s, ηs))],
(3)

Lpix(Gs, Gp, p, ηp) = Ep∼Pdata(p)[||Gp(Gs(p), ηp)−p||1],
(4)

Lη(R,Gp, s, ηs) =

E[logP (R(Gp(s, ηs)) = ηs|Gp(s, ηs))]. (5)

Note that only the classification loss of the generated
photo Gp(s, ηs) is used to optimize the generators.

Then we update the discriminators Ds and Dp with the
following loss functions, respectively:

LDs
(Gs, Ds, p, s) = −Es∼Pdata(s)[logDs(s)]

+ Ep∼Pdata(p)[logDs(Gs(p))], (6)

LDp(Gp, Dp, s, p, ηs) = −Ep∼Pdata(p)[logDp(p)]

+ Es∼Pdata(s)[logDp(Gp(s, ηs))]. (7)

Then we calculate the classification loss of both real and
synthesized photos and optimize the classifier:

LR(R,Gp, s, p, ηs, ηp) = E[logP (R(p) = ηp|p)]
+ E[logP (R(Gp(s, ηs)) = ηs|Gp(s, ηs))]. (8)

Real images and their labels enable the classifier to learn
the decision boundary for each class, and the synthesized
images can force the classifier to treat the fake images as
the real ones and provide discriminant outputs regardless of
their domain gap. For this reason, the classifier needs to be
trained jointly with the other parts of our framework.

We adopt the binary cross-entropy loss for discrimina-
tors and focal loss [12] for classification. The pixel-wise
loss for photo reconstruction is measured by L1-distance.

A.3. Datasets

We train our model on three datasets: Scribble [5]
(10 classes), QMUL-Sketch [21, 18, 13] (3 classes), and
SketchyCOCO [4] (14 classes of objects). During the train-
ing stage, the sketches of certain classes are completely re-
moved to meet the open-domain settings.
Scribble This dataset contains ten classes of objects,
including white-background photos and simple outline
sketches. Six out of ten object classes have similar round
outlines, which imposes more stringent requirements on the
network: whether it can generate the correct structure and
texture conditioned on the input class label. In our open-
domain setting, we only have the sketches of four classes
for training: pineapple (151 images), cookie (147 images),
orange (146 images), and watermelon (146 images). We
set the input image size to 256× 256 and train all the com-
pared networks for 200 epochs. We apply the Adam [9]
optimizer with batch size= 1, and the learning rate is set to
2e − 4 for the first 100 epochs, and it decreases linearly to
zero in the second 100 epochs.
QMUL-Sketch We construct it by combing three datasets:
handbags [18] with 400 photos and sketches, ShoeV2 [21]
with 2000 photos and 6648 sketches, and ChairV2 [13]
with 400 photos and 1297 sketches. For the open-domain
training setting, we completely remove the sketches of the
ChairV2. We train the networks for 400 epochs.

SketchyCOCO This dataset includes 14 object classes,
where the sketches are collected from the Sketchy
dataset [16], TU-Berlin dataset [3], and Quick!Draw
dataset [6]. The 14,081 photos for each object class are
segmented from the natural images of COCO Stuff [2] un-
der unconstrained conditions, thereby making it more dif-
ficult for existing methods to map the freehand sketches
to the photo domain. In our open-domain setting, we re-
move the sketches of two classes during training: sheep
and giraffe. We use EdgeGAN weights released by the
author. All the other networks are trained for 100 epochs.

A.4. Implementation Details

Our model is implemented in PyTorch [14, 15]. We train
our networks with the standard Adam [9] using 1 NVIDIA
V100 GPU. The batch size and initial learning rate are set
to 1 and 2e − 4 for all datasets. The epoch numbers are
200, 400, and 100 for the Scribble [5], QMUL-Sketch [21,
18, 13], and SketchyCOCO [4], respectively. The learning
rates drop by multiplying 0.5 in the second half of epochs.
For the compared method EdgeGAN [4], we use the official
implementation in https://github.com/sysu-imsl/EdgeGAN
for data preprocessing and training. It is trained for 100
epochs on Scribble and QMUL datasets using one NVIDIA
GTX 2080 GPU. The batch size is set to 1 due to memory
limitation.

B. Experimental Results
We first show more sketch-to-photo results on the

QMUL-Sketch dataset in Section B.1 and briefly discuss
these results. At last, we show more sketch-to-photo syn-
thesis results of our method in Section B.2.

B.1. Comparison on QMUL-Sketch Dataset

We compare our method with the same baseline meth-
ods as described in the main paper: (a) CycleGAN as the
baseline, (b) conditional CycleGAN that takes sketch and
class label as input, and (c) EdgeGAN [4] trained on this
dataset. Different from the Scribble dataset, the sketches
in QMUL-Sketch are from three different datasets with rich
strokes. Thus, the sketch itself already contains sufficient
class information [13]. As shown in Figure 2, most com-
pared methods can generate high-quality photos. Still, all
of these methods change the structure of the open-domain
class (Chair), as shown in the bottom two rows of columns
(a), (b), and (c) of Figure 2. Compared with them, our
model can maintain the natural shape in the original sketch
and generate realistic photos.

The quantitative results are shown in Table 1. We can
see that our model is preferred by more users than the other
compared methods. While in terms of the FID score and
classification accuracy, ours is the second-best. This is be-
cause the sketches in the QMUL-Sketch dataset are three

Metric Method full in-domain open-domain
FID ↓ CycleGAN 97.9 87.7 151.7

conditional CycleGAN 91.6 88.2 107.5
EdgeGAN 243.0 281.3 268.3

Ours 92.4 76.9 142.6
Acc (%) ↑ CycleGAN 72.6 64.7 78.2

conditioanl CycleGAN 78.4 58.0 92.6
EdgeGAN 62.7 100.0 36.8

Ours 89.7 91.5 88.5
Human (%) ↑ CycleGAN 4.00 4.57 2.67

conditional CycleGAN 21.20 18.86 26.67
EdgeGAN 0.00 0.00 0.00

Ours 74.80 76.57 70.67

Table 1: Results of quantitative evaluation and user pref-
erence study on QMUL-Sketch dataset. Best results are
shown in bold.

times more than the photos (especially for shoes), which is
not consistent with our motivation of enriching the miss-
ing sketches with abundant photos. Under this scenario,
the asymmetry within the framework and strategies’ design
does not bring too many benefits.

Input (a) (b) (c) Ours

Figure 2: Results on the QMUL-Sketch dataset. Compared
with methods (a) CycleGAN [22], (b) conditional Cycle-
GAN, and (c) EdgeGAN [4], our model can faithfully main-
tain the natural shapes in sketch inputs and synthesize real-
istic photos.

https://github.com/sysu-imsl/EdgeGAN

B.2. More Sketch-to-Photo Results

Here we show more 256 × 256 sketch-to-photo results
of our model in Figure 3, 4 and 5. Previous sketch-to-photo
synthesis works usually have output sizes = 64 × 64 or
128 × 128. Leveraging the output size makes the problem
even more challenging for two reasons: (1) the difficulty
of correcting larger shape deformation, and (2) generating
richer details and realistic textures for each image composi-
tion. The results in the following pages suggest that AODA
is able to synthesize 256× 256 photo-realistic images.

In addition, Figure 6 shows the in-domain results ob-
tained on the full dataset of Scribble [5] without removing
any sketch. Our network not only handle the open-domain
training problem, but also perform even better under a com-
mon multi-class sketch-to-photo generation setting.

References
[1] Andrew Aitken, Christian Ledig, Lucas Theis, Jose Ca-

ballero, Zehan Wang, and Wenzhe Shi. Checkerboard ar-
tifact free sub-pixel convolution: A note on sub-pixel con-
volution, resize convolution and convolution resize. arXiv
preprint arXiv:1707.02937, 2017. 2

[2] Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-
stuff: Thing and stuff classes in context. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1209–1218, 2018. 3

[3] Mathias Eitz, James Hays, and Marc Alexa. How do humans
sketch objects? ACM Transactions on Graphics (TOG),
31(4):1–10, 2012. 3

[4] Chengying Gao, Qi Liu, Qi Xu, Limin Wang, Jianzhuang
Liu, and Changqing Zou. Sketchycoco: Image gener-
ation from freehand scene sketches. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5174–5183, 2020. 2, 3

[5] Arnab Ghosh, Richard Zhang, Puneet K Dokania, Oliver
Wang, Alexei A Efros, Philip HS Torr, and Eli Shechtman.
Interactive sketch & fill: Multiclass sketch-to-image transla-
tion. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1171–1180, 2019. 2, 3, 4

[6] David Ha and Douglas Eck. A neural representation of
sketch drawings. arXiv preprint arXiv:1704.03477, 2017.
3

[7] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 1501–1510, 2017. 1

[8] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 694–711, 2016. 1

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2, 3

[10] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero,
Andrew Cunningham, Alejandro Acosta, Andrew Aitken,

Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-
realistic single image super-resolution using a generative ad-
versarial network. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 4681–
4690, 2017. 2

[11] Chuan Li and Michael Wand. Precomputed real-time texture
synthesis with markovian generative adversarial networks. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 702–716, 2016. 2

[12] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 2980–2988, 2017. 2

[13] Runtao Liu, Qian Yu, and Stella Yu. Unsupervised sketch-
to-photo synthesis. arXiv preprint arXiv:1909.08313, 2019.
2, 3

[14] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 3

[15] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pages
8026–8037, 2019. 3

[16] Patsorn Sangkloy, Nathan Burnell, Cusuh Ham, and James
Hays. The sketchy database: learning to retrieve badly drawn
bunnies. ACM Transactions on Graphics (TOG), 35(4):1–12,
2016. 3

[17] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1874–1883, 2016. 2

[18] Jifei Song, Qian Yu, Yi-Zhe Song, Tao Xiang, and Timo-
thy M Hospedales. Deep spatial-semantic attention for fine-
grained sketch-based image retrieval. In Proceedings of the
IEEE International Conference on Computer Vision, pages
5551–5560, 2017. 2, 3

[19] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 1

[20] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,
Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui
Tan, Xinggang Wang, et al. Deep high-resolution represen-
tation learning for visual recognition. IEEE Transactions on
Pattern Analysis and Machine intelligence, 2020. 2

[21] Qian Yu, Feng Liu, Yi-Zhe SonG, Tao Xiang, Timothy
Hospedales, and Chen Change Loy. Sketch me that shoe.
In Computer Vision and Pattern Recognition, 2016. 2, 3

[22] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2223–
2232, 2017. 1, 3

Figure 3: More 256× 256 results on the SketchyCOCO dataset.

Figure 4: More 256× 256 results on the QMUL-Sketch dataset.

Figure 5: More 256× 256 results on the Scribble dataset.

Figure 6: In-domain 256× 256 results on the Scribble dataset.

