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A. Network Details

Latent codes The public code z is continuous and randomly drawn from a normal distribution N(0, 1)dz . The private
code c is designed as two-level codes, which is also known as parent and child code in FineGAN [14] and OneGAN [1].
In particular, c is discrete and randomly drawn from a categorical distribution Cat(dc), where dc denotes the number of
categories. These categories are grouped into super categories so that every c can be associated with a super private code
csup. We use a very simple grouping mechanism that group categories with consecutive indices and the group size is varied
dependent on datasets as in FineGAN [14] and OneGAN [1].

Generator The structure of our generator (Fig. 1(a)) is adapted from FineGAN [14] which is tailored for generating images
of fine-grained categories. Compared to the original structure, the GRU activation function is replaced with ReLU to save
some computation without sacrificing too much performance. It is noteworthy that only csup and z influences the generation
process of foreground masks, while csup, c, and z have impacts on the foreground appearance, i.e. RGB value. The weights
of all the convolutional and linear layers are initialized with orthogonal matrix [13].

Perturbation The perturbation T operates on any given image or mask, which is decomposed into three consecutive
elementary transformation, isotropic scaling, rotation, and translation. Formally,

T (x)(u, v, 1) = x(A−1(u, v, 1)),A = T (tx, ty)R(α) S(s), (1)

where S(s) =

 2s 0 0
0 2s 0
0 0 1

 ,T (tx, ty) =
 1 0 tx

0 1 ty
0 0 1

 ,R(α) =

 cosα − sinα 0
sinα cosα 0
0 0 1

 , (2)

and the parameters of perturbation, s, tx, ty , and α, are uniformly drawn from a small range. Besides the above geometric
perturbation, we also use background contrast jittering as in PerturbGAN [2].

Discriminator The structure of our discriminator is presented in Fig. 1(b). Spectral normalization [10] is employed to
stabilize the training. The weights of all the convolutional and linear layers are initialized with orthogonal matrix [13].

Auxiliary networks for mutual information maximization Fig. 1(b)(c) presents the structures of our auxiliary networks
for mutual information maximization. Following previous work [4, 9, 14, 1], Ex shares backbone with D and bifurcates at
the top layers. Ex takes as input an image and output a categorical distribution which is considered as a approximation of
the posterior distribution p(c|x). Eπ has a similar role to Ex but it approximates p(csup|π) as csup controls the generation of
masks.
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Figure 1. Network structures. Discriminator D and the auxiliary network Ex shares the backbone parameters and bifurcates at the top
layers. “DownBlock*” denotes a DownBlock without BN layer.

B. Dataset Details
Caltech-UCSD Birds 200-2011 (CUB) This dataset contains 11,788 bird images of 200 categories. It is split into 10,000
images for training, 788 images for validation, and 1,000 images for testing, as in [3]. All of the images only contain single
instance and the interested objects are rarely occluded. The ground truth segmentation masks of the foreground object are
annotated by humans and provided in the official release.

Stanford Dogs This dataset contains 20,580 dog images of 120 categories. It is split into 12,000 images for training, and
8,580 images for testing by official release [6]. Most images contain single instance and a few images contain occluded
objects and irrelevant objects like human may appear in the image. The ground truth segmentation masks are approximated
with a Mask R-CNN pretrained on MSCOCO1.

Stanford Cars This dataset contains 16,185 car images of 196 categories. It is split into 8,144 images for training, and
8,041 images for testing by official release [8]. All if the images only contain single instance. The ground truth segmentation
masks are approximated with a Mask R-CNN pretrained on MSCOCO, same model as used in Stanford Dogs.

Amazon Picking Challenge (APC) This dataset2 was created for evaluating 6D poses of objects in the warehouse environ-
ment. The authors also released an object segmentation training set which is used to pretrain the segmentation networks. We
use the “object segmentation training dataset”3 for training our models. This dataset comprises images containing a single
challenge object appearing either on a shelf or in a tray. Each object is shot as a series of scenes from different poses on both

1We use the detectron2 library (https://github.com/facebookresearch/detectron2) and the model R101-FPN (https:
//dl.fbaipublicfiles.com/detectron2/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x/138205316/model_
final_a3ec72.pkl)

2https://vision.princeton.edu/projects/2016/apc/
3http://3dvision.princeton.edu/projects/2016/apc/downloads/training.zip
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the shelf and in the red tray. Following GENESIS-V2 [5], we randomly select 10% of scenes for validation, 10% of scenes
for testing and the rest for training using the script provided in GENESIS-V2 official source code4. The raw images are
resized and center-cropped, resulting in 128× 128 images. The ground truth segmentation masks are provided in the official
release. The ground truth masks are generated by certain automatic methods instead of annotated by humans. Therefore,
these ground truth masks are quite noisy.

C. Training Details
C.1. Training Layered GANs

Data augmentation The real images augmented with horizontal flip and random resized crop. This augmentation is used
to increase the variation in training set and shown helpful to support perturbed composition [2].

Optimization We employ Adam [7] optimizer with initial learning rate as 0.0002 and (β1, β2) as (0.5, 0.999) train our
layered GAN. The batch size is 32. The training process lasts until 1,000,000 images are seen by discriminator. Both the
generator and the discriminator operate at 128× 128 resolution.

Hyperparameters for each dataset Table 1 lists the specific hyperparameters used for each dataset.

dc group size scale s shift tx, ty rotation α bg contrast γmi γbg

CUB 200 10 [−0.2, 0.] [−16px, 16px] [−15◦, 15◦] 0 1 2

Stanford Dogs 120 10 [−0.2, 0.] [−16px, 16px] [−15◦, 15◦] 0 2 1

Stanford Cars 196 14 [−0.2, 0.] [−16px, 16px] 0◦ [0.7, 1.3] 1 2

APC 200 10 [−0.2, 0.] [−16px, 16px] [−15◦, 15◦] 0 2 0
Table 1. Hyperparameters for training layered GANs on CUB, Stanford Dogs, Stanford Cars, and APC.

C.2. Alternate Training

The training of layered GANs and the training of segmentation network is alternated for 5 rounds. In each round, the
layered GANs are trained until discriminator has seen 2,000,000 images and the segmentation network is trained for 2,000
steps. Segmentation network is not involved into regularizing layered GANs until the second round. We employ a U-Net [11]
as segmentation network which is trained with Adam optimizer and the learning rate is 0.001 and the batch size is 32. Random
color augmentation is used in training segmentation networks.

C.3. Training Segmentation Networks

A U-Net [11] segmentation network is trained from the synthetic dataset with Adam optimizer. The initial learning rate is
0.001 and batch size is 32. The training duration is 12,000 steps. Random color augmentation is used. The During inference,
following [3, 12], the input image and ground truth masks are rescaled and center cropped to 128× 128.

D. More Results

Stanford Cars

γmi

0.001 0.01 0.1 0.5 1.0

FID ↓ 16.0 14.8 14.9 14.6 14.7

bg-FID ↑ 145.0 134.4 162.9 168.2 180.3
IoU ↑ 45.2 49.0 54.8 59.7 58.7

Stanford Dogs

γmi

0.1 0.5 1.0 5.0 10.0

FID ↓ 47.3 36.8 34.5 46.5 52.1

bg-FID ↑ 46.9 106.6 113.3 115.6 117.5
IoU ↑ 36.8 58.0 62.1 64.8 57.1

Table 2. Ablation study with respect to mutual information maximization on Stanford Cars and Stanford Dogs at 64 × 64 resolution.
γmi denotes the loss weight of mutual information maximization. The alternate training is disabled.

4https://github.com/applied-ai-lab/genesis
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Ablation study w.r.t. mutual information maximization We further present the ablation study with respect to mutual
information maximization on Stanford Cars and Stanford Dogs in Table 2 at resolution 64 × 64. It can be concluded that
an appropriate γmi is essential to achieve optimal performance, while a wide range of γmi can assure the success of learning.
Notably, the appropriate γmi might be different from dataset to dataset. For example, on Stanford Cars, even when the γmi is
as low as 0.001, the segmentation is still learned though with low performance (IoU 45.2). However, on Stanford Dogs and
CUB, a very low γmi (e.g. 0.1) would lead to the failure of disentangling foreground and background.
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