Supplementary Materials
Inpaint2Learn: A Self-Supervised Framework for Affordance Learning

1. Inpaint2Learn Data Generation

Given an RGB image in the wild, we first use an instance
segmentation network Mask-RCNNJ2] to segment the ob-
ject/person of interest. Then we cut the instance out and
fill the hole with an image inpainting network ProFill[5].
If multiple objects/humans exist in an image, we cut out
one instance at a time and inpaint the hole, yielding multi-
ple inpainted images from the original image. In the case
of human affordance prediction, we run a pose estimator
Alphaposelll] on the original image to obtain pseudo ground
truth pose for the person. Please see Figure (1] for an illus-
tration of our Inpaint2Learn data generation pipeline.

2. Data Pre-screening for Human Pose Labels

We pre-screen the raw data based on Mask-RCNN de-
tection results and Alphapose predictions. Specifically, data
points satisfying the following four criteria are selected:

1) Mask-RCNN detects no more than 10 people in the
image. We find empirically that crowded scenes yield
small, highly occluded human bodies, which make inpaint-
ing hard.

2) The detected bounding box area is no less than 1% and
no more than 65% of the area of the original image. This
screens out zoomed-in images that usually focus on a small
part of the human body and images where the human is too
small for Alphapose to generate accurate results.

3) At least 60% of the 25 joints are detected, and at least 3
out of the 5 facial joints must be present. Alphapose predic-
tions yield confidence score for each of the 25 joints. We
use a confidence score threshold of 0.05 to determine if a
joint is present, following Alphapose’s convention. This re-
moves images with highly occluded bodies and ensures the
head is always present.

4) If Alphapose detects multiple humans, we keep the one
with the largest bounding box area. In the preprocessing
stage, we mask out the regions outside the predicted bound-
ing boxes on the origianl images and feed the resulting im-
ages to Alphapose, which not only predicts joint locations
and confidence scores, but also bounding boxes enclosing
each detected human. In the event that the network detects

multiple humans even on the masked images, we apply this
rule to select the largest, most dominant human body.

3. Network Implementations and Training De-
tails of Affordance Models

In this section, we discuss the training details of each
affordance model presented in the paper.

3.1. Human Affordance Prediction

The training pipeline of our human affordance prediction
model is demonstrated in Figure 3 in the main paper. The
inference pipeline, demonstrated in Figure [2] is almost the
same as in training, except the encoder is discarded. During
inference, a random variable is sampled from the Gaussian
distribution A/(0, 1) and passed to a decoder, which takes
a conditional input and decodes to the output space (either
affine matrices or pose joints).

Next, we discuss the details of each network component
in the pipeline. In Figure [3] we show an illustration of an
encoder that first encodes a ground truth theta (an affine ma-
trix) or a pose into a 4 dimensional latent code using three
fully connected (FC) layers, then reparametrize the code
and replicate it both spatially and channel-wise so that we
have a noise of dimension H x W x 4. In the bounding
box generator shown in Figure [d] the RGB image, segmen-
tation, depth, and the tiled noise are concatenated channel-
wise and fed into several convolutional layers to predict the
scale (¢, ¢y) and the translation (., ¢,) in an affine matrix.
Then, we use the predicted affine matrix to warp a canonical
white mask to a mask representing a bounding box, where
we have all ones within the box region and all zeros outside.
For the pose generation pipeline, we first pretrain a VAE[4]]
model that embeds pose joints to a latent space of 16 dimen-
sions and a pose heatmap renderer that maps pose joints to a
heatmap the same dimension as the RGB image. As shown
in Figure[5] the pose generator takes in the predicted bound-
ing box mask, the RGB image, segmentation, depth and the
tiled noise as input and predicts a 16 dim latent code for the
pretrained pose VAE. The predicted code is first passed to
the decoder in the pretrained pose VAE, then to the heatmap
renderer to generate a heatmap of the predicted pose.



Finally, in Figure[6] we show the bounding box discrimi-
nator on the left and the pose discriminator on the right. The
bounding box discriminator takes the concatenated bound-
ing box, the RGB image, segmentation and depth as input,
and learns to discriminate the predicted bounding boxes
from the real bounding box distribution present in natural
scenes. Similarly, the pose discriminator takes the pose
heatmap, the bounding box mask, the RGB image, segmen-
tation and depth as input, and learns to discriminate the pre-
dicted pose from the real pose distribution present in natural
images.

For training details, the human bounding box module
and the human pose module are first trained separately for
20 epochs with a learning rate of 2e-4, and then jointly
trained for 5 epochs with a learning rate of 2e-5. We use
Adam optimizer [3] for both the generator and the discrim-
inator. We also use a batch size of 32.

3.2. Location20Object

In the Location20bject model, we use a ResNet-18 net-
work to extract features and use two three-layered fully con-
nected networks with ReLLU activation and dropouts to pre-
dict the classification label and the bounding box. We use
an Adam optimizer with a learning rate of 0.001 to train the
network. We set the maximum number of epochs to 20 and
the batch size to 32.

3.3. 6D Object Pose Hallucination

Similar to the Location20bject model, in the task of 6D
object pose hallucination, we adopt a ResNet-18 network to
extract features and use two three-layered fully connected
networks with ReLU activation and dropouts to predict the
translation and the rotation sequentially. We use an Adam
optimizer with a learning rate of 0.001 to train the network.
We set the maximum number of epochs to 100 and the batch
size to 32.

4. Generated Pseudo Labeled Affordance Data

Please see Figure [/| for visualizations of the generated
data for human pose affordance prediction and Figure [§|for
visualizations of the generated data for the Location2Object
task.

5. More Qualitative Results

More qualitative results for human affordance predic-
tion, Location20bject and 6D object pose hallucination

tasks can be found in Figure 9] and
6. User Study

We demonstrate our user study interface for all of our
affordance tasks in Figure [I3] [14] and [I5] In each figure,

we show the survey instruction on the left and the survey
question on the right. Please refer to these figures for more
details.

References

[1] Hao-Shu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu.
RMPE: Regional multi-person pose estimation. In ICCV,
2017.

[2] Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961-2969, 2017.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[4] Diederik P Kingma and Max Welling. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114,2013.

[5] Yu Zeng, Zhe Lin, Jimei Yang, Jianming Zhang, Eli Shecht-
man, and Huchuan Lu. High-resolution image inpainting with
iterative confidence feedback and guided upsampling. In Eu-
ropean Conference on Computer Vision, pages 1-17. Springer,
2020.



Sunuiedu

€« —-—-=—====

Figure 1. An illustration for our Inpaint2Learn data generation pipeline. First, we use an instance segmentation algorithm Mask R-CNN[2]]
to segment the object of interest, shown in the top left image. Then, we cut the instance out using the predicted mask, as shown in the top
right. We use an image inpainting algorithm ProFill[3] to fill the hole (bottom right). We also run a pose estimator AlphaPose[]] to generate
the pseudo ground truth pose for the person of interest. The bottom left shows our pose label visualized on the inpainted background.
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Figure 2. An illustration for the inference pipeline for the human affordance prediction model.
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Figure 3. An illustration for the theta(affine matrix) / pose encoder.
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Figure 4. An illustration for the bounding box generator.
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Figure 7. Generated training data visualization for human pose affordance learning. The first and the third columns are the original images,
and the second and the fourth columns are the generated pseudo pose labels overlayed on the inpainted images.

Figure 8. Generated training data visualization for Location2Object learning. The first and the third columns are the original images, and
the second and the fourth columns are the generated class and bounding box labels overlayed on the inpainted images.



Figure 10. More qualitative results for synthesized human poses in human affordance prediction.



Figure 12. More qualitative results for 6D object pose hallucination.
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Figure 13. User study interface for human affordance prediction. Left: Survey instruction. Right: Survey question example.
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Figure 14. User study interface for Location2Object. Left: Survey instruction. Right: Survey question example.
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Figure 15. User study interface for 6D object pose hallucination. Left: Survey instruction. Right: Survey question example.



