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(a) RGB image (b) completion with 500 input points (c) completion with 5 input points

Figure 1: Sparsity-agnostic depth completion. From left to right: (a) reference image, (b) completed depth and point cloud

using 500 depth points, (c) completed depth and point cloud using only 5 depth points. Our framework (top) dramatically

outperforms NLSPN [29] (bottom) when both are trained with 500 points and tested with much fewer.

Abstract

We present a novel depth completion approach agnos-

tic to the sparsity of depth points, that is very likely to

vary in many practical applications. State-of-the-art ap-

proaches yield accurate results only when processing a spe-

cific density and distribution of input points, i.e. the one

observed during training, narrowing their deployment in

real use cases. On the contrary, our solution is robust to

uneven distributions and extremely low densities never wit-

nessed during training. Experimental results on standard

indoor and outdoor benchmarks highlight the robustness of

our framework, achieving accuracy comparable to state-of-

the-art methods when tested with density and distribution

equal to the training one while being much more accurate

in the other cases. Our pretrained models and further ma-

terial are available in our project page.

1. Introduction

Depth perception is pivotal to a variety of applications in

robotics, scene understanding and more, and for this reason,

it has been intensively investigated for decades. Among

popular systems leveraging depth estimation, it is worth

mentioning autonomous driving [9], path planning and aug-

mented reality. To date, accurate depth perception is de-

manded either to multi-view imaging approaches [44] or to

specifically designed sensors such as ToF (Time of Flight)

or LiDAR (Light Detection and Ranging). Although more

expensive than standard cameras, depth sensors usually al-

low for higher accurate measurements even though at a

lower spatial resolution. On the one hand, ToF sensors are

cheap, small, and have been recently integrated into mobile

consumer devices [16, 23]. They perturb the scene through

coded signals unable to cope with outdoor daytime environ-

ments. To limit power consumption, a sparse emitting pat-

tern is used, yielding meaningful depth measures for only

a few points in the scene (∼500 points) [16]. On the other

hand, LiDAR sensors employ a moving array of laser emit-

ters scanning the scene and outputting a point cloud [33],

which becomes a sparse depth map once projected over the

image camera plane due to its much higher resolution. De-

vices leveraging such technology are expensive and bulky

however, being applicable even in daylight outdoor envi-

ronments, became standard for autonomous driving appli-

cations [37]. Since all these depth sensors provide – for dif-

ferent reasons – only sparse information, techniques aimed

at recovering a dense depth map from an RGB image and

a few measurements have gained much popularity in recent

years [25, 29, 3].

Unfortunately, in real scenarios LiDAR and ToF sen-
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sors are affected by additional issues other than sparsity,

which may easily lead even to sparser depth points often un-

evenly distributed. For instance, the noise originating from

multi-path interference – when multiple bouncing rays from

different scene points collide on the same pixel – might

lead the sensor to invalidate the measurement and con-

sequently reduce density. Moreover, low-reflectivity sur-

faces/materials absorb the whole emitted signal while oth-

ers reflect it massively, leading to saturation. Despite the

two opposite behaviors, depth cannot be reliably measured

in both cases, possibly leading to large, unobserved regions.

State-of-the-art depth completion techniques are fragile

and fail at reconstructing the structure of the scene for ar-

eas where no depth points are available or when the sparsity

changes significantly compared to the one used at training

time. Indeed, the incapacity to deal with uneven spatial dis-

tributions of the sparse depth points – which will be un-

veiled in this work – threatens the possibility of deploying

such solutions in different practical contexts. Moreover, this

behaviour also prevents their seamless deployment when

using a different sensor inferring the depth according to a

spatial pattern different from the one used while training

(e.g., switching from an expensive Velodyne [38] LiDAR

system to a cheaper one).

Unfortunately, as reported in this paper and shown in

Figure 1, convolutional layers struggle at generalizing when

fed with variable sparsity input data. Hence, we propose a

design strategy that diverges from the literature to overcome

this issue by not directly feeding sparse depth points to the

convolutional layers. Purposely, we iteratively merge the

sparse input points with multiple depth maps predicted by

the network. This strategy allows us to handle highly vari-

able data sparsity, even training the network with a constant

density distribution as done by state-of-the-art methods

[29, 3, 7, 11] yet avoiding catastrophic drops in accuracy

witnessed by competitors. Such an achievement makes our

completion solution a Sparsity Agnostic Network, dubbed

SpAgNet.

Our contribution can be summarized as follows:

• We propose a novel module designed to incorporate

sparse data for depth completion yet being indepen-

dent by their distribution and density. Such a module

plugged into a competitive neural network architecture

trained effortlessly can effectively deal with the previ-

ously mentioned issues.

• We assess the performance of SpAgNet and state-of-

the-art methods on a set of highly challenging cases

using KITTI Depth Completion (DC) and NYU Depth

V2 (NYU) datasets. We highlight the superior robust-

ness of our solution compared to state-of-the-art when

dealing with uneven input patterns.

2. Related Work

Depth Prediction. Except for a few attempts to solve

monocular depth prediction through non-parametric ap-

proaches [17], the practical ability to solve this ill-posed

problem has been achieved only with the deep learning

revolution. At first, deploying plain convolutional neural

networks [6] and then, through more complex approaches.

Specifically, [8] casts the problem as a classification task,

[1] exploits a bidirectional attention mechanism, [19] intro-

duces novel local planar guidance layers to better perform

the decoding phase, [32] jointly computes panoptic segmen-

tation to improve depth prediction performance, [34] unifies

multiple depth sources to coherently train a neural network

to better generalize. The previous methods require a mas-

sive quantity of training data to achieve proper performance

in unknown environments thus self-supervised paradigms

gained much attention. For instance, [10] relies on a super-

visory signal extracted from a monocular video stream.

Depth Completion. Depth completion aims at densify-

ing the sparse depth map obtained by an active depth sen-

sor, providing sparser to denser measurements depending

on the technology – e.g., as evident by comparing Radar

[20] versus LiDAR [9] sensors. This task has been tackled

either by leveraging an additional RGB image or barely us-

ing the sparse depth data. Although most methods rely on

learning-based paradigms, [45] proposes a non-parametric

handcrafted method. Regarding deep-learning methods,

[25] was among the first to tackle the problem by jointly

feeding a neural network with the RGB frame and the sparse

depth points to densify the latter. Observing that manipu-

lating sparse data is sub-optimal for convolutions, [37, 4]

proposed custom convolutional layers explicitly taking into

account sparsity. Eventually, guided spatial propagation

techniques have demonstrated superior performance. At

first, [21] proposed a network able to learn local affinities

to guide the depth expansion, this strategy was improved

initially by [3] and then by [29]. Based on a similar princi-

ple, [36] proposes content-dependent and spatially-variant

kernels for multi-modal feature fusion. [7] performs depth

completion also modeling the confidence of the sparse in-

put depth and the densified output. In a parallel track, a few

works focused on unsupervised training strategies for depth

completion [24, 41, 40, 42]. Finally, [11] proposes an ap-

proach to deal with depth completion and depth prediction.

Even though this seems similar to our research, it is only

loosely related. First, it cannot deal with different sparsities

but only with the total absence of the sparse depth points.

Second, to achieve their goal, they need a specific training

procedure and an additional branch to handle the availabil-

ity of sparse depth data. In contrast, our peculiar network

design addresses both issues.

Uncertainty Estimation. Evaluating the estimated

value’s uncertainty (or confidence) is essential in many cir-
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Figure 2: SpAgNet architecture. The network follows an encoder-decoder design, with a backbone to extract features from

the image and a custom decoder to iteratively merge at multiple scales sparse depth hints without directly feeding them as a

sparse depth map. Finally, we leverage non-local propagation [29] to improve accuracy further.

cumstances. For neural networks, it has been widely ex-

plored either the use of Bayesian frameworks [26, 39, 2] or

strategies jointly predicting the mean and variance of the

network’s output distribution [28]. For depth completion,

[7] proposed to jointly compute the confidence of the sparse

input depth and of the densified output. While, for monoc-

ular depth prediction, [31] has deeply investigated uncer-

tainty for self-supervised approaches.

3. Sparsity Agnostic Framework

To tackle depth completion, we start from our previ-

ous observations. Specifically, as pointed out by [37, 4],

2D convolutions struggle to manipulate sparse information.

Additionally, we further notice that the density of such in-

put depth data and its spatial distribution – which could

be highly uneven – might lead state-of-the-art networks to

catastrophic failures, as depicted at the bottom of Figure 1.

Moreover, we argue that these networks mostly rely on the

sparse depth input overlooking the image content substan-

tially ignoring the geometric structure depicted in it.

SpAgNet relies on an encoder-decoder structure with

skip connections, as depicted in Figure 2. However, un-

like current depth completion techniques [29, 3, 11, 7], we

do not feed the encoder with sparse depth information for

the reasons previously outlined. We extract instead features

from the RGB frame only in order to get rid of the sparse

input data and, consequently, its density. This strategy al-

lows us to constrain the network to exploit the image con-

tent fully and, as we will discuss later, to enforces the net-

work to extract the geometry of the scene from RGB.

The decoding step predicts – iteratively and at multiple

scales – dense depth from the RGB image and fuse it with

the sparse input data. The first iterative step takes the in-

put features extracted from the RGB image and generates a

lower scale depth map and a confidence map. Then, the next

iterative steps process the same inputs plus the depth map

and its confidence, both augmented with the sparse input

points computed in the previous iteration. Moreover, since

each intermediate depth map provides information up to a

scale factor, we scale it according to the sparse input points

before each augmenting step. We do so due to the ill-posed

nature of monocular depth prediction. Experimental results

will corroborate our design choice, especially when dealing

with a few sparse input points. At the end of the iterative

steps, we apply the non-local spatial propagation module

proposed in [29] to refine the depth map inferred by the net-

work. Figure 2 describes the whole framework.

3.1. Encoder Architecture

Since our framework encodes features from the im-

age only, we can leverage as encoding backbone any pre-

trained network. Such backbone is pre-trained on ImageNet

[35]. Among the multiple choices [12, 14, 43] we choose

ResNeXt50 [43] due to its good trade-off between perfor-

mance and speed. Specifically, it downsamples the image

to scales 1
2 , 1

4 , 1
8 , 1

16 and 1
32 and the features used in the

decoding step as input and skip connection.

3.2. Scale and Place Module

In our proposal, the core Scale and Place (S&P) module

is in charge of inferring a dense and scaled depth map and

its confidence. It takes as input the backbone features, the

output of the previous S&P module at a different scale, and

the sparse depth points as depicted in Figure 2.

Specifically, S&P leverages the input features to jointly

generate an initial up-to-scale depth map and its confidence

deploying a stem block composed of two convolutional lay-

ers and two heads in charge of generating them. Each con-

volutional layer consists of a 2D convolution, a batch nor-

malization [15] and a Leaky ReLU. Then in the Scale step,

the S&P module performs a weighted linear regression to

scale the depth map according to the available sparse in-

put points, weighted by means of confidence. The param-

eters of the weighted linear regression can be computed in

closed form and in a differentiable way, as described in Eq.

1 where pi is the predicted depth value and ci its confidence
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(a) RGB (b) dense depth

(c) confidence map (d) depth error (e) depth scaling linear regression

Figure 3: Confidence aware depth scaling. Example of confidence usage to scale depth. On left, we show (a) the input

image, (b) predicted depth map, (c) estimated confidence and (d) errors with respect to groundtruth. On right, we plot the

outcome of the scaling procedure (red means a lower confidence prediction, green a higher one).

corresponding to an available input sparse point si.

β =

∑

i ci(pi − p̂)(si − ŝ)
∑

i ci(pi − p̂)2
α = ŝ− βp̂ (1)

p̂ =

∑

i cipi
∑

i ci
ŝ =

∑

i cisi
∑

i ci

Then, in the Place step, for those points where a sparse

input depth value is available, we replace the corresponding

value in the scaled depth map with it. Additionally, we up-

date the same point in the confidence map with the highest

score. The latter step can be summarized as follows

D̂[x, y] =

{

Ds[x, y] if H[x, y] = 0

H[x, y] if H[x, y] ̸= 0
(2)

Ĉ[x, y] =

{

Cs[x, y] if H[x, y] = 0

1 if H[x, y] ̸= 0
(3)

where Ds is the scaled depth map, Cs is the confidence

map and H is a sparse depth map containing zeros where

an input sparse depth point is not available. The predicted

confidence has an empirically chosen range of [0.1 .. 0.9]

while we associate confidence 1 to each valid value in H .

We apply the S&P module at scales 1
8 , 1

4 and 1
2 . The

module at 1
8 computes the initial depth and confidence maps

leveraging only the RGB features. The others take in input

also the up-sampled dense depth and confidence maps from

the previous module in order to iteratively correct the pre-

diction relying on both the predicted depth and the injected

sparse points. Thus, with this strategy, the decoder does not

deal directly with sparse data in any of its steps. Nonethe-

less, the network can locate and effectively leverage reli-

able sparse information. An example of this mechanism is

showed in Figure 3, where can be clearly seen how the net-

work learns to locate the most reliable depth values as those

closer to the groundtruth depth.

It is worth noting that confidence plays a crucial role in

the S&P module. At first, in the Scale step, it helps to locate

outliers in the estimated depth map enabling to soften their

impact when performing the scaling procedure. Addition-

ally, in the Place step, assigning the highest confidence to

the sparse input points enables the network to rely on them

effectively. Nonetheless, SpAgNet also exploits the other

predicted depth points according to their estimated confi-

dence.

Since the S&P module needs the sparse data at multiple

scales, we down-sample it by employing a non-parametric

sparsity aware pooling: moving a 3×3 window with stride

2, we assign the mean of the available measures in its neigh-

bourhood to each coordinate, we iteratively apply this pro-

cess to reach lower resolutions. This approach leads to a

densification of the sparse depth map and helps, at all scales,

to include even the meagre few sparse points available to a

large field of view.

3.3. Non­Local Spatial Propagation

Spatial propagation concerns the diffusion of informa-

tion in a localized position to its neighbourhoods. This strat-

egy represents a common practice in the depth completion

literature [21, 3, 29, 13] and can be achieved by a neural net-

work in charge of learning the affinity among neighbours.

Let X = (xm,n) ∈ RM×N be a 2D depth map to be

refined through propagation, at step t it acts as follows:

xt
m,n = wc

m,nx
t−1
m,n +

∑

(i,j)∈Nm,n

wi,j
m,nx

t−1
i,j (4)

Where (m,n) is the reference pixel currently being up-

dated, (i, j) ∈ Nm,n the coordinate of the pixels in its
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neighborhood, wi,j
m,n the affinity weights, and wc

m,n the

affinity weight of the reference pixel:

wc
m,n = 1−

∑

(i,j)∈Nm,n

wi,j
m,n (5)

The various existing methods differ by the choice of the

neighborhood and by the normalization procedure of the

affinity weights, the latter necessary to ensure stability dur-

ing propagation [21, 3, 29]. Within SpAgNet, we imple-

ment the non-local approach [29], letting the network dy-

namically decide the neighborhood using deformable con-

volutions [5]. Formally:

Nm,n = {xm+p,n+q | (p, q) ∈ fφ(I,H, n,m)} (6)

p, q ∈ R

Where I and H are the RGB image and the sparse depth,

and fφ(·) is the neural network determining the neighbour-

hood. The non-local propagation module requires in input

an initial depth map generated through two convolutional

blocks from the last S&P block output, scaled using the full-

resolution sparse depth points. However, in this case, we do

not perform a weighted scaling to obtain the best result on

the entire frame. Finally, as usual, the sparse depth points

override the predicted output. The resulting depth map is

then fed along with features to two convolutional blocks to

generate the guiding features and confidence required by the

propagation module.

3.4. Loss Function

At each scale, we train the network by supervising the

depth obtained by the S&P module before Place step. The

confidence weights the loss of each depth prediction, and a

regularization term (controlled by η) enforces the network

to maintain the confidence as higher as possible. Following

[29], we compute both L1 and L2 losses. Our loss function,

at a specific scale, is described by Eq. 7 where Cs and Ds

are respectively confidence and depth at a specific scale s.

Confidence is not computed for the full size scale, hence

C0 = 1. Finally, it is worth mentioning that lower scales

are weighted less through an exponential decay factor γ.

L =

n
∑

s=0

γs 1

N

m
∑

i

Cs
i L

12
i − η lnCs

i (7)

L12
i = |Ds

i −Gi|+ |Ds
i −Gi|

2

4. Experimental Results

We have implemented SpAgNet in PyTorch [30] training

with 2 NVIDIA RTX 3090 and using the ADAM optimizer

[18] with β1 = 0.9 and β2 = 0.999. The final model re-

quires 35 milliseconds to perform a prediction on a image

of 640×480 resolution employing a single NVIDIA RTX

3090 GPU.

4.1. Datasets

NYU Depth V2. The NYU Depth V2 [27] dataset is an

indoor dataset containing 464 indoor scenes gathered with

a Kinect sensor. We follow the official train/test split as

previous works relying on the pre-processed subset by Ma

et al. [25] using 249 scenes for training (∼50K samples)

and 215 scenes (654 samples) for testing. Each image has

been down-sampled to 320×240 and then center cropped

to 304×228. As a common practice on this dataset, 500

random points per image have been extracted to simulate

sparse depth. We train our network for 15 epochs starting

with a learning rate 10−3 and decreasing it every 3 epochs

by 0.1, setting γ = 0.4 and η = 0.1. We use batch size

24 (12 for each GPU); hence the network is extremely fast

to converge since the whole training accounts less than 30K

steps. We apply color and brightness jittering and horizontal

flips to limit overfitting.

KITTI Depth Completion (DC). KITTI DC [37] is an

outdoor dataset containing over 90K samples, each one pro-

viding RGB information and aligned sparse depth infor-

mation (with a density of about 5%) retrieved by a high-

end Velodyne HDL-64E LiDAR sensor. The images have

1216×352 resolution, and the dataset provides a standard

split to train (86K samples), validate (7K samples) and test

(1K samples). The groundtruth has been obtained tempo-

rally accumulating multiple LiDAR frames and filtering er-

rors [37], leading to a final density of about 20%. On this

dataset we train for 10 epochs with batch size 8 (4 for each

GPU), starting with learning rate 10−3 and we decrease it

every 3 epochs by 0.1, we set γ = 0.4 and η = 20.0. Data

augmentation follows the same scheme used for NYU.

4.2. Evaluation

In this section, we assess the performance of our pro-

posal and state-of-the-art methods deploying the dataset

mentioned above. Following standard practice [29, 3], we

use the following metrics: RMSE =
√

1
N

∑

i |Di −Gi|2,

MAE = 1
N

∑

i |Di −Gi| and REL = 1
N

∑

i

∣

∣

∣

Di−Gi

Gi

∣

∣

∣
.

For evaluation purposes, in addition to the standard pro-

tocol deployed in this field [29, 3], we also thoroughly eval-

uate the robustness of the networks on the two datasets in

much more challenging scenarios but always training with

the standard procedure (i.e., using 500 points on NYU and

64 LiDAR lines on KITTI). Since KITTI DC is thought for

autonomous driving tasks and the sparse depth is acquired

with an high end 64 Lines Lidar which provides in output

always the same pattern, we simulate the switch to a cheaper

device providing in output less lines assessing the capabil-

ity of SpAgNet to generalize over sparse depth density. On
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500p 5p shifted grid Livox

Figure 4: Sparse depth patterns. Examples of different

sparse depth patterns, from left to right: 500 random points,

5 random points, shifted triangular tiling dot pattern and a

Livox-like pattern (e.g. Livox Mid-70).

NYU Depth V2, sparse depth points are traditionally ex-

tracted randomly from the groundtruth [25, 29, 3] which is

almost dense. Thus, we test i) the extreme case of having

only 5 random points, ii) the impact of having large empty

areas and iii) the impact of changing the sparsity pattern.

We implement ii) sampling from the groundtruth a trian-

gular tiling dot pattern aimed at simulating the output of

a commercial VCSEL [23] ToF sensor and then randomly

shifting this pattern to leave behind large empty areas where

no sparse hints are available while iii) extracting from the

groundtruth sparse points with the pattern of a Livox Mid-

70 [22]. All these patterns are showed in Figure 4. We take

into account the publicly pre-trained state-of-the-art mod-

els available either on NYU Depth V2 or KITTI DC and we

take care to guarantee that each architecture sees exactly the

same sparse points while being evaluated.

Results on NYU Depth v2. Table 1 compares state-

of-art methods and our proposal on the NYU dataset us-

ing different input configurations: in the upper portion by

changing the number of samples and in the lower portion

by changing the pattern type. From the table, we can notice

that our proposal achieves competitive results, being very

close to NLSPN and better than other methods when the

number of points used is the same as the training phase (i.e.,

500). Similar behaviour occurs with 200 points. However,

when the density of input points decreases further, SpAgNet

vastly outperforms the state-of-the-art. The performance

gap with other methods gets much higher when decreasing

the density further. For instance, with 50 points, the RMSE

by SpAgNet is 0.272 m, while the second one (NLSPN) ac-

counts for 0.423 m. Notably, with only 5 points, the same

metrics are 0.467 m and 1.033 m (NLSPN), further empha-

sizing the ability of our proposal to deal even with meagre

input points, in contrast to our competitors. It is worth ob-

serving that our method outperforms competitors with ran-

domly selected input points starting from 100.

The bottom portion of Table 1 reports the outcome of

the evaluation with different spatial distributions and their

average density of depth input points. Specifically, we re-

port results with the two distributions depicted in the right-

most images of Figure 4. From the table, we can observe

that when the spatial distribution covers the whole image,

Method Samples REL ↓ RMSE (m) ↓
pNCNN [7]

500

0.026 0.170

CSPN [3] 0.016 0.118

NLSPN [29] 0.013 0.101

PackNet-SAN [11] 0.019 0.120

SpAgNet (ours) 0.015 0.114

pNCNN [7]

200

0.040 0.237

CSPN [3] 0.027 0.177

NLSPN [29] 0.019 0.142

PackNet-SAN [11] 0.027 0.155

SpAgNet (ours) 0.024 0.155

pNCNN [7]

100

0.061 0.338

CSPN [3] 0.067 0.388

NLSPN [29] 0.038 0.246

SpAgNet (ours) 0.038 0.209

pNCNN [7]

50

0.108 0.568

CSPN [3] 0.185 0.884

NLSPN [29] 0.081 0.423

SpAgNet (ours) 0.058 0.272

pNCNN [7]

5

0.722 2.412

CSPN [3] 0.581 2.063

NLSPN [29] 0.262 1.033

SpAgNet (ours) 0.131 0.467

pNCNN [7] 0.519 1.922

CSPN [3] shifted grid 0.367 1.547

NLSPN[29] (∼ 100) 0.175 0.796

SpAgNet (ours) 0.110 0.422

pNCNN [7] 0.061 0.333

CSPN [3] livox 0.066 0.376

NLSPN [29] (∼ 150) 0.037 0.233

SpAgNet (ours) 0.039 0.206

Table 1: Evaluation on NYU Depth v2. Comparison with

state-of-the-art methods, trained with 500 random points,

extracted from groundtruth, as input and tested with differ-

ent densities and patterns. In bold is the best result, under-

lined the second one.

as in the case of the Livox-like pattern, SpAgNet and NL-

SPN achieve similar performance while other methods fall

behind. However, when the input points do not cover sig-

nificant portions of the scene and the density decreases fur-

ther, like in the shifted-grid case, our method dramatically

outperforms all competitors by a large margin.

Figure 5 shows qualitatively how SpAgNet compares to

CSPN and NLSPN on an NYU sample when using 500

random points, 5 points and the shifted grid. It highlights

how only our method yields meaningful and compelling re-

sults with 5 points and the shifted grid, leveraging the im-

age content much better than competitors, thanks to the pro-

posed architectural design. At the same time, our network

achieves results comparable to competitors with 500 ran-

domly distributed points. This fact further highlights that

the robustness of SpAgNet is traded with the capacity of

entirely leveraging the sparse depth information when fully

available.

Results on KITTI DC. Once we assessed the perfor-

mance on the indoor NYU dataset, we report in Table 2

the evaluation on KITTI DC. From the table, we can notice

that with 64 lines, SpAgNet results almost comparable to

the best one, NLSPN. However, by reducing the number of
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Figure 5: Qualitative results on NYU-Depth v2. CSPN and NLSPN, when processing 5 points or the shifted grid pattern,

manifest the complete inability to handle them, while SpAgNet maintains the scene structure.

Method Lines RMSE (mm) ↓ MAE ↓
NLSPN [29]

64

778.00 199.50

pNCNN [7] 1011.86 255.93

PackNet-SAN [11] 1027.32 356.04

PENet [13] 791.62 242.25

SpAgNet (ours) 844.79 218.39

NLSPN [29]

32

1217.21 367.49

pNCNN [7] 1766.84 615.93

PackNet-SAN [11] 1836.84 914.33

PENet [13] 1853.06 1025.42

SpAgNet (ours) 1164.18 339.22

NLSPN [29]

16

1988.52 693.10

pNCNN [7] 3194.69 1321.74

PackNet-SAN [11] 2841.35 1570.05

PENet [13] 3538.02 2121.46

SpAgNet (ours) 1863.25 606.92

NLSPN [29]

8

3234.93 1491.28

pNCNN [7] 5921.94 2999.92

PackNet-SAN [11] 3231.03 1575.41

PENet [13] 6015.02 3812.45

SpAgNet (ours) 2691.34 1087.21

NLSPN [29]

4

4834.22 2742.80

pNCNN [7] 9364.58 5362.45

PackNet-SAN [11] 4850.20 2255.08

PENet [13] 9318.86 5819.36

SpAgNet (ours) 3533.74 1622.64

Table 2: Evaluation on KITTI DC. Comparison with

state-of-the-art methods, always trained on 64 lines Velo-

dyne lidar and tested with a different number of lines. In

bold is the best result, underlined the second one.

lines from 32 to 4, our network gets always the best perfor-

mance with an increasing gap. Interestingly, PackNet-SAN

[11], which has been specifically trained to perform well

in both depth completion (64 lines) and depth prediction (0

lines) is not able to deal with fewer lines. Indeed, the ac-

curacy it achieves when processing 16, 8 or 4 lines is even

lower than the one achieved when performing depth predic-

tion, i.e. with RMSE equal to 2.233 mm. We ascribe this

behaviour to the fact that they train an external encoding

branch to extract features from sparse data and feed them

to the network by means of a sum operation. Even though

such a branch applies a special and bulky sparse convolu-

tion operator [4], it does not seem capable of generalizing

to fewer points. On the contrary, the whole network seems

to suffer of the same issues of fully convolutional models,

resulting effective only when fed with 64 LiDAR lines or

none – the only configurations observed during training.

Figure 6 shows, on an image of the KITTI DC dataset

and for three different numbers of lines, the outcome of NL-

SPN, PENet and our network. In contrast to competitors,

SpAgNet consistently infers meaningful depth maps, even

when the number of lines decreases. This behaviour can be

perceived better by looking at the error maps. For instance,

it is particularly evident with 4 lines, focusing on the road

surface and the far and background objects.

Additional qualitative results are reported as videos in

the supplementary material and in our project page.

4.3. Ablation Study

Finally, we carry out an ablation study concerning the

main components of SpAgNet to measure their effective-

ness. Specifically, in Table 3, we conduct two main stud-

ies, respectively, to evaluate (a) the impact of i) the Scale

step of the S&P modules (while the Place step is strictly

necessary, being it the entry point to input the sparse depth

points needed to perform completion), ii) the usage of con-

fidence and iii) the non-local propagation head, and (b) re-

sults achieve with different backbones.

From (a), we can notice that with 500 sparse points, scal-

ing does not significantly improve since the network already

learns to generate an output that is almost in scale. How-
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Figure 6: Qualitative results on KITTI DC. We report results using, respectively, from left to right, 64, 8 and 4 lines. From

top to bottom the predicted depth and error map of [29], [13] and ours.

NLSP Confidence Scaling Samples RMSE (m) ↓
✗ ✗ ✗ 0.161

✗ ✓ ✓

500

0.127

✓ ✗ ✓ 0.122

✓ ✓ ✗ 0.115

✓ ✗ ✗ 0.132

✗ ✓ ✗ 0.145

✗ ✗ ✓ 0.135

✓ ✓ ✓ 0.114

✗ ✗ ✗ 0.770

✗ ✓ ✓

5

0.474

✓ ✗ ✓ 0.479

✓ ✓ ✗ 0.526

✓ ✗ ✗ 0.566

✗ ✓ ✗ 0.823

✗ ✗ ✓ 0.484

✓ ✓ ✓ 0.467

Backbone Size Samples RMSE (m) ↓
ResNet18 27M

500

0.116

ResNet34 37M 0.121

ResNet50 51M 0.117

ResNeXt50 51M 0.114

DenseNet121 30M 0.118

DenseNet161 61M 0.115

ResNet18 27M

5

0.504

ResNet34 37M 0.474

ResNet50 51M 0.664

ResNeXt50 51M 0.467

DenseNet121 30M 0.678

DenseNet161 61M 0.564

(a) (b)

Table 3: Ablation study on NYU – (a) single components,

(b) different backbones. Training with 500 points, testing

either with 500 or 5 points on the same dataset.

ever, with only 5 points, applying a global scaling proce-

dure helps retrieve the correct scale even in regions lacking

depth measurements. Focusing on confidence, it turns out

to be effective with high and low densities of input points.

Finally, Non-Local Spatial Propagation further boosts per-

formance in both cases.

In (b), most backbones yield comparable results when

tested with 500 points, with ResNeXt50 achieving slightly

better results. A significant gap in accuracy emerges

when testing the same networks with only 5 points, with

ResNeXt50 achieving the best results again.

5. Conclusion

This paper proposes a sparsity agnostic framework for

depth completion relying on a novel Scale and Place (S&P)

module. Injecting sparse depth points to it rather than to

convolutions allows us to improve the robustness of the ar-

chitecture even when facing uneven and sparse distributions

of input depth points. In contrast, existing state-of-the-art

solutions are not robust in such circumstances and are of-

ten unable to infer meaningful results. Experimental re-

sults demonstrate the ability of our network to be competi-

tive with state-of-the-art facing standard input distributions,

while resulting much better when dealing with uneven ones.
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[34] René Ranftl, Katrin Lasinger, David Hafner, Konrad

Schindler, and Vladen Koltun. Towards robust monocular

depth estimation: Mixing datasets for zero-shot cross-dataset

transfer. In IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence (PAMI), Agost 2020.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015.

[36] Jie Tang, Fei-Peng Tian, Wei Feng, Jian Li, and Ping Tan.

Learning guided convolutional network for depth comple-

tion. IEEE Transactions on Image Processing, 30:1116–

1129, 2020.

[37] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,

Thomas Brox, and Andreas Geiger. Sparsity invariant cnns.

In 2017 International Conference on 3D Vision (3DV), pages

11–20, 2017.

[38] Velodyne Lidar. https://velodynelidar.com/

products/puck.

[39] Max Welling and Yee Whye Teh. Bayesian learning via

stochastic gradient langevin dynamics. In Proceedings of the

28th International Conference on International Conference

on Machine Learning, ICML’11, page 681–688, Madison,

WI, USA, 2011. Omnipress.

[40] Alex Wong, Safa Cicek, and Stefano Soatto. Learning topol-

ogy from synthetic data for unsupervised depth comple-

tion. IEEE Robotics and Automation Letters, 6(2):1495–

1502, 2021.

[41] Alex Wong, Xiaohan Fei, Stephanie Tsuei, and Stefano

Soatto. Unsupervised depth completion from visual in-

ertial odometry. IEEE Robotics and Automation Letters,

5(2):1899–1906, 2020.

[42] Alex Wong and Stefano Soatto. Unsupervised depth comple-

tion with calibrated backprojection layers. In Proceedings

of the IEEE/CVF International Conference on Computer Vi-

sion, pages 12747–12756, 2021.

[43] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 5987–5995,

2017.

[44] Yao Yao, Zixin Luo, Shiwei Li, Tian Fang, and Long Quan.

Mvsnet: Depth inference for unstructured multi-view stereo.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), September 2018.

[45] Yiming Zhao, Lin Bai, Ziming Zhang, and Xinming Huang.

A surface geometry model for lidar depth completion. IEEE

Robotics and Automation Letters, 6(3):4457–4464, 2021.

5880


