
Self-Distillation for Unsupervised 3D Domain Adaptation

Adriano Cardace Riccardo Spezialetti Pierluigi Zama Ramirez

Samuele Salti Luigi Di Stefano

Department of Computer Science and Engineering (DISI)

University of Bologna, Italy

{adriano.cardace2, riccardo.spezialetti, pierluigi.zama}@unibo.it

Abstract

Point cloud classification is a popular task in 3D vi-

sion. However, previous works, usually assume that point

clouds at test time are obtained with the same procedure

or sensor as those at training time. Unsupervised Domain

Adaptation (UDA) instead, breaks this assumption and tries

to solve the task on an unlabeled target domain, leverag-

ing only on a supervised source domain. For point cloud

classification, recent UDA methods try to align features

across domains via auxiliary tasks such as point cloud re-

construction, which however do not optimize the discrimi-

native power in the target domain in feature space. In con-

trast, in this work, we focus on obtaining a discriminative

feature space for the target domain enforcing consistency

between a point cloud and its augmented version. We then

propose a novel iterative self-training methodology that ex-

ploits Graph Neural Networks in the UDA context to refine

pseudo-labels. We perform extensive experiments and set

the new state-of-the art in standard UDA benchmarks for

point cloud classification. Finally, we show how our ap-

proach can be extended to more complex tasks such as part

segmentation.

1. Introduction

In recent years, point cloud classification has received a

lot of attention due to its relevance to many practical appli-

cations such as scene understanding, augmented/mixed re-

ality, robotics and autonomous driving [20, 52]. Deep learn-

ing brings the promise of data-driven solutions to this prob-

lem and a variety of deep architectures have arisen in re-

sponse to this challenge [43, 42, 35, 69, 68, 34, 26, 61, 54].

The success of these approaches goes hand in hand with

the availability of large datasets containing labelled shapes

[64, 7]. However, most existing annotated datasets con-

cern clean and occlusions-free CAD shapes, but deep mod-

els trained on these objects drastically fail when facing data

with different characteristics. This is the case, in particular,

: Strongly Augmented source Data

S ′′

Supervised Classification Feature Distillation

S ′′

Aligned feature space

S ′′ : Target Data : 𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝐵𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 : 𝑇𝑎𝑟𝑔𝑒𝑡 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

Figure 1. Proposed UDA method. We combine a supervised train-

ing of strongly augmented source data with a self-distillation ap-

proach that aims at clustering target shapes unsupervisedly. The

combination of these two approaches leads to an alignment in fea-

ture space across domains.

of models trained on synthetic CAD data and then tested on

point clouds obtained with real sensors, where parts of the

object may be missing due to occlusions and measurements

are corrupted by noise. Here comes to help Unsupervised

Domain Adaptation (UDA), which pursues solving a super-

vised learning task in a Target domain, T , where data come

without labels, by leveraging on labeled data available in a

Source domain, S . In the last couple of years, an increasing

number of papers [4, 43, 1, 2, 73] have addressed UDA for

point cloud classification, with popular synthetic datasets

of CAD models, such as ModelNet40 [65] or ShapeNet [7],

and real datasets such as ScanNet [11]. The main line of

research focuses on learning an effective feature space for

the target domain by means of auxiliary tasks such as point

cloud reconstruction [1, 46], 3D puzzle sorting [2] and ro-

tation prediction [73]. These tasks are refereed as auxiliary

since they do not directly solve the main task, but at the

same time, they are useful to learn features for the target do-

main without the need of annotations. Although such tech-

niques considerably improve over the baseline (i.e., training

only on source data), the design of such tasks is not triv-

ial and typically lead to sub-optimal solutions. It requires

identifying one that can drive the network to learn repre-

4166



sentations discriminative enough to perform classification

in the target domain effectively. Despite the fact they force

some degree of alignment between the features computed

on objects from the two domains, such auxiliary tasks do

not explicitly steer the network to learn discriminative rep-

resentations amenable to classification in the target domain.

For instance, if we train a network to reconstruct shapes,

we will get similar point cloud embeddings for similar 3D

shapes. However, two point clouds could represent objects

that, though similar in shape, do belong to different cate-

gories, e.g., a cabinet and a bookshelf. As a consequence,

relying on reconstruction to perform domain adaptation can

align features between the two domains, with similar shapes

embedded close one to each other regardless of their do-

main, but the decision boundaries learnable from the la-

beled source samples may not discriminate effectively be-

tween target samples belonging to different classes. This is

also shown in [1], where a simple denoising auto encoder

for point clouds only slightly improves performance over

the baseline. We reckon that similar considerations apply to

the other auxiliary tasks proposed in the literature as they

pursue cross-domain feature alignment based on a learning

objective that does not ensure cross-domain class discrim-

inability. We support this claim by comparing our proposal

with previous works in the experimental section.

In this paper instead, we take inspiration from a recent

self-supervised approach, DINO [6], to learn more discrim-

inative representations for the target domain by constrain-

ing a sample and a strongly augmented version of itself to

be classified similarly. This is typically achieved trough

self-distillation, a methodology where the output of a neu-

ral network is compared with the output obtained from a

mean teacher i.e. a temporal exponential moving average of

the weights of the network itself (EMA) [53]. As shown

in [6] this training methodology allows for clustering to-

gether samples of the same class. However, differently

from DINO, we apply self-distillation for the first time in

the 3D UDA context, where samples are point clouds, and

the main goal is to reduce the gap between representations

of two different domains rather than only learning a well-

clustered feature space for a single domain. We believe

that self-distillation is particularly suited for point cloud do-

main adaptation due to peculiar 3D data augmentations such

as translation, occlusion and point-wise noise that can eas-

ily bridge the gap between source and target domain. By

exploiting such augmentations to strongly augment source

data and by enforcing inter-class discriminability for the

target domain via self-distillation, we are able to obtain a

shared aligned feature space across domains. The overall

idea is illustrated in Fig. 1). Moreover, one major limitation

of DINO that hinders its wide adoption is mode collapse

[6], and previous works usually adopt multiple tricks and

hyper-parameters such as clustering constraints [5], predic-

tor [21] and contrastive losses [66] that are difficult to ap-

ply and tune in other contexts. In this work, we show how

this paradigm can be applied without such tricks to UDA

for point cloud classification, where mode collapse is pre-

vented by simultaneously training a classifier on labelled

source data that inherently separates the features space ac-

cording to semantic categories.

In the second step of our proposal, following recently

published works in the field [4, 73, 46, 17], we make use

of self-training, an iterative methodology that exploits the

predictions of a pre-trained model (pseudo-labels) to pro-

vide partial supervision on the target domain as well. How-

ever, pseudo-labels are noisy and their naive use typically

leads to overfitting of the dominant classes of the source

domain as shown in [71, 75]. The strategy proposed by

[4] to refine them requires offline training of an additional

network for this purpose and the definition of hand-crafted

rules based on k-NN queries, limiting its general applica-

bility, while [73] adopted a standard procedure borrowed

from the 2D world [74]. As a further contribution of our

work, we take a different path, and propose to use Graph

Neural Networks (GNNs) [63] to refine pseudo-labels on-

line during self-training. Our main intuition is that by using

a GNN, pseudo-labels are obtained by considering relation-

ships between all target samples in the dataset rather than on

single samples in isolation. This allows for reasoning at the

dataset-level and enables to correct misclassified samples

and thus refine pseudo-labels. Moreover, the target feature

space is clustered thanks to the self-distillation, thus each

node of the graph is likely to be connected to samples of the

same category. Hence, the GNN can improve the pseudo-

labels by reasoning on a neighborhood of samples sharing

the same class. This procedure can be done online during

training with the graph structure evolving over time, thus

avoiding pseudo-labels overfitting.

Project Page at https://cvlab-unibo.github.

io/FeatureDistillation/. In short, our contribu-

tions can be summarised as follows:

1. we propose the first approach in UDA for point clouds

classification that exploits self-distillation to learn ef-

fective representations to classify point clouds in the

target domain;

2. we show a novel strategy to use GNNs in UDA for

point clouds classification. It enables online refine-

ment of pseudo-labels, which reduces risks of overfit-

ting, and it is conducive to effective self-training;

3. we extensively test our framework on standard bench-

marks [43] and establish new state-of-the art results.

Furthermore, we show how our approach can be gen-

eralized to the challenging task of part segmentation.

4167



2. Related Work

Unsupervised 3D Domain Adaptation. Unsupervised

Domain Adaptation emerged in the last years as a technique

able to alleviate the domain shift when training a neural net-

work on a source domain (e.g., synthetic simulations) and

test in an unlabeled different, but related target domain (e.g.,

real data). UDA has a rich literature in the 2D world, and

a noticeable amount of work as been conducted for image

classification [19, 3, 37, 36, 51, 56], semantic segmentation

[33, 55, 8, 25] and object detection [9, 60, 60]. PointDAN

[43] has been the first work to address point cloud classifi-

cation in the UDA context; they leverage on the well known

Maximum Classifier Discrepancy (MCD) [45] to achieve

alignment in feature space. Differently, [2, 1, 73] exploit

Self-Supervised Learning (SSL) to run additional tasks on

both domains. [4] also leverages on point cloud reconstruc-

tion, but uses it to refine pseudo-labels. Despite its effec-

tiveness, their pipeline is rather complex and based on ad-

hoc k-NN queries. The main difference with these works is

in the way we exploit 3D transformations: while they use

transformations such as rotations or point-wise jittering to

solve an additional task in a self-supervised fashion, we use

these augmentations in input space to design a novel distil-

lation approach that pushes the network to learn a discrimi-

native feature space for the target domain.

Self-training. Self-training [74] is a common technique

used in Domain Adaptation to assign noisy annotations to

target samples i.e. pseudo-labels [30], so that partial super-

vision can be provided to learn the distributions of the target

domain. Pseudo-labels are often fairly inaccurate and many

methods have been proposed to address this issue for UDA

for image classification [22, 10, 48], semantic segmenta-

tion [40, 33, 27], and object detection [28, 59] by either

filtering or refining pseudo labels. The potential of self-

training has also been showed for point clouds classifica-

tion in [4] where pseudo-labels are refined by an auxiliary

reconstruction task. We also leverage on this powerful tech-

nique and propose for the first time to refine pseudo-labels

using Graph Neural Networks in the UDA context.

Knowledge distillation. The case in which soft pseudo-

labels rather than hard labels are used is typically denoted

as Knowledge distillation [24]. Although distillation has

been originally introduced to boost performance of small

neural networks, recent works revisited knowledge distilla-

tion as way to learn robust features for better initialization

or image retrieval [6]. In particular, DINO [6] proposed

a novel framework able to learn robust features exploiting

augmented versions of the same images of a given domain.

Inspired by DINO[6], we propose to apply such paradigm to

tackle the UDA scenario for 3D objects. Indeed we aim at

showing that self-distillation can be applied exploiting 3D

augmentations, and more importantly, that we can design

such learning protocol to reduce the gap between a source

and a target domain.

Graph Neural Networks (GNNs). Recent GNNs mod-

els [29, 58, 14] have emerged as powerful architectures for

graph-structured data, covering a large spectrum of applica-

tions: social analysis [31, 44], drug discovery [16] and rec-

ommendation systems [18, 62]. The rich literature on 2D

semi-supervised learning [29, 58, 12, 32, 47, 44] already

provides many works that leverage on GNNs to assign la-

bels on unlabelled nodes. However, all these works, assume

a small amount of perfectly labelled nodes in the graph for

each class, while this assumption does not hold in the UDA

scenario. To the best of our knowledge, [39] is the only

paper that addresses UDA for image classification using

GNNs. They focus on extracting complementary features

through a GNN to be combined with features obtained with

a classical Convolutional Neural Network (CNN). Other

works such as [13] and [15] instead, exploit graph structures

(not GNNs) with hand-crafted label propagation algorithms

to achieve adaptation. Differently, we propose the usage

of GNNs to obtain new pseudo-labels while self-training,

to avoid overfitting and to allow an iterative refinement of

them to converge to better adaptation performances. More-

over, we are the first to show their effectiveness in the case

of UDA for 3D shape classification.

3. Method

Our framework is divided into two main steps: self-

distillation (Sec. 3.2) and self-training with pseudo-labels

refinement (Sec. 3.3 and Sec. 3.4). The overall pipeline is

depicted in Fig. 2. We start introducing the notation and a

brief review of the basic concepts about GNNs.

3.1. Preliminaries

Notation. In this paper, we consider UDA for point

cloud classification, i.e. given a point cloud with N ele-

ments x ∈ R
N×3 we aim at learning a neural network

Ω : x → [0, 1]K that takes an input example x and pro-

duces a K-dimensional vector representing the confidence

scores for K classes. Such a point cloud classifier consists

of two components: Ω = Φ ◦ Ψ. The first is a feature ex-

tractor network, Φ : R3 → R
D, producing g ∈ R

D, i.e. a

D-dimensional global feature descriptor for the shape, the

second is small MLP Ψ : RD → R
K followed by a soft-

max operator which maps g to a vector of confidence scores

p̂ ∈ [0, 1]K . Finally, the class predictions can be obtain

by the argmax operator Λ : RK → Y . As it is peculiar in

UDA settings, we have at our disposal a source domain with

labels S = {(xi
s ∈ Xs, y

i
s ∈ Ys)}

ns

i=1, and a target domain

T = {xj
t ∈ Xt}

nt

j=1, where the point clouds are unlabeled.

Our objective is to obtain a classifier able to make correct

predictions on T .

Background on GNNs. Graph Neural Networks

(GNNs) are models designed to process graphs, i.e. sets of

4168



EMA

f ′ f ′′

Figure 2. Illustration of our framework. Left: weakly and strongly augmented point clouds are generated with two transformation functions

f ′ and f ′′ for both domains. The weakly augmented shapes are fed to an exponential moving average (EMA) encoder, the teacher Φ̃, while

the strongly augmented are processed by the student Φ. A consistency loss is applied between the corresponding embeddings. Right: the

whole target dataset is processed by a GCN G online during self-training to iteratively refine and update pseudo-labels

nodes that are optionally joined one to another by edges rep-

resenting relationships. GNNs are a powerful tool to pro-

cess unstructured data thanks to their ability of updating the

representations of each node by aggregation of information

from the neighbouring nodes. An undirected graph G is rep-

resented as a tuple (V, E), where V is the set of N vertices

vi ∈ V , and E is the set of edges. The graph topology

is determined by the adjacency matrix A ∈ R
N×N , with

Ai,j = 1 if two nodes i and j are connected. Among the

many architectures of GNNs [63], in this work we adopt the

Graph Convolutional Networks (GCNs) [29], which prop-

agate the information between each layer according to the

following propagation rule:

H(l+1) = σ
(

D̃− 1

2 ÃD̃− 1

2H(l)W (l)
)

(1)

where Ã = A+I represents the adjacency matrix with self-

connections, I is the identity matrix, D̃ii =
∑

j Ãij acts as

a scaling factor and W (l) is a layer-specific trainable weight

matrix. The aggregation rule is followed by a non-linear ac-

tivation function σ(·) such as ReLU. Note that matrix H(l)

deals with the l-th layer of the network, each row i repre-

senting the feature vector of a node vi ∈ V in that layer. We

refer the reader to [63] for a more detailed discussion.

3.2. Self­distillation

In this section, we present the self-distillation module

that we use in both steps of our pipeline. The purpose of

this component is to distill good features for the target do-

main unsupervisedly, so that a discriminative feature space

directly useful for classification can be learned even though

no direct supervision is available in T . Our main intuition,

is that learning a clustered feature space that minimises the

distance among variations of the same cloud from the target

domain, while simultaneously learning decision boundaries

amenable to classification thanks to a carefully augmented

source domain, is key to obtain good pseudo-labels to be

deployed in the self-training process. Indeed, without en-

forcing compactness in the feature space, it is more likely

that, due to the domain gap, target samples are spread across

the different categories defined by the decision boundaries

of the classifier. This is undesirable since it would lead to

excessive noise in pseudo-labels.

To achieve our goal, we use two data augmentation func-

tions f ′, f ′′ : R
N×3 → R

N×3 that take as input a point

cloud x and return a weakly augmented (x′) and a strongly

augmented point cloud (x′′) respectively. Then, we adopt a

self-distillation paradigm, where we train a student encoder

Φ to match the output of a teacher encoder Φ̃. In partic-

ular, we match two global shape descriptors, g̃ = Φ̃(x′)
and g = Φ(x′′), computed by feeding a weakly augmented

point cloud x′ to the teacher and the strongly augmented

version x′′ to the student.

By taking inspiration from [6], we design the student

and the teacher to output probability distributions over D
dimensions, denoted by q and q̃, respectively. These prob-

abilities can be obtained by normalizing the output of the

two encoders, i.e. g and g̃, with a softmax function:

q(g, τ) =
exp(g/τ)

∑D

d=1 exp(g
(d)/τ)

,

q̃(g̃, τ̃) =
exp(g̃/τ̃)

∑D

d=1 exp(g̃
(d)/τ̃)

(2)

where τ > 0 and τ̃ > 0 are the two temperature parameters

which control the sharpness of the output distributions for

the student and the teacher, respectively. Differently from

[6], we don’t require any complex scheduling for the tem-

perature parameters, and we just empirically set them to 0.5

by observing the model performance on the source domain

for the ModelNet→ScanNet experiment and set it to the

same value for all the others. To force the embedding of

the augmented point cloud to match that computed for the

original one, we minimize the cross-entropy:

Lsd(g̃, g) = −q̃(g̃, τ̃) log q(g, τ) (3)

4169



by running backprop on the student network Φ, while the

weights of the teacher are updated by computing an expo-

nential moving average of those of the student. Please note

that both networks share the same architecture but have dif-

ferent weights. We employ an EMA as a teacher network

since it is a convenient way to provide robust and stable

features throughout the training process without the need of

training another network [53, 23].

Data augmentation and transformation functions. To

implement f ′ and f ′′, we use a set of common data aug-

mentation techniques for point clouds such as: jittering,

elastic deformation [72], scaling along the three axis. More

specifically, to obtain the weakly augmented point cloud x′,

we only use jittering, while for the the strongly augmented

x′′, we employ all the above transformations. Additionally,

when performing synthetic-to-real adaptation, we also in-

clude random point removal [50]. We refer to the supple-

mentary material for some qualitative examples.

Interestingly, the same 3D transformations can be used

to simulate the target distribution given source data. In

fact, although it is not possible to exactly predict the shift

between two domains, one can approximate the nuisances

that affect the target data through aggressive data augmen-

tation. For example, when performing UDA between dif-

ferent synthetic domains, shapes may have similar geomet-

ric elements but with different style [38, 67], which can be

mimicked by object distortions or elongation and scaling.

Similarly, when moving from a synthetic domain to a real

one, it is reasonable to assume that shapes within the same

class will appear similar to CAD models but will have miss-

ing components due to occlusions, and point coordinates

will be affected by the noise originated in the acquisition

process. Therefore, as shown in Fig. 2 (left), at training time

we augment the source data re-utilizing the transformation

function f ′′, with the goal of minimising the gap between

the two domains in the input space and seamlessly obtain

a better alignment also in the feature space. Applying such

well designed augmentations to source data combined with

our distillation technique is beneficial to the student model.

Intuitively, by distillation we aim at clustering target sam-

ples, while by data augmentation we force source clusters,

naturally obtained with a classification loss, to be aligned

with the target ones.

3.3. Pseudo­labels initialization

In the first step of our method, we exploit the self-

distillation module presented in the previous section to ob-

tain an initial set of pseudo-labels for the target domain.

In particular, as shown in Fig. 2 (left), we train a classifier

Ω = Φ ◦ Ψ on top of the student feature extractor and fed

with augmented source data. We use the cross entropy loss:

Lce(x
′′
s , ys) = −ys log Ω(x

′′
s ) (4)

Simultaneously, we feed to the encoder Φ batches of source

and target point clouds strongly augmented with the trans-

formation function f ′′, while Φ̃ receives the weakly aug-

mented versions, and minimise Eq. (3) to learn the desired

clustered feature space for the data of the target domain. Af-

ter training, the initial set of pseudo-labels is computed by

feeding each target sample xi
t into Ω and selecting the class

with the highest confidence score: ŷit = Λ(Ω(xi
t)).

3.4. Self­training and pseudo­labels refinement

In the second step, we exploit and refine the previously

obtained pseudo-labels. We do this by alternating self-

training and refinement in an iterative procedure.

Self-training. In this step we train our classifier Ω =
Φ ◦ Ψ leveraging pseudo-labels, starting from scratch if it

is the first iteration. To do so, we first split the pairs of tar-

get samples and associated pseudo-labels (xi
t, ŷ

i
t) into two

disjoint sets, i.e. Ŷtc and Ŷtn, associated with confident and

non-confident pseudo-labels, respectively, and with the for-

mer initialized to the empty set. The sets will be useful to

realize the iterative procedure outlined at the end of the sec-

tion. We then train Φ and Ψ using self-distillation and su-

pervision for both domains, with supervision for the target

coming from pseudo-labels:

L = −Lce(x
′′
s , ys)− λLce(x

′
t, ŷt)− Lsd(x

′′, x′)

where λ =

{

1, ŷt ∈ Ŷtc

0.2, ŷt ∈ Ŷtn

.
(5)

Note that, as in the previous step, Lsd acts on both domains.

We provide a sensitivity analysis in the supplementary ma-

terial for λ when ŷt ∈ Ŷtn to show that our framework is

not sensitive to this hyper-parameter.

Refinement. Naively using pseudo-labels as done in the

previous step typically leads to ignoring the classes that are

underrepresented in the source domain and to obtain sub-

optimal performance on the target domain due to noise in

the pseudo-labels [40, 49]. Hence, we run self-training only

for a few epochs and then refine the pseudo-labels exploit-

ing a GCN. Our intuition is that, by leveraging on a global

view of the target dataset, the GCN can better disambiguate

hard cases compared to the initial pseudo-labels provided

by the classifier, that, on the other hand, takes its decision

on each input sample in isolation. For instance, even if few

samples of a rare class are tightly connected (i.e. node with

high degrees), it is likely for their confidence to be high as

in their neighbourhood only nodes with the same class are

present. The role of the GCN is therefore twofold: it cor-

rects pseudo-labels; it decides which pseudo-labels should

be considered confident and thereby moved from Ŷtn into

Ŷtc. We obtain the graph G by considering all samples in the

target domain, as shown in Fig. 2 (right), and we build the

adjacency matrix A based on the cosine similarity between

4170



the global shape embeddings g:

Ai,j =

{

1,
⟨gi,gj⟩

∥gi∥∥gj∥
> ϵ

0, otherwise
(6)

with ϵ being a similarity threshold empirically set to 0.95

so that the node degree (the average number of neighbours

for each node of the graph) is roughly 10. We provide in

the supplementary material a sensitivity study of this hyper-

parameter, showing that our framework is insensitive w.r.t.

to the node degree. This is necessary for memory con-

straints, as the required memory to train a GCN is highly

affected by this hyper-parameter. Inspired by [47], we equip

each node in G with the embedding g as well as with the pre-

diction provided by the classifier Ω, i.e. the vector p̂. These

two pieces of information provide the GCN with cues con-

cerning both the geometric structure as well as the semantic

class of the object. For example, it may be the case that

two point clouds have similar embeddings and yet belong

to different classes. This occurs frequently when consider-

ing a real domain, where an occluded chair with a missing

back could easily be misclassified as a table or the back it-

self with missing legs can be confused for a monitor. Hence,

providing the GCN with the additional information on the

probability distribution among the K classes can help it at-

taining more accurate pseudo-labels for target samples fea-

turing similar embeddings. Then, we compute the input to

the GCN as

H(0) = Φ(Xt) + Ω(Xt)WD (7)

where Xt is the set of all target samples and WD ∈ RK×D

is a learnable projection matrix that projects the output dis-

tribution over K classes in a D-dimensional space.

Afterwards, following Eq. (1), we stack three graph con-

volutional layers where the last acts as a node classifier that

returns a matrix of size nt × K. The GCN is optimized

with a classical cross-entropy loss computed over all target

samples, Ŷtn ∪ Ŷtc, without taking into account the confi-

dence on their pseudo-labels. It is worth noticing that, the

predictions Ω(Xt), i.e. part of the input to the GCN, do not

necessarily match the Ŷtn ∪ Ŷtc pseudo-labels. However,

the GCN can just learn to output the same probability vec-

tor Ω(Xt), discarding part of the input features [47], and

consequently failing in generalizing at test time due to label

leakage. Hence, we randomly mask (i.e. set to zero) 20% of

the inputs Ω(Xt) at training time.

Finally, after training, we exploit the GCN to extract con-

fident samples, i.e. the top θ predictions for each class, up-

date the corresponding pseudo-labels with the output of the

GCN, and move them from Ŷtn into Ŷtc.

Iterative training. We argue that the topology of the

graph highly influences the output of the GCN. As the en-

coder improves its embeddings with multiple rounds of self-

training, also thanks to the self-distillation process, pseudo-

labels become better and better since the graph structure im-

proves. Hence, we plug the previous steps into an iterative

learning process, where we repeat:

a) self-train with Eq. (5) Φ and Ψ for e epochs using self-

distillation and supervision for both domains, with su-

pervision for the target coming from pseudo-labels;

b) build G and train the GCN to refine pseudo-labels;

c) update current pseudo-labels, moving the top θ predic-

tions of the GCN for each class from Ŷtn to Ŷtc.

To gradually increase the size of Ŷtc, θ starts from 0 and

grows to 1 to include more and more samples during train-

ing. At test time, the GCN as well as the teacher encoder Φ̃
can be simply discarded, with Ω being the only network re-

quired to perform inference. Although the GCN can poten-

tially be used at test time to obtain better performance, we

discard it as this would introduce additional requirements

such as keeping the whole training set in memory, and com-

puting the neighborhood of each test sample.

4. Experiments

To show the effectiveness of out method, we compare

against state-of-the-art methods for UDA for point cloud

classification such as [4, 46, 17], using two different back-

bones for our feature extractors: PointNet [41] and DGCNN

[61]. Furthermore, we compare with a baseline i.e. a simple

model trained only on the source domain without any adap-

tation, and an oracle model, which instead assumes to have

all target data available. The former constitutes the lower-

bound in terms of performance, while the latter is consid-

ered as the upper-bound since all target data can be utilized.

Finally, we also conducted an experiment on the challeng-

ing task of part segmentation to show how our method can

be extended to different tasks than point cloud classifica-

tion. In this case, we adopt the setting introduced in [2],

which is the only method performing adaptation on such

task for the synthetic-to-real scenario.

Datasets. The standard dataset used for UDA for

point cloud classification is PointDA-10 [43], which con-

sists of three subsets that share the same ten classes of

three popular point clouds classification datasets: ShapeNet

[7], ModelNet40 [64] and ScanNet [11]. This allows

to define six different scenarios that involve synthetic-to-

synthetic, synthetic-to-real and real-to-synthetic adaptation.

ModelNet-10 consists of 4,183 training and 856 testing

point clouds, that are extracted from synthetic 3D CAD

models. Similarly, ShapeNet-10 features synthetic data

only. It is the largest and most varied among the three

datasets, and it comprises 17,378 training and 2,492 test-

ing samples. Lastly, ScanNet-10 is the only real datasets,

4171



Method
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

No Adaptation 80.5 41.6 75.8 40.0 60.5 63.6 60.3

PointDAN [43] 80.2 45.3 71.2 46.9 59.8 66.2 61.6

DefRec+PCM [1] 81.1 50.3 54.3 52.8 54.0 69.0 60.3

3D Puzzle [2] 81.6 49.7 73.6 41.9 65.9 68.1 63.5

RefRec [4] 81.4 56.5 85.4 53.3 73.0 73.1 70.5

(Ours) 83.4 61.6 77.3 57.7 78.6 79.8 73.1

Oracle 93.2 66.2 95 66.2 95.0 93.2

Table 1. Shape classification accuracy (%) on the PointDA-10

dataset with PointNet. For each method, we report the average

results on three runs. Best result on each column is in bold.

Method
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

No Adaptation 83.3 43.8 75.5 42.5 63.8 64.2 62.2

PointDAN [43] 83.9 44.8 63.3 45.7 43.6 56.4 56.3

DefRec+PCM [1] 81.7 51.8 78.6 54.5 73.7 71.1 68.6

GAST † [73] 84.8 59.8 80.8 56.7 81.1 74.9 73.0

GLRV [17] 85.4 60.4 78.8 57.7 77.8 76.2 72.7

ImplicitPCDA [46] 86.2 58.6 81.4 56.9 81.5 74.4 73.2

(Ours) 83.9 61.1 80.3 58.9 85.5 80.9 75.1

Oracle 93.9 78.4 96.2 78.4 96.2 93.9 80.5

Table 2. Shape classification accuracy (%) on the PointDA-10

dataset with DGCNN. For each method, we report the average

results on three runs. Best result on each column is in bold. †

Denotes a more powerful variant of DGCNN and results are ob-

tained by performing checkpoint selection on the test set.

and it consists of 6,110 and 1,769 training and testing point

clouds, respectively. It has been obtained from multiple real

RGB-D scans. For this reason, it exhibits several forms

of noise such as errors in the registration process and oc-

clusions. Differently from point classification, there is no

established setting for part segmentation in the literature

and we refer to [2] as a reference since it is the only work

performing synthetic-to-real adaptation from ShapeNetPart

[57] to ScanOBJ-BG [70]. The task is solved only for the

chair class, which comprises 4 components to segment:

Seat, Back, Base, Arm.

4.1. Results

Classification. We report in Tab. 1 and Tab. 2 our results

with PointNet and DGCNN, respectively. For PointNet,

we establish overall the new state-of-the-art with 73.1%

in terms of accuracy. We also note that our framework

achieves the best results in 5 out of 6 settings, with a big gap

in ModelNet→ScanNet and ShapeNet→ScanNet (+5.1%

and +4.4%) that are the most challenging scenarios as they

involve synthetic-to-real UDA. In particular, we highlight

the result obtained in ModelNet→ScanNet (61.6%), which

is, roughly, only 5% less than the oracle. We also observe

remarkable improvements when addressing the opposite

case i.e. real-to-synthetic (last two columns). This demon-

strates the capability of our framework to deal with large do-

main shifts. As regards as synthetic-to-synthetic UDA, we

observe good performance in ModelNet→ShapeNet, while

we are the second best model in ShapeNet→ModelNet.

We attribute the gap with RefRec to the peculiarity of

ShapeNet→ModelNet, where the source domain is a com-

Part Segmentation: ShapeNetPart → ScanOBJ BG

Method Seat Back Base Arm Avg.

Source only 67.85 45.60 84.89 14.87 53.30

3D Puzzle [2] 65.70 49.11 85.91 21.40 55.53

Self-dist (ours) 71.1 79.3 65.2 37.0 63.2

(ours) 74.7 82.7 67.9 37.7 65.7

Table 3. Per part and average mIoU (%) of chair segmentation for

ShapeNetPart to ScanOBJ-BG.

plex dataset while the target is a simple one with shapes

clearly distinguishable among classes i.e. objects with sim-

ilar shapes do belong to the same class. In such specific

scenarios, reconstruction-based approaches such as RefRec

shine since the auxiliary task of reconstructing a point cloud

naturally tends to form well-shaped clusters in feature space

that are amenable for classification.

Furthermore, we repeat the same experiments using

DGCNN as our main backbone. We achieve again state-

of-the-art result (75.1%), showing the generality of our ap-

proach towards other architectures. Overall, we observe a

similar trend w.r.t. Tab. 1, with an increase in performance

in almost all configurations w.r.t. previous works.

Part Segmentation. Although our main goal is to pro-

pose a method that aims at solving UDA for point cloud

classification, our method can be easily extended to more

challenging tasks such as part segmentation, which consists

in assigning to each vertex of the shape one object category.

As done for point cloud classification, we perform a first

step of self-distillation to distill good features for the tar-

get domain unsupervisedly. We then simply adapt the self-

training step by considering each vertex of the input shape

as a node in the graph. In this case, the node representation

consists of a local feature vector extracted from the main

backbone, which is a PointNet as in [2]. The whole graph

is theoretically composed of all points of all shapes in the

dataset. However, keeping all vertices in memory would

be impractical and we perform the procedure explained in

Sec. 3.2 by considering 20000 points of the whole dataset

for each refinement iteration. Results are reported in Tab. 3.

The evaluation metric is the mean Intersection-over-Union

(mIoU), which is computed for each part Q for all the sam-

ples of the chair class. Then, the average across parts is re-

ported. First, we observe that our full framework (last row)

surpasses by more than 10% the previous method (second

row). Furthermore, we highlight the effectiveness of self-

distillation for the part segmentation task. Indeed, when

only performing the first step of our pipeline (third row of

Tab. 3), we already overcome [2] by 7.7%.

Self-distillation vs knowledge distillation. In Tab. 4,

we ablate our self-distillation strategy and also compare it to

an obvious alternative, i.e. applying Eq. (3) in output space.

In this case, the self-distillation loss in Eq. (3) is applied

on the output of the classifier rather than the feature vec-

tor of the backbone. As explained in Sec. 2, this protocol

is similar to the knowledge distillation paradigm [24] that

4172



Step ce sd kd
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

PL init

✓ 80.5 41.6 75.8 40.0 60.5 63.6 60.3

✓ ✓ 82.1 57.2 77.6 55.0 71.0 72.1 69.2

✓ ✓ 79.6 54.0 79.2 53.2 53.9 70.0 65.0

Table 4. Ablation study for the first step of our framework. ce:

cross-entropy loss on source domain sd: self-distillation loss

Eq. (3) in feature space used to train the pseudo-labels model; kd:

standard knowledge distillation loss [24] in output space. We re-

port the average results on three runs.

Step st ref sd
ModelNet to ModelNet to ShapeNet to ShapeNet to ScanNet to ScanNet to

AvgShapeNet ScanNet ModelNet ScanNet ModelNet ShapeNet

Adaptation

✓ 82.7 59.3 74.9 56.4 77.1 77.8 71.4

✓ ✓ 83.4 60.9 78.2 56.3 77.9 79.4 72.7

✓ ✓ ✓ 83.4 61.6 77.3 57.7 78.6 79.8 73.1

Table 5. Ablation for the second step of our algorithm. st: self-

training with pseudo-labels of the last row of Tab. 4 model; sd:

self-distillation loss in the adaptation step; ref: refinement of

pseudo-labels with GCN. We average results on three runs.

uses soft pseudo-labels. While we observe in both cases

an improvement over the baseline trained only on source

data (first row), the improvement is twice as large when

self-distillation is deployed, which demonstrates the impor-

tance of working in feature space. Moreover, the large im-

provement in absolute terms (+8.9% on average) attained

by using self-distillation shows its effectiveness in reducing

the domain gap, validating our intuition to use it to tackle

UDA. Interestingly, we observe a different behaviour for

ShapeNet→ModelNet. This is again likely due to the pecu-

liarity of the setting. With the source domain being much

larger and richer than the target one, it is plausible that

pseudo-labels in output space are quite accurate, end there-

fore more effective in this case. The model trained with self-

distillation is used to extract the initial set of pseudo-labels

for our method, as well as for all the self-training variants

compared in Tab. 5. Finally, we highlight how the results

obtained with self-distillation are clearly superior in all sce-

narios on average to those attained by competitors based

on self-supervised learning tasks, e.g. row 2 (DefRec) and 3

(3D puzzle) of Tab. 1, that are based on a reconstruction and

a 3D puzzle pretext task, respectively. This provides em-

pirical support for our claim on the higher effectiveness of

self-distillation with respect to auxiliary tasks for 3D UDA.

Self-training strategies. In Tab. 5, we perform an ab-

lation study on the second step of our pipeline. We start

by applying the simplest strategy to perform self-training

(first row), i.e. using all pseudo-labels of the target do-

main together with the labels from the source domain to

train a single classifier. This provides competitive results

(71.4%), that is already better than the previous state-of-the-

art model (70.5%), again showcasing the effectiveness of

self-distillation to obtain pseudo-labels for UDA. When ac-

tivating also the proposed online refinement that iteratively

improves pseudo-labels thanks to the global reasoning of

the GCN (second row), we appreciate another large im-

provement compared to the naive self-training, which val-

idates the importance of the proposed iterative refinement.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

0.54

0.56

0.58

0.6

0.62

Step

A
cc
u
ra
cy

Figure 3. Test accuracy on target domain during training on

ModelNet→ScanNet. Our model (Blue) consistently improves

pseudo-labels during training differently from a simple self-

training strategy in which pseudo-labels are fixed (Red).

Finally, in the last row, we report the results attained by ac-

tivating self-distillation also in the adaptation step, which

leads to the best performance and is the model used in all

other experiments. As a further validation of the importance

of the design decisions in our framework, we plot the train-

ing curves of the synthetic-to-real ModelNet→ScanNet in

Fig. 3. The curves represent the test accuracy on the tar-

get domain during training. The red plot shows the be-

haviour of the naive self-training, which correspond to row

1 of Tab. 5. On the other hand, the blue lines represent the

training curves obtained with our full model, i.e. last row

of Tab. 5. We can appreciate that, after a certain number of

steps, the blue line is always above the red line. This is a

clear evidence that in our full model, pseudo-labels are im-

proved over time, while in the naive case the model starts to

overfit, leading to a plateau. We also wish to point out that

such behaviour is key to a good UDA method because, in

absence of target labels to perform validation, it is basically

impossible to decide when to stop the training process.

5. Limitations

The main limitation of the proposed approach is the

hand-crafted data augmentation functions used to augment

both source and target data. To this end, we would like

to investigate the possibility to learn a transformation able

to automatically model the gap between the two domains.

This would allow to handle dynamically cases where less

augmentation is needed, such as in ShapeNet→ModelNet.

6. Conclusion

In this work, we explored a novel strategy to learn fea-

tures on the target domain without the need of annotations.

We first proposed to guide the network to learn a clustered

feature space for the target domain and preserve discrim-

inability suitable for classification. In addition, we intro-

duced a novel refinement strategy that is able to globally

reason on the target domain by means of GNN and to cor-

rect misclassified samples during training. Combining the

two contributions, allowed to establish the state-of-the-art

in the reference benchmarks. Finally, we showed how these

contributions can be used for more challenging tasks such

as part segmentation.

4173



References

[1] Idan Achituve, Haggai Maron, and Gal Chechik. Self-

supervised learning for domain adaptation on point clouds.

In Proceedings of the IEEE/CVF Winter Conference on Ap-

plications of Computer Vision, pages 123–133, 2021.

[2] Antonio Alliegro, Davide Boscaini, and Tatiana Tommasi.

Joint supervised and self-supervised learning for 3d real

world challenges. In 2020 25th International Conference on

Pattern Recognition (ICPR), pages 6718–6725, 2021.

[3] Konstantinos Bousmalis, George Trigeorgis, Nathan Silber-

man, Dilip Krishnan, and Dumitru Erhan. Domain sepa-

ration networks. In Proceedings of the 30th International

Conference on Neural Information Processing Systems, page

343–351, Red Hook, NY, USA, 2016. Curran Associates Inc.

[4] Adriano Cardace, Riccardo Spezialetti, Pierluigi Zama

Ramirez, Samuele Salti, and Luigi Di Stefano. Refrec:

Pseudo-labels refinement via shape reconstruction for unsu-

pervised 3d domain adaptation. In 2021 International Con-

ference on 3D Vision (3DV). IEEE, 2021.

[5] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning

of visual features. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 132–149, 2018.

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,

Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-

ing properties in self-supervised vision transformers. In Pro-

ceedings of the International Conference on Computer Vi-

sion (ICCV), 2021.

[7] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015.

[8] Minghao Chen, Hongyang Xue, and Deng Cai. Do-

main adaptation for semantic segmentation with maximum

squares loss. 2019 IEEE/CVF International Conference on

Computer Vision (ICCV), Oct 2019.

[9] Yuhua Chen, Wen Li, Christos Sakaridis, Dengxin Dai, and

Luc Van Gool. Domain adaptive faster r-cnn for object detec-

tion in the wild. In 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 3339–3348, 2018.

[10] Yining Chen, Colin Wei, Ananya Kumar, and Tengyu Ma.

Self-training avoids using spurious features under domain

shift. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Had-

sell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Ad-

vances in Neural Information Processing Systems 33: An-

nual Conference on Neural Information Processing Systems

2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[11] Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nießner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 5828–5839, 2017.

[12] Enyan Dai, Charu Aggarwal, and Suhang Wang. Nrgnn:

Learning a label noise resistant graph neural network on

sparsely and noisily labeled graphs. In Proceedings of the

27th ACM SIGKDD Conference on Knowledge Discovery

& Data Mining, KDD ’21, page 227–236, New York, NY,

USA, 2021. Association for Computing Machinery.

[13] Debasmit Das and C. S. George Lee. Graph matching and

pseudo-label guided deep unsupervised domain adaptation.

In Věra Kůrková, Yannis Manolopoulos, Barbara Hammer,

Lazaros Iliadis, and Ilias Maglogiannis, editors, Artificial

Neural Networks and Machine Learning – ICANN 2018,

pages 342–352, Cham, 2018. Springer International Publish-

ing.

[14] Michaël Defferrard, Xavier Bresson, and Pierre Van-

dergheynst. Convolutional neural networks on graphs with

fast localized spectral filtering. Advances in neural informa-

tion processing systems, 29:3844–3852, 2016.

[15] Zhengming Ding, Sheng Li, Ming Shao, and Yun Raymond

Fu. Graph adaptive knowledge transfer for unsupervised do-

main adaptation. In ECCV, 2018.

[16] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre,

Rafael Bombarell, Timothy Hirzel, Alan Aspuru-Guzik, and

Ryan P Adams. Convolutional networks on graphs for learn-

ing molecular fingerprints. In C. Cortes, N. Lawrence, D.

Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems, volume 28. Curran As-

sociates, Inc., 2015.

[17] Hehe Fan, Xiaojun Chang, Wanyue Zhang, Yi Cheng, Ying

Sun, and Mohan Kankanhalli. Self-supervised global-

local structure modeling for point cloud domain adapta-

tion with reliable voted pseudo labels. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 6377–6386, June 2022.

[18] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang

Tang, and Dawei Yin. Graph neural networks for social rec-

ommendation. The World Wide Web Conference on - WWW

’19, 2019.

[19] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain

adaptation by backpropagation. In Proceedings of the 32nd

International Conference on International Conference on

Machine Learning - Volume 37, ICML’15, page 1180–1189.

JMLR.org, 2015.

[20] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2012.

[21] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin

Tallec, Pierre H Richemond, Elena Buchatskaya, Carl Do-

ersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-

mad Gheshlaghi Azar, et al. Bootstrap your own latent: A

new approach to self-supervised learning. arXiv preprint

arXiv:2006.07733, 2020.

[22] Xiang Gu, Jian Sun, and Zongben Xu. Spherical space do-

main adaptation with robust pseudo-label loss. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), June 2020.

[23] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual rep-

resentation learning. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

9729–9738, 2020.

4174



[24] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the

knowledge in a neural network, 2015.

[25] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,

Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Darrell.

CyCADA: Cycle-consistent adversarial domain adaptation.

In Jennifer Dy and Andreas Krause, editors, Proceedings

of the 35th International Conference on Machine Learning,

volume 80 of Proceedings of Machine Learning Research,

pages 1989–1998. PMLR, 10–15 Jul 2018.

[26] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-

wise convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 984–993, 2018.

[27] Myeongjin Kim and Hyeran Byun. Learning texture invari-

ant representation for domain adaptation of semantic seg-

mentation. 2020 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), Jun 2020.

[28] Seunghyeon Kim, Jaehoon Choi, Taekyung Kim, and Chang-

ick Kim. Self-training and adversarial background regular-

ization for unsupervised domain adaptive one-stage object

detection. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), October 2019.

[29] Thomas N Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016.

[30] D. Lee. Pseudo-label: The simple and efficient semi-

supervised learning method for deep neural networks. In In-

ternational Conference on Machine Learning (ICML) Work-

shop, 2013.

[31] Chang Li and Dan Goldwasser. Encoding social information

with graph convolutional networks forPolitical perspective

detection in news media. In Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics,

pages 2594–2604, Florence, Italy, July 2019. Association for

Computational Linguistics.

[32] Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and

Zhichao Guan. Label efficient semi-supervised learning via

graph filtering. 2019 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), Jun 2019.

[33] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirec-

tional learning for domain adaptation of semantic segmen-

tation. 2019 IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), Jun 2019.

[34] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong

Pan. Relation-shape convolutional neural network for point

cloud analysis. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 8895–

8904, 2019.

[35] Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. A

closer look at local aggregation operators in point cloud anal-

ysis. In European Conference on Computer Vision, pages

326–342. Springer, 2020.

[36] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I

Jordan. Unsupervised domain adaptation with residual trans-

fer networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,

and R. Garnett, editors, Advances in Neural Information Pro-

cessing Systems, volume 29. Curran Associates, Inc., 2016.

[37] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I.

Jordan. Deep transfer learning with joint adaptation net-

works. In Proceedings of the 34th International Confer-

ence on Machine Learning - Volume 70, ICML’17, page

2208–2217. JMLR.org, 2017.

[38] Zhaoliang Lun, Evangelos Kalogerakis, and Alla Sheffer. El-

ements of style: learning perceptual shape style similarity.

ACM Transactions on graphics (TOG), 34(4):1–14, 2015.

[39] Xinhong Ma, Tianzhu Zhang, and Changsheng Xu. Gcan:

Graph convolutional adversarial network for unsupervised

domain adaptation. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2019.

[40] Ke Mei, Chuang Zhu, Jiaqi Zou, and Shanghang Zhang. In-

stance adaptive self-training for unsupervised domain adap-

tation. Lecture Notes in Computer Science, page 415–430,

2020.

[41] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 652–660,

2017.

[42] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NIPS, 2017.

[43] Can Qin, Haoxuan You, Lichen Wang, C.-C. Jay Kuo, and

Yun Fu. Pointdan: A multi-scale 3d domain adaption net-

work for point cloud representation. In Advances in Neural

Information Processing Systems, 2019.

[44] Jiezhong Qiu, Jian Tang, Hao Ma, Yuxiao Dong, Kuansan

Wang, and Jie Tang. Deepinf: Social influence predic-

tion with deep learning. In Proceedings of the 24th ACM

SIGKDD International Conference on Knowledge Discovery

& Data Mining, KDD ’18, page 2110–2119, New York, NY,

USA, 2018. Association for Computing Machinery.

[45] Kuniaki Saito, Kohei Watanabe, Y. Ushiku, and T. Harada.

Maximum classifier discrepancy for unsupervised domain

adaptation. 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 3723–3732, 2018.

[46] Yuefan Shen, Yanchao Yang, Mi Yan, He Wang, Youyi

Zheng, and Leonidas J. Guibas. Domain adaptation on point

clouds via geometry-aware implicits. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 7223–7232, June 2022.

[47] Yunsheng Shi, Zhengjie Huang, Shikun Feng, Hui Zhong,

Wenjing Wang, and Yu Sun. Masked label prediction: Uni-

fied message passing model for semi-supervised classifica-

tion. In Proceedings of the Thirtieth International Joint Con-

ference on Artificial Intelligence (IJCAI), pages 1548–1554,

2021.

[48] Inkyu Shin, Sanghyun Woo, Fei Pan, and In So Kweon.

Two-phase pseudo label densification for self-training based

domain adaptation. In Andrea Vedaldi, Horst Bischof,

Thomas Brox, and Jan-Michael Frahm, editors, Computer

Vision - ECCV 2020 - 16th European Conference, Glasgow,

UK, August 23-28, 2020, Proceedings, Part XIII, volume

12358 of Lecture Notes in Computer Science, pages 532–

548. Springer, 2020.

4175



[49] Inkyu Shin, Sanghyun Woo, Fei Pan, and In So Kweon. Two-

phase pseudo label densification for self-training based do-

main adaptation. Lecture Notes in Computer Science, page

532–548, 2020.

[50] Riccardo Spezialetti, Federico Stella, Marlon Marcon, Lu-

ciano Silva, Samuele Salti, and Luigi Di Stefano. Learning to

orient surfaces by self-supervised spherical cnns. Advances

in Neural Information Processing Systems, 33, 2020.

[51] Baochen Sun and Kate Saenko. Deep coral: Correlation

alignment for deep domain adaptation. In ECCV Workshops,

2016.

[52] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien

Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception

for autonomous driving: Waymo open dataset. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 2446–2454, 2020.

[53] Antti Tarvainen and Harri Valpola. Mean teachers are better

role models: Weight-averaged consistency targets improve

semi-supervised deep learning results. In Proceedings of the

31st International Conference on Neural Information Pro-

cessing Systems, NIPS’17, page 1195–1204, Red Hook, NY,

USA, 2017. Curran Associates Inc.

[54] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J

Guibas. Kpconv: Flexible and deformable convolution for

point clouds. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 6411–6420, 2019.

[55] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Ki-

hyuk Sohn, Ming-Hsuan Yang, and Manmohan Chandraker.

Learning to adapt structured output space for semantic seg-

mentation. 2018 IEEE/CVF Conference on Computer Vision

and Pattern Recognition, Jun 2018.

[56] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Dar-

rell. Adversarial discriminative domain adaptation. In 2017

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 2962–2971, 2017.

[57] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,

Duc Thanh Nguyen, and Sai-Kit Yeung. Revisiting point

cloud classification: A new benchmark dataset and classifi-

cation model on real-world data, 2019.

[58] Petar Veličković, Guillem Cucurull, Arantxa Casanova,

Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph

Attention Networks. International Conference on Learning

Representations, 2018.

[59] He Wang, Yezhen Cong, Or Litany, Yue Gao, and Leonidas J.

Guibas. 3dioumatch: Leveraging iou prediction for semi-

supervised 3d object detection. 2021 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), Jun

2021.

[60] Tao Wang, Xiaopeng Zhang, Li Yuan, and Jiashi Feng. Few-

shot adaptive faster r-cnn. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019.

[61] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic

graph cnn for learning on point clouds. Acm Transactions

On Graphics (tog), 38(5):1–12, 2019.

[62] Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie,

and Tieniu Tan. Session-based recommendation with graph

neural networks. Proceedings of the AAAI Conference on

Artificial Intelligence, 33:346–353, Jul 2019.

[63] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,

Chengqi Zhang, and Philip S. Yu. A comprehensive survey

on graph neural networks. IEEE Transactions on Neural Net-

works and Learning Systems, 32(1):4–24, Jan 2021.

[64] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes.

In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1912–1920, 2015.

[65] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1912–1920, 2015.

[66] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 3733–3742,

2018.

[67] Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-Or, Yue-

shan Xiong, and Zhi-Quan Cheng. Style-content separation

by anisotropic part scales. In ACM SIGGRAPH Asia 2010

papers, pages 1–10, 2010.

[68] Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu Wang,

and Ulrich Neumann. Grid-gcn for fast and scalable point

cloud learning. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 5661–

5670, 2020.

[69] Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and

Shuguang Cui. Pointasnl: Robust point clouds processing

using nonlocal neural networks with adaptive sampling. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 5589–5598, 2020.

[70] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,

Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-

fer, and Leonidas Guibas. A scalable active framework

for region annotation in 3d shape collections. ACM Trans.

Graph., 35(6), nov 2016.

[71] Zhedong Zheng and Yi Yang. Unsupervised scene adapta-

tion with memory regularization in vivo. Proceedings of the

Twenty-Ninth International Joint Conference on Artificial In-

telligence, Jul 2020.

[72] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A

modern library for 3D data processing. arXiv:1801.09847,

2018.

[73] Longkun Zou, Hui Tang, Ke Chen, and Kui Jia. Geometry-

aware self-training for unsupervised domain adaptation on

object point clouds. In Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision (ICCV), pages

6403–6412, October 2021.

[74] Yang Zou, Zhiding Yu, BVK Vijaya Kumar, and Jinsong

Wang. Unsupervised domain adaptation for semantic seg-

mentation via class-balanced self-training. In Proceedings

4176



of the European Conference on Computer Vision (ECCV),

pages 289–305, 2018.

[75] Yang Zou, Zhiding Yu, Xiaofeng Liu, B. V. K. Vijaya Kumar,

and Jinsong Wang. Confidence regularized self-training.

2019 IEEE/CVF International Conference on Computer Vi-

sion (ICCV), Oct 2019.

4177


