
Is Bigger Always Better? An Empirical Study on Efficient Architectures for Style

Transfer and Beyond

Jie An
University of Rochester

Rochester, NY, USA
jan6@cs.rochester.edu

Tao Li
Peking University

Beijing, China
li_tao@pku.edu.cn

Haozhi Huang
Xverse Inc.

Shenzhen, Guangdong, China
huanghz08@gmail.com

Jinwen Ma
Peking University

Beijing, China
jwma@math.pku.edu.cn

Jiebo Luo
University of Rochester

Rochester, NY, USA
jluo@cs.rochester.edu

Abstract

Network architecture plays a pivotal role in style transfer.
Most existing algorithms use VGG19 as the feature extrac-
tor, which incurs a high computational cost. In this work,
we conduct an empirical study on the popular network ar-
chitectures and find that some more efficient networks can
replace VGG19 while having comparable style transfer per-
formance. Beyond that, we show that an efficient network
can be further accelerated by removing its empty channels
via a simple channel pruning method tweaked for style trans-
fer. To prevent the potential performance drop due to using
a more lightweight network and obtain better style transfer
results, we introduce a more accurate deep feature align-
ment strategy to improve existing style transfer modules.
Taking GoogLeNet as an exemplary efficient network, the
pruned GoogLeNet with the improved style transfer module
is 2.3 ⇠ 107.4⇥ faster than the state-of-the-art approaches
and can achieve 68.03 FPS on 512 ⇥ 512 images. Exten-
sive experiments demonstrate that VGG19 can be replaced
by a more lightweight network with significantly improved
efficiency and comparable style transfer quality.

1. Introduction

Neural style transfer is an image editing task that aims
at changing the artistic style of an image according to a
reference image. Given a pair of content and style images
as the input, a style transfer method will generate an image
with the scene of the content image and the visual effects
(e.g., colors, textures, strokes, etc.) of the style image. For
example, in Fig. 1, we transfer a picture of “Chureito pagoda”
into different styles. The difference between style transfer
and GAN-based image translation is that style transfer model

usually can be applied to any images but cannot transfer
structure of the image. On the contrary, GAN-based image
translation can only be used to generate images from certain
domains where the training data comes from. The merit
of GAN-based image translation is that it can change both
structure and appearance of images.

Remarkable advances have been made in neural style
transfer. The pioneering work is presented in [15, 18], where
Gatys et al. make the first attempt to connect style repre-
sentation to the Gram matrices of deep features. Following
this line of research, many algorithms based on iterative opti-
mization [16, 57, 55, 52, 40, 45, 27, 34, 41] and feed-forward
neural networks [14, 65, 33, 64, 55, 66, 13, 4, 77, 70, 19, 78]
have been proposed. While these algorithms can produce
high-quality stylization results, they have to trade-off be-
tween the efficiency and the generalization ability. Recently,
universal style transfer methods [7, 43, 28, 58, 44, 20, 74,
2, 32, 42, 71, 54, 5, 6, 8, 11, 25, 51, 46, 68] have been pro-
posed to handle arbitrary styles and contents. To generate
high-quality images while retaining the benefit of universal
transfer, a few improved approaches such as multi-level styl-
ization [43, 44, 42, 54], iterative EM process [20], wavelet
transform [74], Normalization Flow [1], attention mecha-
nism [51], and contrastive loss [5] are introduced, which
make significant advances in style transfer.

The network architecture used to extract features plays
a pivotal role in a style transfer algorithm [68]. A long-
standing convention in style transfer is that most state-of-the-
art algorithm uses VGG19 [60] as the backbone. For exam-
ple, iterative methods [18, 16, 55, 52, 40, 45] use VGG19
as the feature extractor and compute loss terms accordingly.
On the other hand, approaches based on feed-forward neu-
ral networks [43, 44, 20, 74] adopt VGG19 as the encoder

4084

Ours (ArtNet-G)
Inference size:
512×512×3

Speed: 66.67 FPS

Ours (ArtNet-M)
Inference size:
512×512×3

Speed: 83.33 FPS

 Content: Kitten

Dandelion Escher Sphere Red Canna Wave Kanagawa

Content: Chureito Pagoda Whaet Field with Cypresses Blue Swirls Beer

Figure 1: Style transfer results by using an efficient architecture on arbitrary content and style images.

part of auto-encoders. In terms of the style transfer quality,
although VGG19 can indeed produce good style transfer
images as demonstrated by the above-mentioned algorithms,
Wang et al. [68] shows that ResNet-50 [22] with a softmax
transformation trick is comparable to or even better than
VGG19, which breaks the myth that VGG19 is always the
best. When it comes to efficiency, VGG19 has 12.95 MB
parameters and 189.50 GFLOPs, which imposes a big com-
putational burden on style transfer algorithms, especially
when we work on real-time style transfer applications. Can
we find a network architecture that has a comparable style
transfer quality with VGG19 but is more efficient? This
study addresses this issue.

To find efficient and comparably high performance net-
work architectures for style transfer, we first conduct an
empirical study on the stylization effect and efficiency of 28
most popular network architectures [60, 36, 30, 26, 62, 61,
53, 56, 73, 76]. We observe that although the style transfer
algorithms using VGG19 [60] as the backbone indeed pro-
duce high-quality stylization results, using more lightweight
backbones such as GoogLeNet [61] and MobileNetv2 [56]
can achieve similar stylization effects more efficiently.

Next, we reveal that the above-mentioned classical ar-
chitectures can be further accelerated at little cost in style
transfer. Taking GoogLeNet as an example, we find that
deep features by the ReLU layers in the networks pre-trained
on the ImageNet dataset [37] contain a few empty channels,
which have no contributions to style transfer but still con-
sume computation and memory resources. Inspired by [39],
we remove those empty channels and the corresponding fil-
ters in Convolution and Batch Normalization operators ahead
of the ReLU layer by a simple yet effective channel pruning
method. The pruned GoogLeNet achieves 2⇥ acceleration
at the cost of tiny performance degradation.

To prevent performance drop of using more efficient net-
works, we adopt a simple yet effective method, named sand-
wich swap transform (S2), based on the style transfer module
used by Avatar-Net [58]. S2 is lightweight and can perform
more accurate feature alignment between the content and
style features compared with Avatar-Net [58], which is cru-
cial for efficient networks since fewer feature maps can be
used to perform the feature alignment. Experimental results
show that S2 has improved content preservation ability than
the state-of-the-art methods.

Our main contributions can be summarized as follows:
• We conduct an empirical study on the style trans-

fer performance of different network architectures, re-
vealing that we can use more efficient networks (e.g.,
GoogLeNet) to replace VGG19 for better efficiency.

• We remove the network’s redundant parameters via a
simple channel pruning method and therefore further
improve the efficiency of style transfer while keeping
the stylization quality almost intact.

• We propose a sandwich swap transform (S2) module
based on Avatar-Net [58], which is more suitable for
efficient networks and thus improves the stylization
quality of efficient networks.

2. Related Work

Universal Style Transfer. Universal style transfer algo-
rithms can be categorized into two types: optimization-based
methods and feed-forward neural network based methods.
The algorithm by Gatys et al. [17] belongs to the first cat-
egory. This kind of method performs optimization only
on the encoder and does not have a decoder. We use the
method of Gatys et al. [17] in the empirical study because
it avoids the influence of the decoder architecture and de-
coder training, therefore can better reflect the style transfer
ability of different feature extraction backbones. In contrast
to the optimization-based methods, feed-forward neural net-
work based algorithms [7, 28, 43, 44, 20, 58, 74, 67, 10, 72]
usually consist of two parts: an auto-encoder and a style
transfer module that works at the bottleneck. The auto-
encoder architecture used by all these methods is the same,
i.e., the VGG19 network [60] pre-trained on the ImageNet
dataset [37] as the encoder and its inverted version as the
decoder. In this work, we concentrate on finding and improv-
ing efficient network architectures to replace VGG19 while
maintaining high-quality stylization effects.
Image-to-Image Translation. In addition to style transfer,
image-to-image translation [31, 69, 50, 63, 59, 48, 79, 29,
49] can also be used to transfer image styles. To render
a certain visual style, image-to-image translation methods
usually need pre-transfer and post-transfer datasets to train
generator and discriminator networks. However, universal
style transfer methods can be used to make style transfer for
arbitrary content and style images in a zero-shot fashion.

4085

Content

Style

Content

Style

 (a) Content / Style (c) ResNet34 38.36G FLOPs(b) VGG19 189.50G FLOPs (d) Inception V3 413.4G FLOPs (e) MobiLeNetv2 2.49G FLOPs (f) GoogLeNet 15.02G FLOPs

Figure 2: Style transfer results by efficient network architectures that are comparable with VGG19. Please zoom in on screen to
see fine details. We take GoogLeNet as an exemplary network in the remaining parts since it has the a better quality-efficiency
tradeoff.

Table 1: Statistics of user study on different networks. No
one is significantly better than others.

Network GoogLeNet Inception MobileNetv2 ResNet34 VGG19

1st Rank 403 413 408 429 419

Mean Rank 2.8786 2.9500 2.9143 3.0643 2.9929

Neural Network Pruning. The network pruning approaches
can be categorized into two types: weight pruning and chan-
nel pruning. Weight pruning [21, 38, 3, 12] usually detect
non-operative weight positions in filters and disable them by
setting to zero. Channel pruning approaches [39, 23, 75, 24]
delete information-wise redundant channels and their corre-
sponding weights entirely. The channel pruning method we
use is a simple variant of the method by Li et al. [39]. Since
style transfer methods generally use feature maps produced
by ReLU layers in networks, our method removes empty
channels of every ReLU layer and hereby indirectly deletes
the weights of the preceding convolution/batch normaliza-
tion operators. This differs from [39] which focuses on
pruning channels of convolutional layers directly. More im-
portantly, since we are removing nonfunctional empty chan-
nels for style transfer, a fine-tuning process is not needed.

3. Is VGG19 Always the Best?

Existing state-of-the-art style transfer algorithms [43, 44,
20, 74] usually have a similar framework which consists
of 1) an auto-encoder to extract (encoder) and invert (de-
coder) features, 2) a feature transfer module that works at
the bottleneck of the auto-encoder. VGG19 [60] is com-
monly used as the feature extractor. As claimed by Wang et
al. [68], the architecture of the feature extractor plays a cen-
tral role in style transfer algorithms, which is even more
important than network training. In terms of the style trans-
fer quality, deep features extracted by the auto-encoder di-
rectly influence the quality of style transfer. VGG19 indeed
can produce high-quality style transfer results. However, as
demonstrated by [68], VGG19 is not always the best. For
example, ResNet-50 [22] trained with the softmax transfor-
mation trick is comparable to or even better than VGG19
in terms of the style transfer quality. Concerning efficiency,
VGG19 usually occupies a large portion of the overall time

cost for a style transfer algorithm. For example, VGG19
occupies 72.73% time consumption of the inference time
of AdaIN. Therefore, VGG19 is not perfect in terms of effi-
ciency, and a more lightweight feature extractor is desired
for faster style transfer.

4. Finding Efficient Architectures

To find an efficient network architecture with a strong
style transfer ability, we perform an empirical study on 28
popular network architectures [60, 36, 30, 26, 62, 61, 53, 56,
73, 76]. We compare the style transfer performance and time
consumption of different architectures based on a dataset that
consists of 1092 content-style pairs (42 content; 26 styles).
We first train each network on the ImageNet dataset [37], and
then use these networks to generate stylized images based
on the algorithm of Gatys et al. [17], respectively. Here we
apply the algorithm proposed by Gatys et al. [17] since it
does not need a decoder to invert features back to images,
thus avoiding the bias introduced by the decoder training.

According to the visual comparison, VGG19/16/13/11,
ResNet18/34, GoogLeNet, Inceptionv3, and MobileNetv2
outperform other architectures in terms of fine local texture
generation. We show the visual comparison of the afore-
mentioned superior architectures in Fig. 2 and the complete
comparison results are shown in the supplementary material.

To reinforce our findings based on the visual comparison
that MobileNetv2, GoogLeNet, Inceptionv3, and ResNet34
are comparable against VGG19 in terms of the style transfer
results, we further make a user study to quantitatively assess
the style transfer quality of the above-mentioned architec-
tures. The user study is based on the dataset consisting of
1092 content-style pairs crawled from the Internet. In each
question, we show five stylized images side-by-side in ran-
dom order and ask the user to rank these images according to
their style transfer quality. In the end, we collect 2072 rank
results in total. Tab 1 shows the statistics of the user study.
According to the result of the quantitative evaluation, the
above five network architectures have a similar mean rank
and the number of 1st ranks is also close to each other. Since
GoogLeNet shows a good style transfer performance with

4086

Input

Output

Conv

BN

ReLU

Axis: !
Axis: "

Zero
Channel

1
1
0
0
1
0
1
0

1
1
0
0
1
0
1
0

1
1
0
0
1
0
1
0

Remove

Remove

Remove

(a) Prune Conv-BN-ReLU

Input

Conv
BN
ReLU

Conv
BN
ReLU

Conv
BN
ReLU

Conv
BN
ReLU

Conv
BN
ReLU

Conv
BN
ReLU

MaxPool

Output

(b) Prune Inception

Input

Conv
BN
ReLU

Conv
BN
ReLU

Conv

Output

1
1
0
0
1
0
1
0

+

(c) Prune Inverted Residual Block

Figure 3: Removing empty channels of different modules.

1/10 FLOPs of VGG19, w.l.o.g., we choose GoogLeNet as
an exemplary efficient network to replace VGG19. Please
note that the proposed analysis and method can be applied
to any alternative efficient architectures.

5. Making Efficient Networks Faster

By employing GoogLeNet instead of VGG19 as the fea-
ture extractor, a style transfer algorithm (e.g., Gatys [17]
and AdaIN [28]) can achieve more than 3⇥ acceleration.
However, further speed improvement is always desired for
practical applications. So here comes a question: Can we
further improve the efficiency of GoogLeNet? Motivated
by this, we make an in-depth analysis of GoogLeNet by
visualizing its feature maps per channel, we find that a few
channels of ReLU layers (especially in shallower layers)
are empty, i.e., zero tensors. Fig. 4 shows the feature map
of the ReLU_1_1 layer of GoogLeNet and the average re-
sponse per channel. We can find that empty channels have
no response for all random input images. Please refer to
the supplementary material for quantitative empty channel
analysis based on the MS_COCO dataset. According to
quantitative analysis of a large number of images, we find
that the positions of these empty channels remain unchanged
given different input images, i.e., they are data agnostic. Dur-
ing inference, empty channels deliver no information to the
subsequent layers (please refer to the supplementary mate-
rial for the mathematical proof). However, empty channels
themselves, the corresponding convolution and BN operators
in upper layers still waste GPU memories and computational
resources. Since only the features of ReLU layers are used
to make style transfer, we can accelerate the style transfer
algorithm without damaging the transfer quality by pruning
those empty channels and other corresponding parameters
in upper convolutional and BN layers.

To remove empty channels in the features maps, the most
intuitive way is to use a channel pruning method. However,

Figure 4: Visualization of the feature maps produced by
ReLU_1_1 layer in GoogLeNet. We show the features pro-
duced by 16 input images vertically while features of each
channel are shown side-by-side horizontally.

the widely-used filter pruning method proposed by Li et
al. [39] cannot be used directly in style transfer because it
focuses on pruning low-contribution filters in convolution
layers and then the corresponding BN and ReLU layers while
style transfer algorithms are usually based on feature maps of
ReLU layers. Low-contribution filters in convolution layers
usually cannot lead to empty channels in ReLU layers. To
this end, we tweak the method by [39] to make it focus on
pruning empty channels in ReLU layers and then removing
the corresponding filters of Conv and BN. It is worth noting
that since removing empty channels does not hurt the style
transfer performance, there is no need to finetune the network
after pruning while [39] does need.

The pruning method we used works on different archi-
tectures. Here we show the way to prune three typical net-
work modules, e.g., Conv-BN-ReLU layer, Inception, and
Residual Block. Fig. 3(a) shows the pruning of the Conv-
BN-ReLU module. We first store the indexes of every empty
channel in a binary vector m. In m, every position is set
to 1 or 0 to represent keeping/pruning the corresponding
channel. For example, in Fig. 3(a), the value of m is set to
“11001010”. Then m is passed to the upper convolutional
and BN layers before the ReLU layer. Based on m, all
empty channels in features and the corresponding weights

4087

!!"

!!̅

!"!!
Ψ

Φ

Φ

Ψ $ = $	 − $#$%&
$"'(

, Φ $, * = $ + *"'(+ *#$%&
!!" = Φ(Ψ !! , !")

(a) AdaIN

!!!"

!"!

ΠΠ

!"! = Π $, & , Π ⇒ ()*+	!-*./0-	+*.1ℎ-3	
4&	5+.67*8	7*.1ℎ69:.

(b) StyleSwap [7]

!! !!" !"

!!̅ !"̅!!̅"

Ψ Ψ

Π Π

Φ

!!# = Ψ !! , !"# = Ψ !"
!!̅" = 	Π !!#, !"# , !!" = 	Φ(!!̅" , !")

(c) Style Decorator [58]

!"!"

ΠΠ

Φ	∘Ψ Φ ∘Ψ

!"!

!! !"!!"

!"! = Φ Ψ !! , !" , !"!" = 	Π !"! , !" 	
!!" = Φ Ψ !"!" , !"

(d) Ours S2

Figure 5: Comparison of different feature transfer modules. The shape of dotted ellipses means the variances of features, and
the color denotes the means of features. The triangles and squares represent feature patches. (a) AdaIN transfers holistic global
appearance by adopting to normalize/whiten fc and then using � to match/coloring f̄cs with respect to fs. The produced
fcs has the same mean µ and standard deviation � as fs, but cannot transfer complex textures directly. (b) StyleSwap creates
fcs by using the ⇧ to get the optimal matching between fc and fs. It has the ability to create fine textures but cannot transfer
holistic global appearance since it cannot match µ and � between fcs and fs. (c) Avatar-Net also fails to match µ and �, thus
producing an impaired global appearance. Our S2 can benefit from ⇧ in rendering complicated textures and keep µ,� of fcs
equal to fs.

in Conv and BN operators are removed. To prune the Incep-
tion module, as Fig. 3(b) shows, we first prune every branch
within the Inception module and then concatenate the pruned
feature maps together. Fig. 3(c) shows the way we prune
Inverted Residual Blocks within Mobilenetv2. To allow the
residual connections from the input to the output, we pass m
from the input feature to the output and prune other feature
maps accordingly. By removing empty channels, we reduce
the parameter size of GoogLeNet from 6.63 MB to 3.28 MB
and Mobilenetv2 from 2.22 MB to 760.11 KB, respectively.

When we perform empty channel visualization and quan-
titative analysis, we find that VGG networks (VGG11/16/19)
have fewer empty channels compared with other networks,
e.g., GoogLeNet and MobileNetv2. We conjecture the rea-
son could be that VGG networks do not use residual con-
nections, therefore, each channel has to learn more visual
information than networks consisting of Inception and Resid-
ual Blocks. Furthermore, the number of empty channels of
a network may be able to reflect its performance on style
transfer. We leave this to future work.

6. S2: Sandwich Swap Transform

So far we have improved the efficiency of style trans-
fer by replacing VGG19 with a pruned GoogLeNet. To
enable the efficient network to have comparable style trans-
fer performance with state-of-the-art methods that use big
backbones, we make a simple yet effective improvement
on one of the most popular style transfer modules named
StyleDecorator in Avatar-Net [58] so that it is more suitable
for efficient networks. We name the improved style transfer
module Sandwich Swap Transform (S2) as it uses a three-
layer structure similar to StyleDecorator [58]. As shown in
Fig. 5(d), S2 adopts AdaIN-Swap-AdaIN in a cascade to per-
form feature transfer. In S2, we first adopt an AdaIN module

to project fc to the space of fs, and then a swap module is
used to directly copy textures/painting strokes from fs to f̂cs.
After that, another AdaIN module is introduced to correct
color aberrations by aligning µ and � between fcs and fs.
S2 works at the bottleneck of auto-encoder.

Our S2 is motivated by AdaIN [28] and StyleSwap [7].
As Fig. 5(a) shows, AdaIN first normalizes the content fea-
ture fc with and then re-colors it with respect to the
style feature fs by �. Specifically, AdaIN can maintain
µ (fcs) = µ (fs) ,� (fcs) = � (fs), where µ,� represent
the mean and standard deviation of the feature maps across
H,W axes and have a shape of C ⇥ 1. Note that the match-
ing of µ and � can reduce the Gram loss between fcs and
fs, so AdaIN can transfer visual effects from the style to
the content. However, AdaIN is good at transferring global
appearance and usually degrades in rendering complicated
textures. StyleSwap (Fig. 5(b)) directly borrows fine textures
from fs to fcs according to the optimal matching between
fc and fs. Since fcs consists of a few selected patches of fs,
µ and � of fcs and fs are different. Moreover, directly mak-
ing swap on unnormalized fc and fs may bias the optimal
matching [58]. Therefore, the results of StyleSwap contain
great textures but usually have color aberrations. Our S2
combines AdaIN and StyleSwap, which enjoys the merits
and mitigates the drawbacks of both methods.

Sandwich Swap Transform (S2) is based on the StyleDec-
orator in Avatar-Net, which can be regarded as a variant
of StyleDecorator specifically for efficient networks. Our
method makes a style swap in the space of fs instead of
the normalized space. In this way, the style swap procedure
can achieve more accurate patch matching by taking both
textures and colors to perform optimal matching while col-
ors are not considered in StyleDecorator. For big models,
we usually have enough number of feature maps in feature

4088

(a) Content (b) Style (c) StyleSwap (d) AdaIN (f) WCT (h) Avatar-Net(g) OptimalWCT(e) LinearWCT (i) Ours

Figure 6: Style transfer result comparison against the state-of-the-art universal style transfer algorithms. All compared images
are generated by the officially released codes of the corresponding methods.

 (d) Input (a) Input (b) GoogLeNet (c) GoogLeNet w/ pruning (e) MobiLeNetv2 (f) MobiLeNetv2 w/ pruning

Figure 7: Comparison between the style transfer results with and without pruning. Top row: Image reconstruction results.
Bottom row: Style transfer results.

s
c

Block1 Block2 Block3 Block4 Block5Down
2×

Down
2×

Down
2×

Down
2×

concat concat concat concat

Inverse
Block1

Inverse
Block2

Inverse
Block3

Inverse
Block4

Inverse
Block5

Up
2×

Up
2×

Up
2×

Up
2×

AdaIN

Swap

AdaIN

!!

!"

!"!

Down 16× Down 8× Down 4× Down 2×

Figure 8: The framework of the style transfer used in our
experiment. Here Block/Inverse Block are network sections
split by every pooling/upsampling layer, respectively. For
GoogLeNet, each block is an Inception modules.

alignment. Therefore, the lack of color information can be
compensated by adequate textures since colors and textures
are overlapped. However, because efficient networks usually
have fewer feature maps, a more accurate feature alignment
is crucial for efficient networks to create good style transfer
results, which demonstrates the necessity of our improve-
ment. We find that our style swap strategy achieves better
style transfer quality on efficient networks and preserves
more content information in style-transferred images.

Another improvement is inspired by An et al. [2], we
concatenate deep features from all encoder blocks together
and feed the concatenated fc and fs into S2 (Fig. 8). This
strategy on the one hand enables S2 to make use of the
features from high level to low level without introducing

extra computational burden. On the other hand, it increases
the number of feature maps used for making style transfer
and therefore enhances the stylization effects. Please see
Fig. 9(h) for the ablation result without this strategy. Because
AdaIN is more focused on controlling colors and Style Swap
is for transferring textures in S2, we find that S2 allows
style transfer with a color reference and a texture reference
separately. To achieve this, in S2, we firstly transfer the
content feature fc and texture reference feature fst , to the
domain of color reference feature fsc with the first AdaIN
module. The produced content and texture reference features
are f̂c and f̂st , respectively. Then we make patch swap with
respect to f̂c and f̂st and obtain f̂cst . Finally, we adopt the
second AdaIN to transfer the color information of fsc to f̂st .
The produced feature f̂cst,sc has the texture of fst and colors
of fsc while preserving the content information of fc.

7. Experiments

In this section, we present evaluation results against state-
of-the-art methods. Fig. 8 illustrates the network architecture
we employ to conduct style transfer. The backbone network
is based on the pruned GoogLeNet. We use the inverted
version of the pruned GoogLeNet as the decoder. The style

4089

Table 2: Quantitative evaluation results for universal stylization methods. Higher is better.

Method StyleSwap AdaIN WCT LinearWCT OptimalWCT Avatar-Net Ours

SSIM " 0.4851 0.3525 0.2032 0.4363 0.2511 0.3829 0.4452
User Preference (%) " 7.38 8.20 3.28 26.50 4.37 14.48 35.79

Table 3: Computing-time comparison (Unit: Second). “OOM”: out of the memory; “NA”: not applicable at this resolution.

Method StyleSwap AdaIN WCT LinearWCT OptimalWCT Avatar-Net Ours

128⇥ 128 0.0478 0.0037 2.6873 0.0051 0.5003 NA 0.0142

256⇥ 256 0.3068 0.0093 3.0805 0.0167 0.8793 0.1732 0.0145

512⇥ 512 1.5782 0.0344 4.1922 0.0603 1.8077 0.3718 0.0147

1024⇥ 1024 OOM 0.1363 OOM 0.2278 4.1589 OOM 0.0775

transfer module attached with the GoogLeNet is S2. Because
we are studying a more general way to accelerate style trans-
fer, GoogLeNet can be replaced by other efficient networks
such as MobileNetv2 and ResNet18. More results, analyses,
and failure cases can be found in the supplementary material.
All source codes will be made available to the public.

7.1. Experimental Settings

The auto-encoder we use adopts the pruned GoogLeNet
as the encoder. As for the decoder, we introduce the architec-
turally inverted version of the encoder correspondingly. Dur-
ing network training, parameters of the encoder are frozen
and the decoder is trained based on the MS_COCO [47]
dataset to invert features back to images. We use the Frobe-
nius norm of the original and inverted images as the recon-
struction loss:

Lrecon = kIin � IoutkF, (1)

where Iin denotes the input image, Iout is the reconstructed
image, and k · kF represents the Frobenius norm. Inspired
by Li et al. [43], we introduce the perceptual loss term [33]
to improve the reconstruction quality of the decoder,

Lpercep =
5X

i=1

k�i (Iin)� �i (Iout) kF , (2)

where �i (·) denotes the output of the i
th stage of the Ima-

geNet [9] pre-trained VGG-19 [60]. The overall loss func-
tion is,

L = ↵Lrecon + �Lpercep, (3)

where ↵ and � balance two loss terms. The decoder is trained
for five epochs. We use the Adam [35] algorithm with the
fixed learning rate of 0.001 to minimize loss objectives.

7.2. Visual Comparison

We evaluate the style transfer quality of the efficient style
transfer method in comparison to state-of-the-art universal
methods: StyleSwap [7], AdaIN [28], WCT [43], Avatar-
Net [58], LinearWCT [42] and OptimalWCT [54].

StyleSwap does not transfer precise textures and colors
as shown in Fig. 6(c). AdaIN (d) and LinearWCT (e) can
generate complex details. However, the generated images are
visually dissimilar to the corresponding style images in terms
of colors (row 1/3) and local textures (row 2/4). WCT (f)
and OptimalWCT (g) are good at creating visually pleasing
local textures and bright colors. However, the style transfer
results of these two approaches look fragmented such that
the content is unrecognizable. Avatar-Net (h) improves the
results of WCT in terms of preserving characters and objects
in the content images. However, the transferred images are
distorted. For example, in the first row, Avatar-Net paints
the body of the bus with inconsistent blue and orange colors,
but the color of the bus in the content image is uniform.
Furthermore, in the second and fourth rows, Avatar-Net
renders the sky in images with the colors of the land (row
2) and windows (row 4), causing artifacts in some cases.
We argue that the artifacts of Avatar-Net are because the
StyleDecorator module [58] may not always create accurate
feature alignment as analyzed in Sec. 6. Because S2 can
make a more accurate feature alignment, our method has
a more uniform stylization effect within every object of an
image. For example, the bus and the street (row 1), the sky
and the land (row 2) have distinct styles, but the visual effects
within each object are consistent, which demonstrates the
effectiveness of the improvement we make in S2.

7.3. Quantitative Comparison

We conduct a quantitative comparison against state-of-
the-art methods upon a dataset that consists of 1092 content-
style pairs (42 content; 26 styles). Inspired by [74], we
adopt the Structural Similarity Index (SSIM) between orig-
inal contents and stylized images as the metric to measure
the performance of the content preservation. Since the objec-
tive evaluation of the style transfer effect remains an open
problem, we conduct a user study to subjectively assess the
stylization effect by all the compared methods. We show
the statistics of user study in Table 2. StyleSwap has the
highest SSIM score but the lowest user preference. This is
because the results of StyleSwap are more biased toward con-

4090

(c) Swap (b) AdaIN(a) Input (e) AdaIN+Swap(d) Swap+AdaIN (h) w/o FA (f) StyleDecorator (g) Sandwich Swap

Figure 9: Ablation study for the S2 module and feature aggregation (FA). Our result (g) is different from Avatar-Net (f).

tent preservation. Our efficient method has the highest user
preference while its SSIM score ranks second to StyleSwap,
suggesting that a more efficient network can achieve similar
style transfer performance as heavy backbones.

7.4. Computational Time Comparison

We conduct a computing time comparison against the
state-of-the-art universal methods to demonstrate the effi-
ciency improvement by using an efficient backbone. All ap-
proaches are tested on the same computing platform which
includes an NVIDIA TitanXp GPU card with 16GB RAM.
We compare the computing time on content and style images
of different resolutions. As Table 3 shows, our method out-
performs the compared methods in terms of efficiency. Our
efficient method can achieve real-time (around 68 FPS) style
transfer at the resolution of 512⇥ 512.

7.5. Ablation Study

Empty channel pruning. In Fig. 7, we show the image re-
construction (top row) and style transfer (bottom row) results
by using GoogLeNet v.s. pruned GoogLeNet (c) and Mo-
bileNetv2 (e) v.s. pruned MobileNetv2 (f). As shown in the
top row of Fig. 7, removing empty channels does not harm
the image reconstruction results of the auto-encoder. Please
refer to the supplementary material for the quantitative com-
parison between the pruned and unpruned networks. More
importantly, the style transfer results with/without removing
empty channels are almost the same, which demonstrates
that we can reduce the parameter size of the network by re-
moving empty channels without hurting the quality of style
transfer results. This also explains the reason that we do not
need to fine-tune the model after removing empty channels.
Sandwich Swap Module. To demonstrate the effectiveness
of S2 module, we conduct an ablation study on each element
of it. As shown in Fig. 9(b), the AdaIN [28] module can
transfer holistic global appearance (e.g., colors). However,
it does not transfer fine textures. Fig. 9(c) shows the style
transfer results only with the style swap module [7]. The
results by style swap contain rich details but imperfect colors.
The prior AdaIN in S2 is to project fc into the domain of fs,
and thus correct the bias of the optimal matching (Fig. 9(e)).
In addition, the posterior AdaIN can rematch the mean and
variance of the output feature after the style swapping to
fs, which can correct the color aberration introduced by
the style swap module (Fig. 9(d)). Fig. 9(g) shows that the
style transfer results by S2 contain better textures and more
accurate colors.

Content

Colors

Textures Content

Colors

Textures

Content

Colors

Textures Content

Colors

Textures

Figure 10: Style transfer results by mixing textures and
colors from two separate reference images.

7.6. Transferring Color and Texture Separately

By using S2, we can generate an image by mixing tex-
tures and colors from two separate reference images. Fig. 10
shows style mixing results. In the top-left example, the
generated image brings green global color from the color
reference on the left and has the texture of the reference im-
age on the top. We find that textures in the generated images
by style mixing are not as good as the style transfer results
with only one reference. We think it is because colors and
textures are implicitly overlapped and thus the transferred
textures by style swap (2nd layer) will be disturbed when
the posterior AdaIN (3rd and last layer) in S2 is applied.

8. Conclusion

In this paper, we present an empirical study on effi-
cient network architectures that can replace time-consuming
VGG19 in style transfer. We find that some architectures
such as GoogLeNet are more lightweight yet have compa-
rable style transfer quality with VGG19. Furthermore, we
show that the feature maps of efficient networks contain a
few empty channels, and removing empty channels by a
channel pruning method can further improve the efficiency.
By removing the empty channels, GoogLeNet achieves real-
time efficiency in style transfer on high-resolution images.
Moreover, we introduce a sandwich swap transform (S2)
module based on StyleDecorator to transfer artistic styles at
the bottleneck of the auto-encoder. S2 improves the accuracy
of the feature alignment in style transfer, thus leading to
better content preservation in style transfer. The extensive
experiments demonstrate that by replacing VGG19 with a
more lightweight network (e.g., the pruned GoogLeNet) to-
gether with S2, we can accelerate style transfer significantly
while maintaining a comparable style transfer quality.

4091

References

[1] Jie An, Siyu Huang, Yibing Song, Dejing Dou, Wei Liu,
and Jiebo Luo. Artflow: Unbiased image style transfer via
reversible neural flows. In CVPR, 2021.

[2] Jie An, Haoyi Xiong, Jun Huan, and Jiebo Luo. Ultrafast
photorealistic style transfer via neural architecture search. In
AAAI, 2020.

[3] Miguel A Carreira-Perpinán and Yerlan Idelbayev. “learning-
compression” algorithms for neural net pruning. In CVPR,
2018.

[4] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang
Hua. Stylebank: an explicit representation for neural image
style transfer. In CVPR, 2017.

[5] Haibo Chen, Zhizhong Wang, Huiming Zhang, Zhiwen Zuo,
Ailin Li, Wei Xing, Dongming Lu, et al. Artistic style trans-
fer with internal-external learning and contrastive learning.
NeurIPS, 2021.

[6] Haibo Chen, Lei Zhao, Zhizhong Wang, Huiming Zhang,
Zhiwen Zuo, Ailin Li, Wei Xing, and Dongming Lu. Dualast:
Dual style-learning networks for artistic style transfer. In
CVPR, 2021.

[7] Tian Qi Chen and Mark Schmidt. Fast patch-based style
transfer of arbitrary style. arXiv preprint arXiv:1612.04337,
2016.

[8] Jiaxin Cheng, Ayush Jaiswal, Yue Wu, Pradeep Natarajan, and
Prem Natarajan. Style-aware normalized loss for improving
arbitrary style transfer. In CVPR, 2021.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: a large-scale hierarchical image database.
In CVPR, 2009.

[10] Yingying Deng, Fan Tang, Weiming Dong, Haibin Huang,
Chongyang Ma, and Changsheng Xu. Arbitrary video
style transfer via multi-channel correlation. arXiv preprint
arXiv:2009.08003, 2020.

[11] Yingying Deng, Fan Tang, Weiming Dong, Wen Sun, Feiyue
Huang, and Changsheng Xu. Arbitrary style transfer via
multi-adaptation network. In ACM MM, 2020.

[12] Xiaohan Ding, Xiangxin Zhou, Yuchen Guo, Jungong Han,
Ji Liu, et al. Global sparse momentum sgd for pruning very
deep neural networks. In NeurIPS, 2019.

[13] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.
A learned representation for artistic style. In ICLR, 2017.

[14] Oriel Frigo, Neus Sabater, Julie Delon, and Pierre Hellier.
Split and match: example-based adaptive patch sampling for
unsupervised style transfer. In CVPR, 2016.

[15] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture
synthesis using convolutional neural networks. In NeurIPS,
2015.

[16] Leon A Gatys, Matthias Bethge, Aaron Hertzmann, and Eli
Shechtman. Preserving color in neural artistic style transfer.
arXiv preprint arXiv:1606.05897, 2016.

[17] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.
A neural algorithm of artistic style. arXiv preprint
arXiv:1508.06576, 2015.

[18] Leon A Gatys, Alexander S Ecker, and Matthias Bethge.
Image style transfer using convolutional neural networks. In
CVPR, 2016.

[19] Xinyu Gong, Haozhi Huang, Lin Ma, Fumin Shen, Wei Liu,
and Tong Zhang. Neural stereoscopic image style transfer. In
ECCV, 2018.

[20] Shuyang Gu, Congliang Chen, Jing Liao, and Lu Yuan. Ar-
bitrary style transfer with deep feature reshuffle. In CVPR,
2018.

[21] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
NeurIPS, 2015.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.

[23] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. In IJCAI, 2018.

[24] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolutional
neural networks acceleration. In CVPR, 2019.

[25] Zhiyuan Hu, Jia Jia, Bei Liu, Yaohua Bu, and Jianlong Fu.
Aesthetic-aware image style transfer. In ACM MM, 2020.

[26] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional networks.
In CVPR, 2017.

[27] Haozhi Huang, Hao Wang, Wenhan Luo, Lin Ma, Wenhao
Jiang, Xiaolong Zhu, Zhifeng Li, and Wei Liu. Real-time
neural style transfer for videos. In CVPR, 2017.

[28] Xun Huang and Serge J Belongie. Arbitrary style transfer
in real-time with adaptive instance normalization. In ICCV,
2017.

[29] Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz.
Multimodal unsupervised image-to-image translation. In
ECCV, 2018.

[30] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid
Ashraf, William J Dally, and Kurt Keutzer. Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and< 0.5
mb model size. arXiv preprint arXiv:1602.07360, 2016.

[31] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial net-
works. In CVPR, 2017.

[32] Yongcheng Jing, Xiao Liu, Yukang Ding, Xinchao Wang,
Errui Ding, Mingli Song, and Shilei Wen. Dynamic instance
normalization for arbitrary style transfer. In AAAI, 2020.

[33] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, 2016.

[34] Nikolai Kalischek, Jan D Wegner, and Konrad Schindler. In
the light of feature distributions: moment matching for neural
style transfer. In CVPR, 2021.

[35] Diederik P Kingma and Jimmy Ba. Adam: a method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[36] Alex Krizhevsky. One weird trick for parallelizing convo-
lutional neural networks. arXiv preprint arXiv:1404.5997,
2014.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
In Advances in neural information processing systems, 2012.

4092

[38] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr.
Snip: Single-shot network pruning based on connection sen-
sitivity. arXiv preprint arXiv:1810.02340, 2018.

[39] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. In
ICLR, 2017.

[40] Shaohua Li, Xinxing Xu, Liqiang Nie, and Tat-Seng Chua.
Laplacian-steered neural style transfer. In ACM MM, 2017.

[41] Shaohua Li, Xinxing Xu, Liqiang Nie, and Tat-Seng Chua.
Laplacian-steered neural style transfer. In ACM MM, 2017.

[42] Xueting Li, Sifei Liu, Jan Kautz, and Ming-Hsuan Yang.
Learning linear transformations for fast arbitrary style transfer.
In CVPR, 2019.

[43] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu,
and Ming-Hsuan Yang. Universal style transfer via feature
transforms. In NeurIPS, 2017.

[44] Yijun Li, Ming-Yu Liu, Xueting Li, Ming-Hsuan Yang, and
Jan Kautz. A closed-form solution to photorealistic image
stylization. In ECCV, 2018.

[45] Yanghao Li, Naiyan Wang, Jiaying Liu, and Xiaodi
Hou. Demystifying neural style transfer. arXiv preprint
arXiv:1701.01036, 2017.

[46] Tianwei Lin, Zhuoqi Ma, Fu Li, Dongliang He, Xin Li, Errui
Ding, Nannan Wang, Jie Li, and Xinbo Gao. Drafting and
revision: Laplacian pyramid network for fast high-quality
artistic style transfer. In CVPR, 2021.

[47] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: common objects in context. In
ECCV, 2014.

[48] Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised
image-to-image translation networks. In NeurIPS, 2017.

[49] Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo
Aila, Jaakko Lehtinen, and Jan Kautz. Few-shot unsupervised
image-to-image translation. In ICCV, 2019.

[50] Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial
networks. In NeurIPS, 2016.

[51] Songhua Liu, Tianwei Lin, Dongliang He, Fu Li, Meiling
Wang, Xin Li, Zhengxing Sun, Qian Li, and Errui Ding.
Adaattn: Revisit attention mechanism in arbitrary neural style
transfer. In CVPR, 2021.

[52] Fujun Luan, Sylvain Paris, Eli Shechtman, and Kavita Bala.
Deep photo style transfer. In CVPR, 2017.

[53] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In ECCV, 2018.

[54] Lu Ming, Zhao Hao, Yao Anbang, Chen Yurong, Xu Feng,
and Zhang Li. A closed-form solution to universal style
transfer. In ICCV, 2019.

[55] Eric Risser, Pierre Wilmot, and Connelly Barnes. Stable and
controllable neural texture synthesis and style transfer using
histogram losses. arXiv preprint arXiv:1701.08893, 2017.

[56] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018.

[57] Ahmed Selim, Mohamed Elgharib, and Linda Doyle. Painting
style transfer for head portraits using convolutional neural
networks. ACM Transactions on Graphics, 2016.

[58] Lu Sheng, Ziyi Lin, Jing Shao, and Xiaogang Wang. Avatar-
net: multi-scale zero-shot style transfer by feature decoration.
In CVPR, 2018.

[59] Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua
Susskind, Wenda Wang, and Russell Webb. Learning from
simulated and unsupervised images through adversarial train-
ing. In CVPR, 2017.

[60] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[61] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015.

[62] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In CVPR, 2016.

[63] Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised
cross-domain image generation. In ICLR, 2017.

[64] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Vic-
tor S Lempitsky. Texture networks: feed-forward synthesis
of textures and stylized images. In ICML, 2016.

[65] D Ulyanov, A Vedaldi, and VS Lempitsky. Instance normal-
ization: the missing ingredient for fast stylization. arXiv
preprint arXiv:1607.08022, 2016.

[66] Dmitry Ulyanov, Andrea Vedaldi, and Victor S Lempitsky.
Improved texture networks: maximizing quality and diversity
in feed-forward stylization and texture synthesis. In CVPR,
2017.

[67] Huan Wang, Yijun Li, Yuehai Wang, Haoji Hu, and Ming-
Hsuan Yang. Collaborative distillation for ultra-resolution
universal style transfer. In CVPR, 2020.

[68] Pei Wang, Yijun Li, and Nuno Vasconcelos. Rethinking and
improving the robustness of image style transfer. In CVPR,
2021.

[69] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao,
Jan Kautz, and Bryan Catanzaro. High-resolution image
synthesis and semantic manipulation with conditional gans.
In CVPR, 2018.

[70] Xin Wang, Geoffrey Oxholm, Da Zhang, and Yuan-Fang
Wang. Multimodal transfer: a hierarchical deep convolutional
neural network for fast artistic style transfer. In CVPR, 2017.

[71] Hao Wu, Zhengxing Sun, and Weihang Yuan. Direction-
aware neural style transfer. In ACM MM, 2018.

[72] Xide Xia, Tianfan Xue, Wei-sheng Lai, Zheng Sun, Abby
Chang, Brian Kulis, and Jiawen Chen. Real-time localized
photorealistic video style transfer. In WACV, 2021.

[73] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for deep
neural networks. In CVPR, 2017.

[74] Jaejun Yoo, Youngjung Uh, Sanghyuk Chun, Byeongkyu
Kang, and Jung-Woo Ha. Photorealistic style transfer via
wavelet transforms. In ICCV, 2019.

[75] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I
Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and
Larry S Davis. Nisp: Pruning networks using neuron impor-
tance score propagation. In CVPR, 2018.

4093

[76] Sergey Zagoruyko and Nikos Komodakis. Wide residual
networks. arXiv preprint arXiv:1605.07146, 2016.

[77] Hang Zhang and Kristin Dana. Multi-style generative network
for real-time transfer. arXiv preprint arXiv:1703.06953, 2017.

[78] Yuheng Zhi, Huawei Wei, and Bingbing Ni. Structure guided
photorealistic style transfer. In ACM MM, 2018.

[79] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. In ICCV, 2017.

4094

