
D-Extract: Extracting Dimensional Attributes From Product Images

Pushpendu Ghosh
Amazon

gpushpen@amazon.com

Nancy Wang
Amazon

wangzxi@amazon.com

Promod Yenigalla
Amazon

promy@amazon.com

Abstract

Product dimension is a crucial piece of information
enabling customers make better buying decisions. E-
commerce websites extract dimension attributes to enable
customers filter the search results according to their re-
quirements. The existing methods extract dimension at-
tributes from textual data like title and product description.
However, this textual information often exists in an ambigu-
ous, disorganised structure. In comparison, images can be
used to extract reliable and consistent dimensional infor-
mation. With this motivation, we hereby propose two novel
architecture to extract dimensional information from prod-
uct images. The first namely Single-Box Classification Net-
work is designed to classify each text token in the image, one
at a time, whereas the second architecture namely Multi-
Box Classification Network uses a transformer network to
classify all the detected text tokens simultaneously. To at-
tain better performance, the proposed architectures are also
fused with statistical inferences derived from the product
category which further increased the F1-score of the Single-
Box Classification Network by ≈ 3.78% and Multi-Box
Classification Network by ≈ 0.9%. We use distance super-
vision technique to create a large scale automated dataset
for pretraining purpose and notice considerable improve-
ment when the models were pretrained on the large data
before finetuning. The proposed model achieves a desirable
precision of 91.54% at 89.75% recall and outperforms the
other state of the art approaches by ≈ 4.76% in F1-score1.

1. Introduction

Product detail page in an e-commerce website consists of
information in the form of title, product description, reviews
and product images. These websites continuously innovate
and improvise scalable methods to use the seller uploaded
details and extract structured information like brand, color,
dimension etc., hereafter called product attributes. These

1Data: https://github.com/amazon-science/dimension-extraction-dataset

Figure 1: Example of a product image with dimensional at-
tributes. According to the established definition (Section 2),
the table’s length, width and height are 23.5 inch, 68 inch
and 36.5 inch respectively.

product attributes are used as signals in search ranking, fil-
ters for refining the search results, comparison of products,
finding product substitutes etc. Poor quality product at-
tributes like missing or inconsistent values can cause con-
fusion for customers, leading to lost sales and increased re-
turns for these websites.

Particularly for home and furniture products, dimension
information is one of the most decisive attribute for the cus-
tomers. Individually going through each product to find
that one product that meet their requirement becomes ex-
tremely cumbersome and time consuming. Searching prod-
ucts based on dimension can be made possible only through
high coverage of accurate dimension attributes in the cat-
alog. Also these extracted dimensions can be highlighted
in the product detail page to enhance information visibil-
ity. Thereby, instilling assurance, satisfaction and convinc-
ing the customer to buy the perfect sized products for their
spaces. Increased discoverability of the appropriate sized
product along with a well informed buying decision thereby
result in an enhanced shopping experience.

The usual input source of extracting dimensional at-
tributes is unstructured text whose reliability is question-
able as this textual information added by sellers is sub-
ject to individuality and hence often not standardized and
definitive. For instance, some sellers follow the order:
width × depth/length × height; whereas some sellers men-

3641

tion it as: length × breadth/width × height, which creates
confusion between what to be considered as length or width.
As shown in Figure 1, product images on the other hand, can
be used to extract much reliable information in a standard-
ised way. So to make the catalog more consistent, complete
and correct, we propose an end-to-end system to extract di-
mension attributes from product images.

1.1. Related Works

The last decade has witnessed numerous litera-
ture [5] [13] which aim to extract attributes from textual
data using classical machine learning. Recent researches
like OpenTag [19] applies Bidirectional-LSTM followed by
conditional random field; similarly LaTeX-Numeric [10]
extracts numeric attributes from textual data by solving a
NER problem using BiLSTM-CNN-CRF model [9]. With
improvements in computer vision techniques, there are a
few exemplary works which use product images to ex-
tract attribute values primarily from fashion based prod-
ucts. Baloian et al. [2] detects colour and texture from prod-
uct images using kNN classifier over the features extracted
from intermediate layers of pre-trained Resnet architecture.
Adhikari et al. [1] and Parekh et al. [11] also extract style,
occasion, pattern attributes from product images using im-
age classifiers like Resnet-34 and EfficientNet-B0 respec-
tively. On similar grounds, Zhou et al. [20] uses features
from sections of the product images to improve recommen-
dations. These works highlight the scope of the ample in-
formation that can be extracted from product images. Since
information exist in both image and textual data, more mul-
timodal approaches for information extraction have recently
been devised. Zhu et al. [21] fundamentally solve the NER
problem by tagging each word in the product description
as an attribute value but with the inclusion of ResNet im-
age features using Cross-Modality Attention. Inspired by
visual question answering, PAM [8] is an intricate multi-
modal transformer architecture to extract ’Item Form’ and
’Brand’ attribute values from product text and images. It ap-
plies OCR (Optical Character Recognition) to extract words
from images, uses Faster-RCNN to extract important fea-
tures from the image and also consider BERT embeddings
of each token in the product title. We propose a much
simpler but effective image based dimension attribute ex-
traction solution just using images and OCR results; unlike
PAM which also uses unstructured text like titles. To the
best of our knowledge, the proposed model is the first to
extract dimensional attributes from product images and we
show very high precision and recall in doing so.

2. Problem Definition
A product p ∈ P in an e-commerce website is depicted

through a set of multiple images Ip = {Ip1 , I
p
2 , ..., I

p
N} and

belongs to a product category c ∈ C, where C is the set of

all product categories. Let IpD ⊂ Ip, be the subset of images
which have dimensional information in it. When the prod-
uct’s functional side is in the front view, we define length as
front to back measurement, width as left to right measure-
ment and height as top to bottom measurement, as shown in
Figure 1. The task is to extract dimensional attributes like
length, width and height of all products p ∈ P | n(IpD) ̸= 0.

3. Methodology
In this paper, we put forth an end to end system to detect

dimensional attributes of the product from its images. The
system comprises of a Filter classifier, which boost the sys-
tem’s efficacy by filtering out images without dimensional
attributes; an OCR engine to extract texts from the image;
a Parser to parse measurement values from the words de-
tected by OCR and finally a model (Bounding-Box classi-
fier) to classify the OCR-texts as a dimensional attribute.

3.1. Filter Classifier: Filtration of images without
dimensional information

Since one product may have multiple images and not all
images have dimensional description. Hence, application
of the extraction algorithm on all images is highly ineffi-
cient and unnecessary. To reduce the OCR induced cost, we
trained a MobileNetV3-L architecture to predict a binary
output if the input image carries dimensional information in
it. It is fed with a high resolution input image (600 pixels)
so that it does not lose out the tiny text and thin dimensional
axes/lines in the image, which are very important features
to classify dimensional images.

Figure 2: Filter Classifier filtering out the non-dimensional
images of a product.

3.2. OCR engine: Detect Text from Images

We deploy an OCR engine to detect text from product
images. The OCR engine is able to detect words from
the image within ±90◦ orientation of the horizontal axis.
Given an image with texts, the OCR engine returns the de-
tected words along with the coordinates of their bounding-
box. Next, we find bounding-boxes which are in vicinity
of each other and upholding the transitive property; merge
them by calculating union of the bounding-boxes and con-
catenating the words in appropriate order. For example, we

3642

merge the group of nearby bounding boxes which detected
"20", "½", and "inch" into one bounding box with value
"20 ½ inch". At the end, for simplicity, we only con-
sider the coordinates of their centroid as the location co-
ordinates of the bounding box.

3.3. Parser: Extraction of measurement value from
text tokens

We post-process the OCR tokens by tokenizing them, de-
tecting errors and correcting them by replacing the faulty
token with a valid vocabulary token [7]. For example, cor-
recting a detected "5O inoh" to "50 inch". Next we
use a regex based parser to extract a numerical value along
with its unit of measurement (UOM) which corresponds to
length entity like centimeter, inch, etc. OCR sometimes fail
to detect the text corresponding to the UOM in a bounding-
box, for e.g., the double quotes character (”) corresponding
to inches is often missed by OCR. To resolve such cases of
missed out UOM, we deduce the most probable UOM us-
ing the other detected OCR tokens in the image and assign
it to the bounding-box in question, provided the measure-
ment value does not become an outlier. Bounding boxes in
which the parser did not detect any measurement value were
ignored.

3.4. Bounding-Box Classifier: Classify bounding-
box as Length, Width, Height or None

For a product p with an image Ipd having dimensional
information, the model so far detected k bounding-boxes,
{bb1, bb2, ..., bbk} where each bounding-box bbi is rep-
resented by the pixel coordinates of the bounding-box:
(xmin, xmax, ymin, ymax) and corresponds to a value of
measurement: vi in inches. In this section, we aim to clas-
sify each bounding-box to be either Length, Width, Height
or None (does not belong to any LWH attributes).

3.4.1 Statistic Inference from the product category

Dimension attributes are highly dependent on the product
category that they belong to. For instance, length of a mat-
tress usually lie between 70 inches to 90 inches, whereas
their height generally never exceeds 10 inches. Hence,
the product category along with the measurement value de-
tected inside the bounding-box have quite a high influence
on the true attribute. To integrate this product-category in-
formation, one way was to train different models for each
product-category, but this would lead to model prolifera-
tion. Rather, we devise a novel technique to feed the prod-
uct category information to our model.

First, we convene all possible values of length, width
and height from the catalog (in inches), find their logarith-
mic values and fit a normal distribution, N(c,α) with mean
µ(c,α) and standard deviation σ(c,α), corresponding to each

(a) Product Category: Bed (b) Product Category: Sofa

Figure 3: Plot of z̄α with respect to measurement value v

attribute α ∈ {Length, Width, Height} and every product
category c ∈ C. We consider these 3×n(C) distributions as
a metadata. Next, for each bounding-box, given the product
category c and the detected measurement value v, we cal-
culate z̄α,∀α ∈ {Length, Width, Height} using Equation 1
and Equation 2.

zα(v, c) =
ln(v)− µ(c,α)

σ(c,α)
(1)

z̄α = e−|zα(v,c)| (2)

As shown in Figure 3, it is worth noting that z̄α captures
the likelihood of v to be considered as the α attribute. If
v is an outlier to N(c,α), |zα| is high and hence z̄α(v, c)
is small in magnitude, which however is reversed when v
is near to the peak of N(c,α). For instance, a measure-
ment value of 35 inch in a bed product category, results
to (z̄L, z̄W , z̄H) ≈ (0.00039, 0.25984, 0.86975) and since
z̄L is quite small, the model can easily rule out the possi-
bility of 35 inch being the length of the bed and add more
weight to the odds of it being a height. Similarly if v = 10
inch is detected from an image in bed product category, the
values (z̄L, z̄W , z̄H) ≈ (0.00000, 0.00423, 0.07548), can
easily indicate that the bounding-box is not associated with
any attribute, and hence would likely get classified as None.
These values help the model understand if v stands as an
outlier to the category’s α attribute.

3.4.2 Single-Box Classification network

The location of the text token with respect to the image is
a vital feature for deciding the attribute associated with the
bounding-box. For instance, the height information is usu-
ally present next to a vertical line or arrow in the image.
Hence we intend to use the co-ordinates of the centroid
along with the image as a input for classification. Given
a bounding-box bbi ≡ (xi, yi, vi) corresponding to a 3-
channel RGB image I ≡ (IR, IG, IB), we construct a 3-
channel input using Equation 3, 4 and 5 respectively. The
motivation is to assist the model with information to un-
derstand the importance of orientation of various lines in

3643

Figure 4: Architecture of Single Box Classification network.

the image and their proximity from the bounding box. This
feature generation technique enables the model to add more
attention to image features near the bounding box.

f1(x, y) = 0.299× IR(x, y) + 0.587× IG(x, y)

+ 0.114× IB(x, y)
(3)

f2(x, y) = |x− xi| (4)
f3(x, y) = |y − yi| (5)

where x and y correspond to the horizontal and the verti-
cal pixel coordinates normalized by the width and height of
the image respectively, such that, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1.
f1(x, y) defines the grayscale conversion of the RGB image
at the pixel (x, y), while f2(x, y) and f3(x, y) encodes the
horizontal and vertical distance of the pixel (x, y) from the
bounding box. In this use case, the colour of image isn’t
of much significance, as colors of the item are not related to
the dimension related attribute values and hence we chose to
convert the RGB images to its grayscale variant. Also this
particular choice of input creation creates 3-channel input
and hence enabling us to initialize our models using Ima-
genet weights for faster model convergence.

Architecture: The input image is encoded as a 3-channel
feature as described above, which is then passed through an
image classifier (EfficientNet-B3), which outputs an em-
bedding e of size (ed, 1). Next we use z̄ = [z̄L, ¯zW , z̄H , 1]
of size (1, 4) as defined in 3.4.1 to compute the product of e
and z̄, i.e., ez̄ = (z̄Le, ¯zW e, z̄He, e). The resulting vector of
size (ed, 4) is flattened and followed by a dropout layer and
a dense layer with |α|+ 1 nodes, each corresponding to the
attributes (length, width, height) and None category. The
hypothesis is to spike the set of neurons corresponding to
z̄αe, when the measurement value v highly correlates with

(a) Channel 1 (b) Channel 2 (c) Channel 3 (d) Stacked

Figure 5: 3-channel Feature Generation using the original
RGB Image and the coordinates of the bounding-box. The
reddish color in the stacked image highlights the pixels near
the query bounding box.

the product category’s α attribute. The last column of ez̄ is
e, which acts like a shortcut connection of the image em-
beddings. This makes the model robust to outlier products
like kids-chair (smaller than usual chair) or bunk-bed (taller
than usual beds) where even though the first three columns
of ez̄ are approximately zero, the model can directly predict
the attribute using the image embedding e.

3.4.3 Multi-Box Classification Network

Architecture: Motivated by Dosovitskiy et al. [4], the
input image I ∈ RH×W×C is split into a sequence of
patches of size P × P pixels, resulting in N = HW/P 2

number of patches. These patches are flattened and mapped
to a D dimensional vector (patch embeddings) using a
trainable linear projection. Position embeddings derived
from the position of the image patch, are added to the
patch embeddings to retain positional information. We
use standard learnable 1D position embeddings as done
by Dosovitskiy et al. [4]. Simultaneously, every bounding
box detected in the image denoted by bbi = (xi, yi), are
encoded into embeddings of size D by concatenating the

3644

Figure 6: Architecture of Multi-box Classification Network

embeddings of xi and yi, each having dimension D/2.
Later, N patch embeddings along with k bounding box
embeddings are passed to a multi-layered bidirectional
transformer network. The output embeddings of the
bounding boxes are later multiplied with z̄i, where z̄i is
the statistical likelihood of vi to be considered as one of
the attributes as discussed in 3.4.1. The resultant vector is
followed by a dropout layer and finally connected with a
dense layer with |α|+ 1 nodes.

Pre-training tasks: To improve the transformer learning
process, we follow two pre-training tasks.

1. Image Classification Task: The transformer network
is trained to classify the input images and predict the
product category that it belongs to. As shown in Fig-
ure 6, the embedding of the extra learnable placeholder
is passed through an MLP network with one hidden-
layer and a softmax activation. This increases the
modelś knowledge about product classification using
images and helps it to generalise any task for multiple
product categories.

2. Text Detection Task: To better fuse the image patches
with the bounding box location co-ordinates, we pass
random co-ordinates (where no text is present in the
image) to randomly chosen (p = 0.5) bounding box
placeholders and the rest with correct location co-
ordinates where the OCR engine detected a text. Fi-
nally, the output embeddings of the bounding boxes
are passed to an another MLP network with a sigmoid
activation layer and trained using binary cross-entropy
loss to classify if the image segment at the correspond-
ing input co-ordinates has text or not.

4. Experiments and Results

4.1. Dataset

We create two datasets, one for training the image fil-
tering classifier and another for training the bounding-box
classifier, for which we considered products across 68 cat-
egories. To avoid incorrect and missing annotations, out-
liers were removed from the catalog and we only considered
products which have all the dimensional attributes filled.

1. FC AUTO TRAIN: To train the Filter Classifier, we
considered ≈ 600k products with ≈ 4.5M images
from amazon.co.uk and apply OCR and the parser to
detect text with dimensional information inside the im-
age. Out of the ≈ 4.5M images, measurement values
were detected from only ≈ 280k images which were
labelled as 1. Assuming that the remaining images do
not have dimensional information, we sample ≈ 300k
images and labelled them as 0.

2. BBC AUTO TRAIN: To procure a large scale auto-
mated train data for pre-training the bounding box
classifier, along with ≈ 600k products from ama-
zon.co.uk, we also considered ≈ 5.1M products from
various other marketplaces, which had ≈ 40M im-
ages. Next, we filter out the images without dimen-
sional description using the Filter classifier trained us-
ing FC AUTO TRAIN and end up having ≈ 2.4M
images. We apply OCR to every image I ∈ ID
to receive k bounding-boxes bbi,I and detect corre-
sponding value of measurement vi,I using the parser,
∀i ∈ 1, 2..., k. Next, we determine the relative error
δα,i,I using Equation 6, where vα is the true measure-

3645

ment value of the product’s α attribute in the catalog,
where α ∈ L,W,H .

δα,i,I =
|vi,I − vα|

vα
(6)

If min
α∈L,W,H

δα,i,I ≤ 10−3, we tag bbi,I as argmin
α∈L,W,H

δα,i,I ,

else we tag bbi,I as None.
Lastly, with few post processing, and basic outlier re-
moval, we create a dataset with ≈ 4.4M bounding-
boxes corresponding to ≈ 1.3M images.

3. BBC GDS: To finetune and evaluate the models with
high quality data, we manually annotated 200 dimen-
sional images for every product type and split 150 for
training (BBC GDS TRAIN) and 50 for testing purpose
(BBC GDS TEST). This dataset is published online2.

4.2. Training and Implementation Details

Single Box Classification Network: Ideally the single box
classification network can be constructed using any image
classifier. In our experiments, we chose EfficientNet-B3,
due to its high performance and efficiency [17]. Moreover,
we tested various state of the art image classifiers and em-
pirically found that EfficientNet-B3 was optimal in terms of
both computation and performance. The whole architecture
was trained using Adam optimizer with step-decay learning
rate varying from 10−3 to 10−5.

Multi Box Classification Network: As discussed in sub-
section 3.4.3, the multi-box classifier network requires a
multi-layered bidirectional transformer network to share in-
formation between the image features and the bounding-
box location features. The transformer encoder network of
the Multi Box Classification network has 12 layers, input
image patch size as 16, a hidden size of 768, and 12 self-
attention heads. This network was trained using Adam with
weight decay optimizer (AdamW) with step-decay learning
rate varying from 10−3 to 10−5, β1 = 0.9 and β2 = 0.999.

4.3. Model performance

4.3.1 Filter Classifier

This model plays a vital role of optimizing the extraction
process. High quality OCR engine consumes ≈ 100ms per
image and incurs heavy computation cost. Also, since most
images (≈ 97%) do not have any dimensional attributes,
applying the extraction process to all images of the product
is ineffective and not scalable. To tackle the drawback, the
filter classifier comes to our aid, which processes an image
in just ≈ 4ms (on 1 Tesla V100) making the process highly

2https://github.com/amazon-science/dimension-extraction-dataset

efficient (14x). The filter classifier, backed by a state of the
art image classifier works at 82.21% precision and 98.06%
recall in the test set of Dataset-1. To understand the impact
of Filter classifier on the overall system’s precision and re-
call, we compare the setup of skipping the Filter classifier
against when using it. As shown in Table 1, skipping the fil-
ter classifier improves the recall but also decreases the pre-
cision, as the number of incorrect extraction from non-pure
dimensional images (Figure 7) increases.

Setting Precision Recall F1-score

Filter classifier skipped 0.9103 0.9010 0.9056
Filter classifier applied 0.9154 0.8975 0.9064

Table 1: Effect of not applying Filter classifier, i.e., using
every image for attribute extraction.

(a) Product Image (b) Magnified Image

Figure 7: A sample dimensional image with dimensional
text but no visual mapping or dimension spans. These kind
of images constitute the majority of the filter classifier’s
false negatives, and likewise the attribute classifier also per-
form poorly on these images due to ambiguity.

4.3.2 Comparision with benchmark models/systems

To check the effectiveness of the proposed model and the
improvement made by fusing the statistical inferences, we
compare the two types of bounding-box classifiers with S.I
(proposed architecture) and without S.I, along with various
other state of the art approaches.

1. We tried CV based algorithmic approaches which in-
cluded, detecting lines using Hough transform, com-
puting the angle of the lines closest to the bounding
box containing the dimension value and lastly using
a set of hard-coded rules, logic and checks for every
product type, we complete the extraction.

2. LayoutLM [18] is a state of the art model to extract in-
formation from scanned documents using text detected
by OCR and layout information.

3646

Model Precision Recall F1-score GFLOPs Parameters

CV based algorithmic approach 0.8092 0.3088 0.4470 - -
LayoutLM [18], Trained using B 0.5624 0.3303 0.4162 19.2 113M
LoRRA VQA [14] [15], Trained using B 0.8907 0.8219 0.8549 88.1 -
DeepLab V3+ [3], Trained using B 0.9262 0.8006 0.8588 20.8 12M
YOLOv3 [12], Trained using B 0.8974 0.8045 0.8484 156.4 62M
YOLOv5 [6], Trained using B 0.8792 0.7971 0.8361 49.1 21M

Single Box Classification Network without S.I. 1.8 12M
Trained only using BBC GDS TRAIN 0.8716 0.8230 0.8466
Trained using B 0.8925 0.8459 0.8686

Single Box Classification Network with S.I. 1.8 12M
Trained only using BBC GDS TRAIN 0.9061 0.8302 0.8665
Trained using B 0.9154 0.8975 0.9064

Multi Box Classification Network without S.I. 17.6 86M
Trained only using BBC GDS TRAIN 0.8211 0.7568 0.7876
Trained using B 0.8468 0.8011 0.8233
Trained using B, after image classification pretraining 0.8417 0.8255 0.8335
Trained using B, after text detection pretraining 0.8768 0.8436 0.8599
Trained using B, after both pretrain tasks 0.8766 0.8507 0.8635

Multi Box Classification Network with S.I. 17.6 86M
Trained only using BBC GDS TRAIN 0.8076 0.7741 0.7758
Trained using B 0.8708 0.7927 0.8299
Trained using B, after image classification pretraining 0.8541 0.8320 0.8429
Trained using B, after text detection pretraining 0.9010 0.8419 0.8704
Trained using B, after both pretrain tasks 0.8937 0.8516 0.8721

Table 2: Comparision of the proposed architectures with the benchmark models. Note 1: Trained using B implies the model
was first pretrained using BBC AUTO TRAIN and then finetuned using BBC GDS TRAIN

3. Pythia v0.3 + LoRRA [14] [15] is a VQA model which
uses both image features and OCR tokens to answer a
natural language question. To solve our usecase, we
ask three questions corresponding to each attribute and
limit the model to generate answer strictly based on
OCR tokens. Pretrained LoRRA (on TextVQA) was
finetuned using our dataset.

4. YOLOv3 [12] and YOLOv5 [6] are used to detect
bounding-box around the text with dimensional value
and classify them as an attribute. Lastly, using
IOU between the YOLO-bounding-box and the OCR-
bounding-box, we tag the attribute predicted by YOLO
with the measurement value inside the intersecting
OCR-bounding-box.

5. DeepLabV3+ [3] is a semantic segmentation model
used to classify each pixel in the image as one of the
attributes. Later we calculate the mean of softmax of
predictions from each pixel inside the OCR bounding
boxes and use it to predict the attribute associated with
the box.

The way dimensional images are represented in the catalog

is quite complex and diverse. Owing to which the algo-
rithmic approach generates a moderate precision but lags to
effectuate a high recall. Clearly indicating that the attribute
classification task requires a deep dive approach to analyse
and explore deep learning methodologies. In order to clas-
sify a bounding-box as an attribute, the image features in its
vicinity is very influential and although LayoutLM consid-
ers the coordinates of the bounding-box, it lacks the context
of the box’s neighbourhood visual features. Hence we de-
duce that LayoutLM might be an ideal model for text-heavy
input, but it fails to perform for usecases in which image
features are crucial. LoRRA VQA is designed to answer
natural language questions and is often robust to the way
the question is asked, but it fails to outperform the proposed
architecture in dimension extraction. YoloV3, YoloV5 and
DeepLabV3+, although is efficient as it processes an image
only once; but it transforms the simple classification task
into a much more complex problem of text-localisation and
classification simultaneously, hence resulting in lesser re-
call. On the other hand, both the proposed architectures,
leverage the OCR’s capability to solve the text-localisation
problem and just focus on the attribute classification task.

3647

(a) Input Image (b) SmoothGrad: Length (c) SmoothGrad: Width (d) SmoothGrad: Height (e) Model Inference

Figure 8: Visualisation of the image classifier’s gradients and inferences. Column a displays few exemplary product images
with dimensional information; Column b, c, d plots the saliency map of the input image using SmoothGrad [16] with respect
to the three detected attributes respectively; Column e unveils the inferences of D-Extract.

Table 2 shows that fusion of statistical inference with the
architectures, enhances the model’s performance, especially
with the Single Box Classification network where we ob-
serve ≈ 3.78% improvement in F1-score. The proposed
single box classification network with statistical inference
has the highest F1-score of 0.9064 and is thus the best sys-
tem demonstrated so far to extract dimensions from images.
While in terms of efficiency, multi-box classification net-
work is considered suitable for images that contains numer-
ous dimension related text. It has the highest F1-score when
compared to all benchmark models which processes the im-
age only once like Yolo and DeepLabV3+.

5. Discussions
The single classifier model with S.I., hereafter referred as

D-Extract, achieves 95.65% precision at 85% recall for the
Height attribute, whereas 91.01% and 91.53% precision at
85% recall for the Length and Width attribute respectively.
The Length and Width confusion still exist, but it has >90%
precision in length and width attributes which is a substan-
tial improvement over the existing ≈ 30% error rate in
text extraction methodologies. Further analysing the errors,
we found lower F1-score for length and width attributes in
product types which has ambiguous front and side view def-
inition like safe, storage-box, etc. making these attributes
indistinguishable, even for humans. Moreover, it is found
that the dimension errors by interchanging length and width
for these type of products result in fewer customer returns
as they can be placed in any orientation.

Diving deeper into the image classifier’s learnings,
we plot image-specific attribute-wise saliency map using

SmoothGrad [16]. Saliency map is a heatmap where white
regions correspond to regions that have higher impact on
the model’s final decision. Figure 8 demonstrates that the
image classifier proficiently learns the important boundary
edges of the actual product, detects the thin dimension line
corresponding to each attribute and makes reasonable infer-
ences using them. Furthermore, it is notable to note that the
image classifier understands the various orientation of the
actual product and also considers the possibility that a single
image might have multiple views of the product (first exam-
ple of Figure 8). The second example (desk) in Figure 8 is
a seemingly difficult task with 22 dimensional values men-
tioned inside the image, but the model is able to detect the
most relevant dimensional lines and tag them accurately.

6. Conclusion and Future Work
In short, we propose a highly accurate but effective end-

to-end pipeline enabling e-commerce websites to extract di-
mensional attributes from product images using an OCR
engine, regex based parser and an image classifier coupled
with product-category specific dimension priors. Our exper-
imental results show that the model operates at a F1-score
of 0.8889, 0.8958 and 0.9344 for length, width and height
attributes respectively and outperforms other state of the art
architectures by ≈ 4.76% in F1-score. Future goal is to ex-
tend the model to more product categories, attribute types
like seat height, diameter etc. and include visual reasoning
with complex layouts like tables and diagrams.

3648

References
[1] Sandeep Singh Adhikari, Sukhneer Singh, Anoop Rajagopal,

and Aruna Rajan. Progressive fashion attribute extraction.
arXiv preprint arXiv:1907.00157, 2019.

[2] Andres Baloian, Nils Murrugarra-Llerena, and Jose M
Saavedra. Scalable visual attribute extraction through
hidden layers of a residual convnet. arXiv preprint
arXiv:2104.00161, 2021.

[3] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian
Schroff, and Hartwig Adam. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In
Proceedings of the European conference on computer vision
(ECCV), pages 801–818, 2018.

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[5] Rayid Ghani, Katharina Probst, Yan Liu, Marko Krema, and
Andrew Fano. Text mining for product attribute extraction.
ACM SIGKDD Explorations Newsletter, 8(1):41–48, 2006.

[6] Glenn Jocher, Alex Stoken, Jirka Borovec, NanoCode012,
ChristopherSTAN, Liu Changyu, Laughing, tkianai, Adam
Hogan, lorenzomammana, yxNONG, AlexWang1900, Lau-
rentiu Diaconu, Marc, wanghaoyang0106, ml5ah, Doug,
Francisco Ingham, Frederik, Guilhen, Hatovix, Jake Poznan-
ski, Jiacong Fang, Lijun Yu, changyu98, Mingyu Wang, Na-
man Gupta, Osama Akhtar, PetrDvoracek, and Prashant Rai.
ultralytics/yolov5: v3.1 - Bug Fixes and Performance Im-
provements, Oct. 2020.

[7] Ido Kissos and Nachum Dershowitz. Ocr error correction
using character correction and feature-based word classifica-
tion. In 2016 12th IAPR Workshop on Document Analysis
Systems (DAS), pages 198–203. IEEE, 2016.

[8] Rongmei Lin, Xiang He, Jie Feng, Nasser Zalmout, Yan
Liang, Li Xiong, and Xin Luna Dong. Pam: Understanding
product images in cross product category attribute extraction.
arXiv preprint arXiv:2106.04630, 2021.

[9] Xuezhe Ma and Eduard Hovy. End-to-end sequence la-
beling via bi-directional lstm-cnns-crf. arXiv preprint
arXiv:1603.01354, 2016.

[10] Kartik Mehta, Ioana Oprea, and Nikhil Rasiwasia.
Latex-numeric: Language-agnostic text attribute extrac-
tion for e-commerce numeric attributes. arXiv preprint
arXiv:2104.09576, 2021.

[11] Viral Parekh, Karimulla Shaik, Soma Biswas, and
Muthusamy Chelliah. Fine-grained visual attribute extrac-
tion from fashion wear. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 3973–3977, 2021.

[12] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018.

[13] Keiji Shinzato and Satoshi Sekine. Unsupervised extraction
of attributes and their values from product description. In
Proceedings of the Sixth International Joint Conference on
Natural Language Processing, pages 1339–1347, 2013.

[14] Amanpreet Singh, Vivek Natarajan, Yu Jiang, Xinlei Chen,
Meet Shah, Marcus Rohrbach, Dhruv Batra, and Devi
Parikh. Pythia-a platform for vision & language research.
In SysML Workshop, NeurIPS, volume 2018, 2018.

[15] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang,
Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus
Rohrbach. Towards vqa models that can read. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

[16] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas,
and Martin Wattenberg. Smoothgrad: removing noise by
adding noise. arXiv preprint arXiv:1706.03825, 2017.

[17] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114. PMLR,
2019.

[18] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei,
and Ming Zhou. Layoutlm: Pre-training of text and layout
for document image understanding. In Proceedings of the
26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1192–1200, 2020.

[19] Guineng Zheng, Subhabrata Mukherjee, Xin Luna Dong,
and Feifei Li. Opentag: Open attribute value extraction from
product profiles. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data
Mining, pages 1049–1058, 2018.

[20] Wei Zhou, PY Mok, Yanghong Zhou, Yangping Zhou, Jialie
Shen, Qiang Qu, and KP Chau. Fashion recommenda-
tions through cross-media information retrieval. Journal of
Visual Communication and Image Representation, 61:112–
120, 2019.

[21] Tiangang Zhu, Yue Wang, Haoran Li, Youzheng Wu, Xi-
aodong He, and Bowen Zhou. Multimodal joint attribute pre-
diction and value extraction for e-commerce product. arXiv
preprint arXiv:2009.07162, 2020.

3649

