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Abstract

One of the most relevant tasks for augmented and vir-
tual reality applications is the interaction of virtual ob-
jects with real humans which requires accurate 3D human
pose predictions. Obtaining accurate 3D human poses re-
quires careful camera calibration which is difficult for non-
technical personal or in a pop-up scenario. Recent mark-
erless motion capture approaches require accurate camera
calibration at least for the final triangulation step. Instead,
we solve this problem by presenting ElliPose, Stereoscopic
3D Human Pose Estimation by Fitting Ellipsoids, where
we jointly estimate the 3D human as well as the camera
pose. We exploit the fact that bones do not change in length
over the course of a sequence and thus their relative tra-
jectories have to lie on the surface of a sphere which we
can utilize to iteratively correct the camera and 3D pose
estimation. As another use-case we demonstrate that our
approach can be used as replacement for ground-truth 3D
poses to train monocular 3D pose estimators. We show that
our method produces competitive results even when com-
paring with state-of-the-art methods that use more cameras
or ground-truth camera extrinsics.

1. Introduction
Advances in augmented and virtual reality make this

technology more and more prevalent in modern indus-
try [33] and consumer products [1, 41]. One of the most
relevant tasks for AR/VR applications is the interaction of
virtual objects with real humans where 3D human poses can
be obtained using consumer cameras (e.g. smartphones) in
a stereoscopic setup. Recently, many markerless motion
capture methods [2, 3, 9, 14, 27, 29, 30, 45, 47, 57, 58] have
been proposed. However, these methods require accurate
camera calibration which is difficult to obtain for laymen or
in pop-up settings.

To alleviate this problem we present the ellipsoidal
stereoscopic 3D human pose estimation algorithm ElliPose,
a stereoscopic 3D pose estimation approach which itera-
tively and jointly estimates the human and camera pose.

Given 2D human pose estimations [6, 8, 23, 26, 28] for un-
calibrated cameras our approach is capable of generating
3D poses and calibrate the cameras. We exploit the fact that
the length of a bone cannot change and thus the translation
invariant vector describing this bone has to lie on the sur-
face of a sphere when observed over time. Triangulating
2D poses from a stereoscopic setup produces distorted 3D
poses, which arises from an inaccurate estimate of the cam-
era extrinsics, especially when the cameras are positioned
closer to each other and the objects lie along a steep view-
ing angle [16]. In contrast to current state-of-the-art ap-
proaches [25, 31], which require the full extrinsic calibra-
tion, our approach is faster and easier to perform. As our
method is fully algorithmic it can also easily be transferred
to other detection tasks such as for animals, given an appro-
priate detection framework [5].

In our work we evaluate the distortion and use this infor-
mation to simultaneously correct the camera location and
the 3D pose prediction. By analysing a sequence of poses,
we can fit an ellipsoid to the relative trajectory of the body
joints and thus estimate the global distortion. The detec-
tions can then be undistorted and the camera location can
be corrected. Aside from the 2D pose estimation, where any
off-the-shelf method is sufficient, our approach is purely al-
gorithmic: For a stereoscopic setup we first estimate the
Essential Matrix E using point correspondences of the 2D
pose detections in each camera for each time step. We than
use E to obtain 3D poses for each time frame. We subse-
quently estimate the relative trajectories of the body joints
and use a multi-scale variation of the ellipsoid fitting algo-
rithm by Turner et al. [48] to fit a scale invariant ellipsoid
and thus estimate the global distortion. After deforming
the coordinate system in such a way that the ellipsoid gets
closer to a ball shape, the camera positions are fitted to the
new 3D joint locations. Our experiments show that moving
the 3D point locations only slightly and re-estimating the
cameras multiple times performs better than warping the el-
lipsoid into a ball shape directly. We thus use an iterative
approach by alternating between estimating ellipsoids and
recalibrating the cameras. A predicted 3D pose can be seen
in Figure 1.
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(a) Camera 1: Right-Back (b) Camera 2: Right-Front (c) Camera 3: Left-Back (d) Camera 4: Left-Front

Figure 1: 3D human pose prediction of 1501st frame of subject 11 performing “Smoking 2” projected onto the real cameras
on Human3.6M [19]. Predictions are blue, ground truth is red. The pose was triangulated using the front camera pair (cameras
2 and 4).

Our approach produces highly competitive 3D pose es-
timation results for stereoscopic pose estimation while not
requiring calibrated cameras. Using the front camera set
of Human3.6m [19], we are able to reduce the Mean-Per-
Joint-Position-Error (MPJPE) from 75.7 mm (Baseline) to
40.9 mm (ElliPose) on the validation set. Furthermore we
are able to reduce the position and scale invariant MPJPE
(PMPJPE) of the state-of-the-art approach MetaPose [49]
by over 30%. As another application we demonstrate that
our approach can be used to acquire training data for neural
3D human pose estimation. We train the fully supervised
approach by Pavllo et al. [39] using our 3D pose estimates
instead of ground truth data where we greatly outperform
any other semi-supervised approach by the authors [39].

2. Related Work
2D Human Pose Estimation: Recent neural 2D human
pose estimation methods can be split into two categories:
top-down and bottom-up. Top-down approaches first search
for persons in the image using a person detector like Faster-
RCNN [15, 24, 38, 44], R-FCN [11, 53], Feature Pyramid
Networks [8, 28] or YoloV3 [24, 43]. Subsequently the
image patch containing the detected person is used to es-
timate a heatmap for each joint type, which are merged into
a skeleton model [8, 53].
Bottom-up approaches first detect probability heatmaps
for each joint type for all persons in the image. Those
heatmaps are then merged toward probably multiple per-
son detections. For this association algorithms like linear
programs [18, 20, 40], part affinity fields [6, 26] or graph
clustering [23] are used.
Monocular 3D Human Pose Estimation: Since 2D im-
ages lack depth information, detecting 3D human poses
from 2D images is an ill-posed problem [52]. Nonetheless
modern algorithms are capable to recover 3D pose infor-
mation. Library-based strategies use large databases to in-

terpolate best 3D pose fits for predicted 2D poses [7, 56].
Surprisingly, simple MLPs [32] are capable of outper-
forming library-based approaches by a margin. Further
improvements have been shown in algorithms optimizing
the inner frame keypoint relations using Long-Short-Term-
Memory (LSTM) models [37, 51], Euclidean Distance Ma-
trices (EDM) [35] or Graph Neural Networks [10, 59].
Adding skip-connections over multiple frames in video se-
quences yield further improvements [17, 39]. To obtain
more plausible results, Generative Adversarial Networks
(GAN) [50, 55] as well as bone length constraints [21, 39]
have been used. Due to the ill-posed nature of the problem,
these learning-based methods all suffer when confronted
with novel poses.

Multi-View 3D Human Pose Estimation: Many marker-
less motion capture methods [2, 3, 9, 14, 27, 29, 30, 45, 47,
57, 58] have been proposed. Many approaches are based
on 2D predictions, thus perform a 2D-to-3D lifting. Using
2D point locations as input, some approaches use triangu-
lation directly [22] while others perform cross-view opti-
mization before triangulation [31]. Alternatively the prob-
ability maps predicted by the 2D human pose estimation
approach are used as input and projected into a probability
voxel grid [42, 47] which are further improved using Voxel-
to-Voxel prediction networks [34]. Other approaches learn
3D poses directly from 2D pose [46] or image data [13, 54].
Most of these methods however require a calibrated camera
setup which is difficult to obtain in some settings. Similar to
our approach Kocabas [25] use multi-view geometry. Their
approach is a monocular 3D pose estimator which is trained
on 2D estimates from multiple cameras. Even though their
monocular 3D pose estimation results are not comparable to
our stereoscopic results, they provide a triangulation base-
line including multi-view triangulation accuracies. In Meta-
Pose, Usman et al. [49] use the monocular EpipolarPose
estimates to generate 3D poses from multiple cameras indi-

2872



vidually, average the resulting poses and subsequently use
a neural bundle adjustment to correct camera locations and
pose prediction. TransFusion [31] is a cross-view 2D pose
refinement network which is capable of improving the 2D
pose predictions using multiple camera angles. Their trans-
former network is capable of improving other viewing an-
gles also without knowing the camera extrinsics. In their
publication they also use the improved 2D pose estimates to
triangulate towards a 3D pose. However they use for trian-
gulation the ground truth extrinsics.

3. Method

Inaccuracies in stereoscopic triangulation of 2D poses
occur due to two types of error, 2D detection inaccuracies
and camera calibration inaccuracies. We address both of
these errors by presenting the novel ElliPose algorithm. Our
algorithm consists of three stages: First, we triangulate de-
tected 2D poses into error-prone 3D poses while simulta-
neously estimating the camera calibration matrix. For this
we place the first camera at the origin and produce a rela-
tive estimate for the second camera using the essential ma-
trix. Second, we use our novel multi-scale ellipsoid fitting
algorithm to correct for camera miscalibration, and third,
we minimize the bone length inconsistency while also min-
imizing the reprojection error to overcome 2D pose detec-
tion noise. An overview of the algorithm can be seen in
Figure 2.

We define the 2D pinhole-camera and the 3D world-
coordinate keypoints as

pk,tp = (xk,t
p , yk,tp ) (1)

and pk,tw = (xk,t
w , yk,tw , zk,tw ), (2)

respectively, where t describes the timestamp, k the key-
point type and xk,t, yk,t and zk,t the coordinates of the key-
point location in their respective coordinate system. Coor-
dinates in world space are subscript with pw while coordi-
nates in pose space are subscript with pp. Furthermore, we
will define K = (k1, ..., k|K|) as the ordered set of all avail-
able keypoint types and T as the number of frames in the
sequence. Since we are dealing with stereosopoic cameras
we further define the first camera as C with camera matrix
P = KQ where K is the intrinsic and Q the extrinsic calibra-
tion matrix and the second camera as C ′ with P′ = K′Q′.

Stage 1 - Triangulation In the triangulation stage, the
synchronized 2D poses are triangulated into 3D poses while
simultaneously estimating the camera extrinsics. We first
concatenate the points of all keypoint types at any times-
tamp into two large vectors of points, one corresponding to
each camera (Fig. 2.a). To estimate the camera locations we
determine the essential matrix E = K′

⊤
FK with F being the

fundamental matrix. We solve [16]
x
(1)
p′ x

(2)
p x

(1)
p′ y

(1)
p x

(1)
p′ y

(1)
p′ x(1)

p y
(1)
p′ y(1)p y

(1)
p′ x(1)

p y(1)p 1

x
(2)
p′ x

(2)
p x

(2)
p′ y

(2)
p x

(2)
p′ y

(2)
p′ x(2)

p y
(2)
p′ y(2)p y

(2)
p′ x(2)

p y(2)p 1
...

FI=0.

(3)

with FI = [F11, F12, F13, F21, F22, F23, F31, F32, F33]⊤ and
E = K′⊤FK (Fig. 2.b). From this we reconstruct the camera
matrices as

P = K[I3|0] P′ = K′Q′, (4)

where I3 is the 3 × 3 identity matrix, Q′ = [R′|t′] and E =
Jt′K×R

′ and where J·K×denotes the cross product (Fig. 2.c).
Finally we triangulate by solving for
yipP

31−P21 yipP
32−P22 yipP

33−P23 yipP
34−P24

P11−xi
pP

31 P12−xi
pP

32 P13−xi
pP

33 P14−xi
pP

34

yip′P′31−P′21 yip′P′32−P′22 yip′P′33−P′23 yip′P′34−P′24
P′11−xi

p′P′31 P′12−xi
p′P′32 P′13−xi

p′P′33 P′14−xi
p′P′34



xi
w

yiw
ziw
wi

w

=0

(5)

(Fig. 2.d).

Stage 2 - Multi-scale Ellipsoid Fitting After triangula-
tion we receive a distorted 3D human pose prediction due
to an inaccurate Q′. First we calculate the set of bone vec-
tors V as we will show in Section 3.1 (Fig. 2.e). We then
use RANSAC to fit a multi-scale ellipsoid to the bone vec-
tors (see Section 3.1) (Fig. 2.f). The resulting ellipsoid A
is now tested for sphericity. If the ellipsoid is close to a
sphere (A ≈ I3) we exit the stage (Fig. 2.g) without (fur-
ther) improvement. Otherwise we deform the world along
the eigenvectors to clinch the ellipsoid towards a ball shape
(Fig. 2.h). More details are provided in Section 3.2. The
eigenvalues of A are the principle axes of the ellipsoid.
To undistort the world and thus to bring the ellipsoid into
a more spherical shape, we perform a basis transforma-
tion into an ellipsoid coordinate system where the principle
axes of the ellipsoid are the coordinate system axes. Sub-
sequently we multiply the weighted inverse of the square
rooted eigenvalues EVal(A) to the point coordinates and
transform them back into the previous world coordinate sys-
tem. More details on the undistortion process are provided
in Section 3.3.

The now achieved pose is less distorted than the previous
pose, but the cameras are not aligned to the pose anymore.
Thus we use an iterative approach with the old camera po-
sitions as initial guess to realign the cameras. Subsequently
we multiply the inverse of the first camera to both cameras
and normalize the camera distance to the ground truth cam-
era distance if provided (Fig. 2.i). After this we triangulate
the 2D poses to a new 3D pose using the new camera loca-
tions (Fig. 2.j) and start over.
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Figure 2: Overview of ElliPose. The approach consists of three stages: triangulation, multiscale ellipsoid fitting and bone
length correction. The first stage estimates a pose and camera positions by triangulation, the second stage corrects camera
miscalibration due to errors during triangulation and the third stage corrects errors due to 2D detection noise. The triangu-
lation stage gets a pair of 2D poses as input, concatenates the keypoint and time dimension (a) and uses the two resulting
3-dimensional data matrices (x, y and k×t) to calculate the essential matrix (b), infer from this the camera extrinsics (c)
and triagulate the pose (d). The second stage calculates relative bone vectors (e) and fits a multiscale ellipsoids to it using
different scales for different bone types (f). The eigenvectors of the ellipsoid are used to indicate the worlds distortion and the
world is undistorted accordingly (h), subsequently the camera extrinsics are recalibrated using the undistored pose (i) and the
pose is retriangulated using the new camera poses. Then the stage repeats. The stage is left after the ellipsoid fitting without
pose or camera updating if the estimated ellipsoid is close to a ball shape (g). The final stage corrects the remaining noise by
estimating for each bone the current vector (k) and target vector representing this bone with correct length (l). Each point is
then relocated such that the difference between new bone and target bone is minimized as well as the reprojection error (m).
This procedure repeats for a given number iteration (n), then returns a final 3D pose.

Stage 3 - Bone Length Correction To enforce consistent
bone length, we first calculate the bone vectors V as shown
in Section 3.1 as well as their type-wise mean length l∗b
(Fig. 2.k). Using this information we calculate the target
vectors v⃗b,tl∗b/∥v⃗b,t∥ (Fig. 2.l). Subsequently we minimize
the error function in Equation (19) (Fig. 2.m) detailed in
Section 3.4. This stage is then repeated for a fixed number
of iteration (Fig. 2.n).

3.1. Bone Vectors

We define as bone any pair of keypoints whose distance
does not change over time. We identify for the keypoints
in the Human3.6m dataset [19] (left hip, right hip), (left
hip, center hip), (center hip, right hip), (knee, hip), (an-
kle, knee), (left shoulder, right shoulder), (left shoulder,
center shoulder), (center shoulder, right shoulder), (shoul-
der, elbow), (elbow, wrist), as well as any pair of points
on the head to have this property and define the bone set
B = {b1, ..., b|B|} ⊆ K2 as the set of those pairs. Let

Z ∈ R3T×|K| be the pose matrix with

Z=

 x1,1
w y1,1w z1,1w
...

...
...

x
|K|,1
w y

|K|,1
w z

|K|,1
w

∣∣∣∣∣∣∣ ...

∣∣∣∣∣∣∣
x1,T
w y1,Tw z1,Tw

...
x
|K|,T
w y

|K|,T
w z

|K|,T
w

 (6)

and B the bone matrix where the q-th row is defined so that
for each bq = (ki, kj), the i-th column value is 1, the j-th
column value is −1 and all other values are 0. The bone
vector matrix V ∈ R3T×|B| containing all bone vectors is
now calculated by

V = BZ

=


⌜⌞ v⃗1,1

⊤
⌝⌟

...
⌜⌞ v⃗|B|,1⊤ ⌝⌟

∣∣∣∣∣∣∣∣ ...

∣∣∣∣∣∣∣∣
⌜⌞ v⃗1,T

⊤
⌝⌟

...
⌜⌞ v⃗|B|,T⊤

⌝⌟

 . (7)

Furthermore we define the set V of all bone vectors as

V=
{
v⃗1,1,...,v⃗|B|,1,v⃗1,2,...,v⃗|B|,2, ... ,v⃗1,T ,...,v⃗|B|,T

}
.

(8)
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3.2. Multiscale Ellipsoid Fitting

Our goal is to fit the same ellipsoid to multiple bone
trajectories simultaneously despite them having different
length. To do so we need the fitting algorithm to have differ-
ent scaling factors for different bones. As Turner et al. [48]
show, an origin centered ellipsoid can be expressed as

x⊤Ax+ L = 0 with A =

 A D/2 E/2
D/2 B F/2
E/2 F/2 C

 (9)

⇔ x2+y2+z2−U(x2+y2−2z2)−V (x2−2y2+z2)

−4Mxy−2Nxz−2Pyz−T=0 (10)

with (x,y,z)⊤=x and

M=− 3D
4(A+B+C) N=− 3E

2(A+B+C) P=− 3F
2(A+B+C)

T=− 3L
(A+B+C) U=− 3·(A−C)

(A+B+C) V =− 3·(A−B)
(A+B+C)

(11)

which can be expressed as a linear equation

Λs=e (12)

where

s=[U,V,M,N,P,T ]
⊤

e=
[
x2
0+y20+z20, ... , x

2
n+y2n+z2n

]
Λ=

x2
0+y20−2z20, x2

0−2y20+z20, 4x0y0, 2x0z0, 2y0z0, 1
...

x2
n+y2n−2z2n, x

2
n−2y2n+z2n, 4xnyn, 2xnzn, 2ynzn, 1


(13)

The entries in e are the bone vectors for all bones |B| over
all time steps T . This linear system is over-determined and
can be solved using least squares. To prevent 2D human
pose mis-detections and other outliers from interfering with
the result we utilize RANSAC with n=|B|+5. By inspec-
tion of Equation (9) it can be seen that L is the scaling fac-
tor of the ellipsoid. Furthermore T is the only parameter in
Equation (10) containing L, thus we extend s to introduce
an individual T for each bone type, so

sLS:=
[
U,V,M,N,P,T1,T2...,T|B|

]⊤
. (14)

Analogous we adapt Λ such that the i-th row of Λ is defined
as

Λi=
[
x2
i+y2i−2z2i , x2

i−2y2i+z2i , 4xiyi,

2xizi, 2yizi, ξb1(wi), ξb2(wi), ... ξb|B|(wi)
]

(15)

where the indicator function ξ is defined as

ξb(wi):=

{
1, if vector wi represents the bone type b∈B
0, otherwise.

(16)

The definition of e stays unchanged. Solving this linear
system provides an ellipsoid A and a scale L for each bone.

3.3. Undistorting the World

The eigenvectors and the eigenvalues of the ellipsoid A
are the directions of the principle axes and their respective
quadratic length. Since we aim to use the fitted ellipsoid to
undistort the world coordinates, we need to transform the
world so that the lengths of those axes are normalized.

Let Z∈RT |B|×3 be a matrix containing all keypoints
as columns. We perform a base transformation on the
pose coordinates by multiplying the inverse of the right
eigenvector-matrix EVec(A). Subsequently, we scale the
coordinates by multiplying the weighted inverse of the
square-rooted eigenvalues EVal(A) to the corresponding
coordinates and transform the coordinates back into the pre-
vious base. Thus, the corrected matrix containing all key-
points Z∗ is calculated by

Z∗=EVec(A)·
(
(1−γ)I3+γdiag

(√
EVal(A)

))
·EVec(A)−1·Z. (17)

3.4. Bone Length Optimization

The length of a given bone should stay consistent for a
given sequence. To enforce this we use a bone length con-
sistency optimization. Simultaneously, we want to ensure
that the pose still resembles the observed 2D poses, thus we
want to keep the projection error low. Thus we want to

minimize
{pk,t

w :k∈K}

[∑
k∈K

∥Ppk,tw −pk,tp ∥2+
∑
k∈K

∥P′pk,tw −p′k,tp ∥2
]

+α

[∑
b∈B

(∥v⃗b,t∥−l∗b)
2

]
(18)

where α is a weighting factor. Due to the non-convex na-
ture of the second part of the equation this problem is NP-
complete [36].

We circumvent this problem by using an iterative ap-
proach and assuming that the direction of the bone vector
is approximately correct. Thus, for each iteration step, we
define fixed target bone vectors w⃗b,t=v⃗b,tl∗b/∥v⃗b,t∥ as vec-
tors with the same direction as the vectors from the previous
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iteration step but with corrected length.

minimize
{pk,t

w :k∈K}

[∑
k∈K

∥Ppk,tw −pk,tp ∥2+
∑
k∈K

∥P′pk,tw −p′k,tp ∥2
]

+α

[∑
b∈B

∥∥v⃗b,t−w⃗b,t
∥∥2] (19)

3.5. Implementation Details

Camera fitting: As 2D human pose backbone we use the
CPN 2D predictions calculated by Pavllo et al. [39]. We
predict the essential matrix using OpenCV [4] with ground
truth intrinsic camera parameters using the RANSAC
method with a threshold of 0.005 and a probability of 0.999.
The pose is also triangulated using OpenCV [4] with a dis-
tance threshold of 1000.
Ellipsoidal Correction: For ellipsoid fitting we use the
RANSAC algorithm combination with the convex optimizer
CVXPY [12]. We iterate for 2500 steps while terminating
early as soon as 100 good samples are found. A sample
is called good, if its inlier score is above

√
0.25T |B|. The

inlier score is calculated as sum of the square roots of the
per-bone-type inlier counts. A bone is considered as inlier if
a full undistortion of the ellipsoid would result in its length
lying within the boundaries of δ=1±0.2.

For world rescaling along the eigenvectors we use a
weighting factor of γ=0.2. The new camera positions are
computed using the PnPRansac solver of OpenCV [4], it-
erating 10000 times. An ellipsoid is consideres as approx-
imatly spherical if the elementwise square distance ϵ be-
tween A and the identity matrix is below 0.025. As an adi-
tional breaking condition for stage 2 we stop after at most
n=20 iterations. If this limit is reached we continue with
the prediction which achieved the lowest ϵ during all itera-
tion steps.
Bone Length Consistency: We solve the bone length mini-
mization term (19) with a weighting constant of α=20 using
CVXPY [12] for m=5 iteration steps.
Runtime: Our non-optimized Python implementation takes
on average 0.33ms per iteration on an Intel Core i7-7700
CPU. Since we set the maximum number of iterations to
20×2500, the runtime of ellipsoidal fitting for one video
sequence is at most 16.5s, independent of the number of
frames in the sequence.

4. Experiments
We evaluate our approach on the Human3.6m

dataset [19] which consists of 15 actions performed
by 7 actors. The actions are recorded in a studio using 4
cameras and a marker-based motion capture system. The
four cameras are placed in the corners of an rectangular
room so that the front cameras are approximately 9.5

Methods Used Estimator MPJPE PMPJPE PCK50 PCK100 PCK150 PPCK50 PPCK100 PPCK150
Kocabas4 [25] Ground Truth — 15.1 — — — — — —

Kocabas4R [25] Ground Truth 4.4 2.1 — — — — — —
Kocabas4R [25] ResNet+Deconv 28.4 25.2 — — — — — —
TransFusion2 R[31] Transformer 35.9 — — — — — — —
TransFusion2R [31] Transformer 25.8 — — — — — — —
MetaPose4 [49] Kocabas [25] — 32.0 — — — — — —
MetaPoser [49] Kocabas [25] — 44.0 — — — — — —

Baselinerd Ground Truth 5.0 2.4 100 100 100 100 100 100
Baselinerd CPN [39] 38.2 32.0 79.6 96.2 98.4 87.8 97.4 98.9
Baselineld CPN [39] 38.1 31.3 79.1 96.5 98.7 88.2 97.8 99.2
Baselinefd CPN [39] 75.7 32.7 49.2 80.3 90.3 86.3 97.6 99.3
Baselinebd CPN [39] 75.6 39.6 48.1 77.5 89.6 79.6 94.4 97.7
ElliPoserd Ground Truth 5.0 2.4 100 100 100 100 100 100
ElliPoserd CPN [39] 36.9 29.8 80.4 96.8 98.7 90.2 98.0 99.1
ElliPoseld CPN [39] 35.8 28.7 81.7 97.3 99.0 91.2 98.4 99.4
ElliPosefd CPN [39] 40.9 26.8 71.9 96.7 99.1 93.7 99.1 99.6
ElliPosebd CPN [39] 52.1 33.9 62.5 89.2 96.1 86.3 96.6 98.4

Table 1: Results after triangulating 3D points from 2D. MPJPE
in mm. PCKn: n in mm, PPCK aligned equivalent to PMPJPE.
l Using cams 3 and 4 (left cams) r Using cams 1 and 2 (right cams)
f Using cams 2 and 4 (front cams) b Using cams 1 and 3 (back cams)
2 Using any two cams 4 Using all cams
d Using GT cam distance for scale R Using extrinsic cam parameters

RUsing extrinsic cam parameters only for triangulation

meter from the back cameras apart and the left cameras
3.5 meter from the right. We follow the previous litera-
ture [32, 39, 55] by assigning actors S1, S5, S6, S7, and
S8 to the training set and actors S9 and S11 to the test set.
We skip the sequences “S9 Greeting”, “S9 SittingDown1”
and “S9 Waiting” for evaluation since those have corrupted
poses [22].

As evaluation score we use Mean Per Joint Position
Error (MPJPE) and Percentage of Correct Keypoints
(PCK), following previous works [22, 32, 39, 55]. MPJPE
describes the mean error after aligning the prediction with
the ground truth data at the root node (usually center hip).
Additionally, we report PMPJPE, which further aligns the
poses using a rigid transformation. Congruently to the PM-
PJPE metric we also define a PPCK metric giving the PCK
after rigid alignment.

4.1. Stereoscopic 3D Pose Reconstruction

In Table 1 we present results of our ElliPose algorithm
in comparison to the state-of-the-art TransFusion [31] and
MetaPose [49] as well as to the triangulation baseline of
Kocabas [25]. Note that only TransFusion [31] and Meta-
Pose [49] report results on camera pairs while Kocabas [25]
uses all 4 cameras. On top of that we present a simple base-
line which utilizes only our triangulation step to show the
effectiveness of our ellipsoid fitting.

Our method performs best on the left and right camera
pair since triangulation preforms better as the angle between
the optical axes increases [16]. This also explains the bad
performance of the front and back pairs using our baseline
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left right front back

Breaking
Condition

ϵ≤0.01 35.8 36.7 40.0 54.1
ϵ≤0.025* 35.8 36.9 40.9 52.1
ϵ≤0.05 35.4 36.3 42.9 53.2
ϵ≤0.1 35.9 36.2 49.8 54.0
ϵ≤0.2 36.1 36.1 56.7 60.6
ϵ≤∞† 36.2 36.1 72.7 72.8

Inlier Threshold

δ=1±0.025 36.5 37.6 44.2 54.9
δ=1±0.05 36.0 36.5 42.8 52.7
δ=1±0.1 35.7 37.0 41.6 50.7
δ=1±0.2* 35.8 36.9 40.9 52.1
δ=1±0.3 35.9 36.4 40.4 54.2

Update Weight

γ=0.1 35.7 36.2 40.6 51.1
γ=0.2* 35.8 36.9 40.9 52.1
γ=0.5 36.3 37.4 40.3 53.5
γ=1.0 37.5 38.9 42.9 55.4

Rigid Edge
Normalization
Iterations

m=0 37.5 38.4 42.5 54.0
m=1 36.0 36.9 41.0 53.2
m=3 35.8 36.6 41.0 51.9
m=5* 35.8 36.9 40.9 52.1
m=7 35.8 36.7 40.4 51.9

Table 2: MPJPE results in mm for our ElliPose algorithm by
altering single parameters from the proposed set of parame-
ters using different camera pairs. The proposed parameters
(gray) are an inlier threshold δ=1±0.2, an update weight-
ing factor of γ=0.2, a ellipse breaking condition of ϵ≤0.025
and m=5 iterations of bone length normalization.
* proposed parameter
† skipping ellipsoidal correction entirely thus excepting any error

3D Data 2D Data MPJPE NMPJPE PMPJPE
PGT (All) – 46.8 47.1 36.5
PGT (S1,5,6) CPN (S7,8) 57.7 53.8 —
PGT (S1,5) CPN (S6,7,8) 63.9 55.3 —
PGT (S1) CPN (S5,6,7,8) 64.7 61.8 —
ElliPose (All) – 51.1 48.9 40.0

Table 3: Results on training the fully supervised network
of Pavllo et al. [39] using only 3D poses gernerated with
ElliPose in comparison to their original approaches using
ground truth 3D poses for full-supervision and ground truth
poses in combination with CPN estimates and a backpro-
jection loss for semi-supervision.
P Results provided by Pavllo et al. [39]

approach.
Our ElliPose algorithm performs consequently better

than our baseline approach, which proves its effectiveness.
Using the right/left camera pairs our algorithm shows an
improvement of 1.3/2.3 mm MPJPE and 2.2/2.6 mm PM-
PJPE. For the front/back pairs the improvement is even
larger by 34.8/23.5 mm MPJPE and 5.9/5.7 mm MPJPE.
In comparison to other publications our algorithm shows
competing or better results using a less constrained setup.
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(a) Initial detection using triangulation
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(d) Iteration 9

Figure 3: Nine iterations of ellipsoidal pose correction.
Ground truth is red, prediction is blue. The left and middle
columns show different side perspectives of the predicted
and the correct pose. The right column shows a top per-
spective with additional dark blue and dark red points cor-
responding to the ground truth and the predicted camera po-
sitions respectively. Over nine iterations the distortion have
been dissolved while the camera positions have been cor-
rected simultaneously.

Using ground truth 2D poses and 4 calibrated cameras Ko-
cabas [25] achieves only 0.6 mm lower MPJPE than our
approach. When using no camera extrinsics but still all four
cameras they perform 12.7 % worse than our approach.

TransFusion [31] presents a learnable cross-view 2D
pose prediction refinement algorithm. In Table 1 we re-
port two versions: one, where camera extrinsics are ex-
plicitly provided to the model (TransFusion2R) and one
where the camera extrinsics are withheld during training
(TransFusion2 R). However, for obtaining the final 3D hu-
man pose the ground-truth camera extrinsics are used. De-
spite them using extrinsics for triangulation, our approach
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Method Directions Discussion Eating Greeting Phoning Photo Posing Purchases Sitting Sit’Down Smoking Waiting WalkDog W’Together Walking Average
PavlloFS[39] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 39.0 32.8 33.9 46.8

Ours 47.6 49.7 47.0 48.8 52.9 59.2 47.0 47.0 65.1 71.9 51.0 47.3 52.6 38.2 39.5 51.1

Table 4: MPJPE per action for training the fully supervised network of Pavllo et al. [39]. Pavllo et al. has a higher accuracy,
however they use ground truth poses for training while we use the estimated poses for training. Semi-supervised results have
not been reported per action by Pavllo et al.
FS fully-supervised

performs on par with the left camera pair, and only 1.0 mm
worse on the right camera pair (MPJPE).

MetaPose [49] is the only state-of-the-art approach
which does not use ground-truth camera poses while lift-
ing 2D estimates towards 3D poses. They present results
using four cameras and two cameras. For the latter they
used the right camera pair. Since they do not use camera
extrinsics they are not able to scale the pose thus only pro-
vide PMPJPE metrics. We outperform their method on the
right camera pair on PMPJPE by 14.2 mm.

We further present PCK results and show that 90.2 % or
91.2 % of our predicted joint locations lie within a margin of
5 cm when using the right or left camera pair and neglecting
scale and orientation.

4.1.1 Ablations

In Table 2 we analyze the impact of all hyper-parameters
of our method. If not noted otherwise, we set the inlier
threshold range to δ=1±0.2, the update weighting factor
to γ=0.2, the ellipse breaking condition to ϵ≤0.025 and
the number of iterations of bone length normalization to
m=5. We observe that setting the breaking condition ϵ
too large results in a significant performance drop on cam-
era views with steep angles while setting the value lower
than ϵ=0.025 does not improve the result. When setting the
RANSAC inlier threshold δ we find that δ=1±0.1 performs
better on the left/back cameras while δ=1±0.3 performs
better on the right/front cameras. We thus choose δ=1±0.2.
Setting the update weight δ=1 completely undistorts the el-
lispoid but results in over-correction. The smaller we set
the update weight the more accurate are our results but the
optimization requires more time. Thus, for performance
reasons we set γ=0.2. Similarly, we set m=5 as more it-
erations improve the results only slightly but increase the
runtime.

4.1.2 Qualitative Results

Qualitative results can be seen in Figure 1. Furthermore,
Figure 3 shows multiple steps of the ellipsoidal correction
in the ElliPose algorithm. Figure 3a shows the initial, highly
distorted, triangulation as it is generated by the first stage,
with predictions in blue and ground truth points in red. The
initial prediction largely failed due to noisy 2D pose predic-

tions. The right column shows the scene from the top view
including dark blue and dark red points representing the es-
timated and the true camera locations, respectively. Figure
3b-d illustrate the progress of our ellipsoidal correction. As
we can see the pose strongly improves while the camera lo-
cations get closer and closer to the ground truth location.

4.2. Monocular 3D Pose Estimation

We show that our estimated 3D poses can be straight-
forward used for training existing 3D monocular pose esti-
mation networks if annotated 3D ground-truth human poses
are missing. We train the 3D pose estimator by Pavllo et al.
[39] by replacing the ground truth training data with the 3D
poses generated by the ElliPose algorithm. The results can
be seen in Table 3. Our approach outperforms any semi-
supervised approach by Pavllo [39].

5. Conclusion
We presented ElliPose, a stereoscopic 3D human and

camera pose estimation algorithm. It fits ellipsoids to de-
tected bones over time to iteratively refine camera and 3D
human pose. ElliPose performs competitively compared to
state-of-the-art methods which either use more cameras or
utilize ground-truth camera positions for 3D human pose
estimation. Our approach can be easily set up by inexpe-
rienced users and it can even be used as a replacement for
ground-truth 3D poses to train 3D monocular pose estima-
tion models, outperforming existing semi-supervised meth-
ods.
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