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Abstract

Different from the open set recognition, generalized open
set recognition learns the most similar known classes for
unseen samples using known classes samples and side in-
formation of known classes. It is challenging because hi-
erarchically structured side information is distorted when
features are embedded in the Euclidean space in existing
literature, which incurs the difficulty of identifying the un-
seen samples. In this paper, we introduce a side informa-
tion learning algorithm for generalized open set recogni-
tion based on the hyperbolic space to alleviate the distor-
tion and accurately identify the unknown samples. Specif-
ically, we propose a hyperbolic side information learning
framework to identify the unseen samples and an ancestor
search algorithm to search the most similar ancestor from
the taxonomy of selected known classes. Experiments on
CUB-200 and AWA 2 datasets show that our method im-
proves the performance of generalized open set recognition
by a large margin.

1. Introduction
Generalized open set recognition (GOSR) is an impor-

tant computer vision problem that recognizes unknown
classes1 and identifies new categories based on the side
information of known classes2 such as taxonomy and at-
tribute annotations[16]. Unlike the open set recognition
[41, 7, 8, 44] that simply rejecting novel samples as un-
known, generalized open set recognition further classifies
the super-classes [25]. For example, in Figure 1, GOSR
recognizes the unknown animal (leopard) as a Feline or Pla-
cental based on the tree-structured taxonomy information
rather than simply reject it as an unknown sample. This is
beneficial if a system is able to provide more information
about the unseen samples so that we can have a better un-

1Unknown classes refer to classes without information during training.
2Known classes refer to the classes given in training.
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known samples based on the side information (taxonomy). The
goal of generalized open set recognition is to find the closest an-
cestor of the unseen samples from ancestor nodes. The unknown
animal leopard is a novel feline. In GOSR problem, recognizing
the leopard as novel placental is partially correct, and other pre-
dictions are wrong.

derstanding of the unknown samples.
GOSR is a challenging problem because the variability

of unknown samples cannot be effectively captured by the
existing approach [25]. In GOSR problem, training sam-
ples for unknown classes are not provided, solely captur-
ing the variability of unknown samples from known train-
ing samples [25] degrades the recognition capability of the
classifier. Although side information, including taxonomy
and attribute annotations, is available in GOSR problem, di-
rectly embedding side information in the existing Euclidean
classifiers [25] may lead to a high distortion for fine-grained
classes. In addition, the number of classes in grows expo-
nentially when the taxonomy becomes deeper, which im-
pacts the recognition capability of the existing approaches.
Therefore, how to effectively learn the side information is
the key to recognizing the unknown samples.

To effectively learn the side information, this paper pro-
poses a side information learning approach by generating a
novel attribute feature in the hyperbolic space and an ances-
tor search algorithm to search the closest ancestor node for
unseen samples in the taxonomy of known classes. Hyper-
bolic space is a non-Euclidean space, and its space capacity
grows exponentially. According to its geometry property
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[30], the hyperbolic space can be viewed as a continuous
tree, and the tree-structured side information can be embed-
ded in the hyperbolic space with minimal distortion [17].
Generating novel attribute features in hyperbolic space can
better capture the variability of the unknown samples.

Specifically, we first propose hyperbolic placeholders
to set aside a large area for unknown samples and an at-
tribute generator in the hyperbolic space to generate novel
attributes for unknown samples. Then we propose a novel
attribute generator to generate novel attribute features based
on the selected attribute features from known classes. Be-
sides, we propose an ancestor node searching algorithm for
recognizing the unknown on the taxonomy of similar known
classes. Compared with the existing GOSR work [25], our
novel attribute feature generator better captures the variabil-
ity of the unknown classes. Compared with the existing
Euclidean-based open set recognition work [44], our hyper-
bolic placeholder is more representative and could learn the
side information from known classes, which enables hier-
archical recognition of the unknown samples. Compared
with the generative method [21], which is unable to further
recognize the ancestor of the unknown, our ancestor search
framework could achieve this and superior to [35, 3] be-
cause our method better describes the relationship between
attributes and the known sample by the attribute generator
and similarity in the hyperbolic space. Additionally, we de-
velop hierarchical similarity indexes to evaluate the simi-
larity between known and unknown samples for the GOSR
problem because existing open set evaluation metrics do not
consider the hierarchical distance of the predicted result.

Our contributions are summarized as follows:

• We propose a hyperbolic side information learning
framework that better captures the variability of un-
known samples.

• We propose an ancestor search algorithm to recognize
the unseen classes via tree-structured taxonomy.

• We propose new measurements to evaluate the GOSR
problem, and empirical results show the superiority of
our method to state-of-the-art.

2. Related Work
Generalized Open Set Recognition GOSR detects a test
sample that is significantly different from representative
training data without prior knowledge. The GOSR can use
the side information (semantic information in taxonomy)
from the training classes. Some previous object recognition
works incorporate the hierarchical taxonomy in the classifi-
cation task. The music genre classification work[35] detects
the novel class utilizing the hierarchical data. Zhao [43] es-
timates the predicted label and ground truth with hierarchy
in the open set scene parsing framework.

Similar to GOSR problem, Mancini [27] proposes an
open-world compositional framework to recognize unseen
samples using attribute annotation under zero-shot learn-
ing scenario. Based on attribute annotations, the compo-
sitional framework first extracts concepts from images and
generates novel images according to the concepts. Dif-
ferent from the open-world compositional framework, the
GOSR framework only needs side information from known
classes. The zero-shot learning framework cannot clas-
sify unknown classes without side information from un-
known classes. Our task is similar to the novel detec-
tion task elucidated in [25]. Even though the proposed
method considers the hierarchical relationships in recogniz-
ing the unseen samples, the top-down and flatten method
[25] does not expand the gap between known and unknown
classes, which impacts the novel class detection accuracy.
Compared with another recognition work [3], the hierarchy
leveraging method does not work when the probability of
unknown classes is different from their assumption.

Open Set Recognition Pioneer work [2] in the open
set recognition replaces the Softmax layer by adding the
Weibull distribution fitting score to compute the pseudo-
activation for unseen classes. The discriminative model
and generative model are two mainstreams in the modern
open set recognition model. Some applications [10, 19, 34,
32, 1] have applied discriminative models in image, video,
and text recognition domains. Besides, the classification-
reconstruction learning algorithm [40] improves the robust-
ness of the unknown classes classification and decreases
the misclassification in the known classes. The generative
model improves the open set recognition task by providing
more generated unseen samples [14, 41, 15, 44]. Zhou et
al. [44] combines both discriminative and generative parts
in their proposed method. The first part is to learn a muti-
threshold schema to classify the known and the unknown.
In the second part, the model generates unseen images from
the known classes by randomly mixing-up samples from
two different known classes. Compared to [44], our method
embeds the placeholder in the hyperbolic space and uses
the distance between two known classes to determine the
attribute feature generating process. We also develop an ap-
proach to generating novel attributes for unknown objects.

Hyperbolic Embedding To mitigate the distortion of hi-
erarchical class embedding, Riemannian optimization algo-
rithms are developed in early pioneering literature [37, 4].
Following the Riemannian optimization, researchers lever-
aged hyperbolic geometry to naturally address the class hi-
erarchy. The Poincaré ball model [36] embeds the hierar-
chical relation using a hyperbolic entailment cone. Based
on the Poincaré ball model, Nickel et al. [30] projects the
tree structure to the disk and proposes Poincaré disk model.
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Figure 2. Overall framework of GOSR. In section a, the inputs are known samples and side information (taxonomy + attribute annotations).
In (b), a neural network Ĥ(·) is trained by hyperbolic side information learning process. The taxonomy is used for relabeling images, and
attribute annotations are used to extract the attribute feature (yellow points). (d) illustrates details of hyperbolic placeholder learning and
novel attribute generating process. In the ancestor search algorithm part (c), an ancestor search loss is designed to train a model N (·) to
recognize unseen samples.

Poincaré disk model learns better representation among hi-
erarchically structured data, so that hyperbolic based mod-
els are utilized in solving natural language processing prob-
lems [11, 12]. After that, Ganea et al. [13] further proposes
a feed-forward neural network and recurrent neural network
based on the hyperbolic geometry. Furthermore, the graph
convolutional network [6] is proposed using hyperbolic ge-
ometry features. Besides, hyperbolic embedding methods
are widely used in other tasks with a hierarchical structure.
Chami et al. [5] embeds a knowledge graph based on the
Poincaré disk model. In video prediction, Compared with
the hyperbolic embedding in few-shot learning [20, 9], side
information for unseen classes like taxonomy is not avail-
able in our task. Feature representation in the hyperbolic
space will assist us in using the taxonomy from the known
classes. Compared with hyperbolic visual embedding in
zero-shot learning [26], our method does not use the large
text corpus to generate key words.

3. Approach
This section illustrates how the proposed framework rec-

ognizes unseen samples. Figure 2(a) introduces the input
of the GOSR, including taxonomy, known samples, and at-
tribute annotations. Known samples are training samples
for known classes. To better describe the framework, we
define known classes as leaf classes, and the ancestor of
known classes are non-leaf classes. Figure 2(b) illustrates
the hyperbolic side information learning process. To better
recognize unseen samples, we propose an ancestor search
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Figure 3. In the training process, novel attribute features f̂ are
generated by the novel attribute generator. Taxonomy selection
and ancestor node remove process are used for training the deep
neural network N (·). In the testing process, a threshold th is uti-
lized to separate known and unknown. If the output probability
p < th, N (·) will classify the unseen sample as a novel dog.

algorithm in Figure 2(c). Figure 2(d) provides details of
hyperbolic side information learning, including hyperbolic
placeholder learning and novel attribute feature generator.

Training and Testing. In our proposed framework, the
hyperbolic network Ĥ(·) and deep neural networkN (·) are
trainable to recognize unknown samples. Figure 3 illus-
trates the workflows of the training and testing. In testing,
we first extract the feature of the input image as x, e.g.,
collie. Then, we map the feature to the hyperbolic space
by exponential mapping, e.g., E(x). Taking the maximum
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output probability of known class, i.e., p = max Ĥ(x).
If p > th where th is the threshold of leaf classes, the
image is classified as the known class taking the label by
ŷ = argmax Ĥ(x). Otherwise, we use the hyperbolic em-
bedding E(x) as the input of the network N (·) and search
the closest ancestor of x. The training process is slightly
different from the testing process. In the hyperbolic side in-
formation learning part, the novel attribute features are only
generated in the training process. Additionally, we use the
generated attribute feature to train the deep neural network
N (·) after taxonomy selection and ancestor node remove
process.

3.1. Hyperbolic Side Information Learning

Taxonomies and attribute annotations in the real world
are naturally hierarchical. In this section, we design a place-
holder learning process in the hyperbolic space to learn
the side information because the number of nodes in tax-
onomies grows exponentially in the hierarchical structure.
Additionally, unknown samples cannot be used in the train-
ing process for GOSR problem. We propose a novel at-
tribute feature generator to capture the variability of the un-
known samples based on the attribute annotations in hyper-
bolic space.

Hyperbolic Placeholder. The placeholder stands for the
area that is set aside for the non-leaf classes. We propose
hyperbolic placeholders to further classify non-leaf classes
based on the closed-set classifier in the Euclidean space.

Given the closed-set classifier, matrix W =
[w1, . . . ,wK ] are the weights of the last linear layer
of the classifier and K is the number of leaf classes (known
classes). We transform the closed set classifier of known
classes to the hyperbolic space using exponential mapping
[31]. Assuming E(x) is the exponential mapping transfor-
mation from Euclidean space to hyperbolic space and x is
a feature extracted by the wide residual network [42]. The
output logits of all leaf classes in the hyperbolic space is
h = W⊤E(x). To enable the recognition of known and
unknown classes, we introduce hyperbolic placeholders
to classify samples that are not belong to the known
classes. The output matrix of the hyperbolic placeholder
is hp =

[
W⊤E(x), ŵ⊤E(x)

]
, where ŵ⊤ represents

the augmented parameters for classifying the hyperbolic
placeholders. Different from the placeholder learning [44],
we define the number of hyperbolic placeholder is L,
where L represents the number of non-leaf classes. The
size of the output is K + L. The first K outputs represent
the leaf classes, and the latter L outputs denote non-leaf
classes. The output probabilities of hyperbolic neural
network are normalized logits by softmax function, i.e.,
Ĥ(x) = softmax(hp). Similar to [44], we propose a
loss function for the hyperbolic placeholder process to

separate the leaf class samples and generated samples in
novel attribute generating process. Figure 2(d) illustrates
the hyperbolic placeholder. The hyperbolic placeholder
loss on the training set Dtrain is shown as

Lhp =
∑

(x,y)∈Dtrain

ℓ(Ĥ(x), y)+βℓ(Ĥ(x)\y,K+1), (1)

where ℓ denotes the cross-entropy loss, y ∈ Yl repre-
sents the label of leaf classes and Yl = {1, 2, . . . ,K}.
Ĥ(x)\y means ignoring the probability of generated novel
attribute features that belong to a known class by setting the
W⊤E(x) to 0. β is the parameter that controls the loss of
unknown samples.

For the GOSR problem, all training samples are labeled
as leaf classes. Learning to separate non-leaf classes based
on a close-set classifier is still a challenging problem. A
simple way to solve the problem is to relabel some leaf
class samples to non-leaf classes [25]. Specifically, relabel
a portion (r) of image features to their ancestor nodes using
the taxonomy information. For example in (Figure 2(b)), a
chihuahua image can be randomly relabeled as one of the
following non-leaf classes: dog, canine, carnivore, and pla-
cental. We denote the Y as the set of K leaf classes Yl and L
non-leaf classes, i.e., Y = {1, 2, . . . ,K,K+1, . . . ,K+L}.
Then, we define a relabel loss given the new labels

Lrelabel = −
∑

x∈Dtrain

K+L∑
i=1

ti log Ĥ(x)i, (2)

where ti is i-th element of the one-hot vector of the real-
valued label y ∈ Y and x is the input feature. The relabel
loss enables hyperbolic placeholders to separate non-leaf
classes.

Novel Attribute Feature Generator. In our framework,
the most challenging part is how to separate the ancestor
node in the hyperbolic space. Generating novel attributes
based on the attributes from leaf classes assists the frame-
work to capture the variability of the non-leaf classes and
enable further classification ability in non-leaf classes. At-
tributes stand for tags of the image samples. Inspired by
the Euclidean placeholder learning method [44] and open-
world compositional method [27], we introduce the hyper-
bolic similarity constrain and Möbius transformations to
generate novel attribute features.

Since unknown samples in the real world share similar
attributes with the known samples to some extent [27], we
can generate less noisy novel attribute features by combin-
ing the leaf class attribute features based on their similar-
ity in the hyperbolic space. The similarity constraints of
the generation mitigate the arbitrary combinations of leaf
classes which could never exist in an open world. Formally,
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Figure 4. Ancestor search algorithm. The input is novel attribute f̂ , the potential ground truth taxonomy T̂i. Ĥ(·) represents the classifier
in hyperbolic side information learning. The initial potential ancestor n̂i = argmax Ĥ(f). The selected taxonomy Ti is determined by T̂i

and n̂i. After that, an ancestor node remove process and an ancestor search loss is designed to train a model N (·) for recognizing unseen
samples.

we define f
(A)
ia and f

(B)
jb as the feature of the i-th sample

xi from class A on attribute a and the feature of the j-th
sample xj from class B on attribute b, respectively, their
hyperbolic similarity P (f

(A)
ia , f

(B)
jb ) is measured by

P (u,v) =
⟨E (u) , E (v)⟩

⟨E (u) , E (u)⟩ · ⟨E (v) , E (v)⟩
(3)

where ⟨·, ·⟩ represents the Minkowski inner product and
E(·) is the exponential mapping that transforms features
from Euclidean space to hyperbolic space. Furthermore, the
hyperbolic similarity between attribute a and attribute b can
be defined as

P (a, b) = max
{
P (f

(A)
ia , f

(B)
jb )|i ∈ Ω(A, a), j ∈ Ω(B, b)

}
(4)

where the sample indices set Ω(A, a) = {k|xk ∈ A, a ∈
Attr(xk)} and similar definition for Ω(B, b). This indi-
cates that the attribute similarity is defined as the maximum
feature similarity among the samples within the subset of
samples in class A (or B) that contain the same attribute a
(or b).

To determine which two features are selected for gener-
ating the unknown samples, we define a threshold th that
constrains the similarity between features from two differ-
ent leaf classes. Given two distinct classes yi and yj where
yi ̸= yj and they contain the attribute a and b respectively.
In datasets with attribute annotations, if P (a, b) > th , a
novel attribute feature can be generated in the hyperbolic
space using the following transformation:

f̂ = αi ⊗ E
(
f
(yi)
ia

)
⊕ αj ⊗ E

(
f
(yj)
jb

)
(5)

where yi ̸= yj , and αi and αj represent normalized confi-
dence scores for leaf classes yi and yj , respectively. The no-
tation ⊕ and ⊗ are Möbius addition and Möbius scalar mul-
tiplication [17], respectively. In this transformation, we add
confidence scores from the side information to assist novel
attribute feature generation. The novel attribute should be
close to the attribute with a higher confidence score. Figure
2 section (d) shows the visualization of the Möbius addition.

For datasets without attribute annotations, we use a pa-
rameter λi as the confidence score for leaf class yi and
define the confidence score for leaf class yj as 1 − λi in
datasets without attribute annotations. The novel feature
generating process in datasets without attribute annotations
is f̂ = λi ⊗ fi ⊕ (1 − λi) ⊗ fj where yi ̸= yj . In this
transformation, the novel attributes are determined by a pa-
rameter λi, which is sampled from a Beta distribution [44].
After generating the novel attributes, we design the loss to
enlarge the feature distance between leaf classes:

Lgen = −
∑
f̂∈T

log
ec·ρ(f̂ ;i,j)∑

i,j∈Yl
ec·ρ(f̂ ;i,j)

(6)

where ρ(f̂ ; i, j) defines the total distance of f̂ to the at-
tribute feature f (i)a and f

(j)
b in class i and j, i.e., ρ(f̂ , f (i)a ) +

ρ(f̂ , f
(j)
b ). Here, the distance measure ρ(·, ·) is defined as

the Euclidean distance in Euclidean space. The c is the tem-
perature hyperparameter. T is the set of novel attribute fea-
tures. The goal of Lgen is to maximize the distance from
generated attribute to the original attributes. The loss Lh

for hyperbolic side information learning shows as follows,

Lh = Lhp + Lgen + crLrelabel, (7)

where cr denotes the weight hyperparameter of relabel loss.

3.2. Ancestor Search

Motivation In the Section 3.1, the hyperbolic network
Ĥ(·) can only achieve the goal of the open set recognition
without the capability to determine the specific semantic of
the unknown samples in class taxonomy. Therefore, we pro-
pose the ancestor search algorithm to train a network N (·)
to classify unknown samples.

The ancestor search algorithm can be divided into two
parts. The first part is to select taxonomy Ti using the gen-
erated novel attribute feature f̂ . The Ti is defined as a taxon-
omy that contains all possible non-leaf nodes of the f̂ . The
second part is ancestor node remove process. This process
recursively removes the node from Ti as the label of f̂ to
train a deep neural network that classifies unseen samples.
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Algorithm 1 Training Ancestor Search Algorithm
Require: Taxonomy for known classes Tk; Hyperbolic

classifier Ĥ; Generated novel attribute set I; Ground
truth set yi.

1: for each i ∈ I do
2: Find initial predicted ancestor node n̂i =

argmax Ĥ(f̂i).
3: Select taxonomy Ti from Tk.
4: Find LCA node nLCA and put all ancestor nodes

from Ti to yi.
5: Let start node a = yi(a)
6: Let list be the linked list of {a → nLCA}
7: while a ∈ List and a ̸= nLCA and a ̸= ni do
8: Remove a and update T\a, list\a
9: Compute loss Las for situation under T\a.

10: Move to the ancestor node of a
11: end while
12: end for

Taxonomy Selection. The target of taxonomy selection
is to find the taxonomy Ti for input attribute feature f̂ .
Since f̂ is generated by two attribute features from two
leaf classes A and B, all non-leaf classes that have links
to the leaf classes A and B should be considered. Here,
we define nA

p and nB
q as the node of non-leaf classes that

has linked path to the leaf classes A and B, respectively.
TA
i = {nA

1 , · · · , nA
p } and TB

i = {nB
1 , · · · , nB

q } are two
potential taxonomies of f̂ . We define T̂i as the potential
ground truth taxonomy. {nA

j |j = 1, · · · , p} are ancestor
nodes of the leaf class A. However, during the Möbius
transformation, confidence scores αi and αj in the attribute
generator process considerably influence in the final gener-
ated result. Let αi and αj as the confidence score of at-
tribute feature from leaf class A and B, respectively. If
αi > αj , T̂i = TA

i . Otherwise,T̂i = TB
i . After that, we

need the initial predicted node to finalize the taxonomy Ti.
The initial predicted node n̂i = argmax Ĥ(f). The defini-
tion of Ti shows as follows,

Ti =

{
T̂i − {n̂i, · · · , n̂root} ni ∈ T̂i

T̂i ni /∈ T̂i

. (8)

where n̂root is the root node of T̂i. Figure 4 illustrates the
taxonomy select process, the initial ancestor label of f̂ is
n̂i = feline and the T̂i = T dog

i where the dog taxonomy
T dog
i = {placental, carnivore, canine, dog}. Since feline is

not in T̂i, the selected taxonomy Ti = T̂i = T dog
i , which

means that all the four nodes could be the ground truth label
of the novel feature f̂ .

Ancestor Node Remove Process. This process recur-
sively removes ancestor nodes from the bottom of the tax-

onomy Ti to provide potential novel class yi for novel at-
tribute feature f̂ . Let a denotes the novel class and nLCA

represents the lowest common ancestor of class A and n̂i.
T\a represents deficient taxonomy. For example, in Figure
4, a is the ancestor node dog. Then, we train a deep neural
network N to predict the novel class. To make sure the pre-
dicted novel class is close to the ground truth, the output of
this neural network ŷi = N (Ĥ(x)) should be close to the
potential novel class yi (Figure 4). Let a = yi(a), where
yi(a) denotes the ground truth node of f̂ . List is defined
as the linked list from {a → nLCA}. The loss of ancestor
search algorithm Las shows as follows,

Las =
∑

a∈List

ℓ(N (Ĥ(f̂)), yi(a);T\a) (9)

where yi(a) is the ground truth in T\a situation, and
N (Ĥ(f̂)) denotes the prediction of novel attribute i. The
ancestor search loss add the cross entropy loss of all nodes
a under T\a situation. Specific ancestor search algorithm
can be found in Algorithm 1.

4. Experiments
4.1. Datasets

In GOSR experiments, we use the attributed image
dataset Caltech-UCSD bird dataset (CUB-200) [38] and the
Animal with attributes 2 dataset (AWA2) [23]. CUB-200
[38] consists of 11,788 images with accurate quantized at-
tribute annotation from 200 bird species. AWA2 [23] con-
tains 85 attributes for 50 animal species. We use the class
taxonomy reported in previous hierarchical class detection
work [25]. For basic open set recognition, we also report
the result from some widely used datasets without taxon-
omy annotations using the same open set recognition setting
in [7] including MNIST[24], CIFAR-10 [22], CIFAR-100
[22], SVHN [29], and Tiny Imagenet [33]. Details about
datasets are shown in the Appendix.

4.2. Evaluation

The Area Under the Receiver Operating Characteris-
tic (AUROC) curve [28] and Open Set Classification Rate
(OSCR) [10] are chosen as evaluation metrics in open set
recognition. The comprehensive evaluation of the general-
ized open set recognition consists of the average hierarchi-
cal distance [3] (AHD) and the hierarchical similarity index.
AHD is the original evaluation metric for the hierarchical
recognition tasks.

Hierarchical Similarity Index. Since AUROC and
OSCR cannot illustrate the distance in a hierarchical struc-
ture, evaluation metrics in open set recognition are not
appropriate to measure the difference of non-leaf classes.
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Table 1. Generalized open set recognition results (%) on CUB-200 and AWA datasets. Best results are in bold.
Method CUB-200[38] AWA 2 [23] AWA 1 [23]

AHD(↓) HSI-b1(↑) HSI-b2(↑) AHD(↓) HSI-b1(↑) HSI-b2(↑) AHD(↓) HSI-b1(↑) HSI-b2(↑)
Random guess 1.98 26.73 42.14 3.08 20.86 24.96 3.06 20.98 25.15
Clustering 1.82 33.56 54.28 2.81 45.58 50.29 2.78 45.77 50.96
TD-LOO [25] 1.73 36.48 60.91 2.67 63.23 62.49 2.64 64.05 63.11
Ours 1.71 38.65 62.47 2.48 65.05 66.91 2.47 65.43 67.02

We propose hierarchical similarity index (HSI) to evalu-
ate the generalized open set recognition. The hierarchi-
cal similarity index is defined by the Lowest Common An-
cestor (LCA) distance. The LCA means the lowest com-
mon ancestor between ground truth and the direct ances-
tor of the predicted class. In our experiments, we report
two hierarchical similarity indexes (bottom-1, and bottom-
2) and compare results with the average hierarchical dis-
tance. Both similarity indexes use the reciprocal of the LCA
distance as the hierarchical similarity index. Higher hierar-
chical similarity index means better performance in the an-
cestor searching experiment. Bottom-1 and Bottom-2 hier-
archical similarity metrics (HSI-b1 and HSI-b2) are defined
as

HSI-b1 =
1

m

m∑
l=1

1

d
(
ylgt1, y

l
LCA1

)
HSI-b2 =

1

m

m∑
l=1

1

ln(d
(
ylgt2, y

l
LCA2

)
+ 1)e

(10)

Here, m is the total number of testing data. In HSI-
b1, d

(
ylgt1, y

l
LCA1

)
represent the distance between direct

ground truth ancestor and the lowest common ancestor. In
HSI-b2, the d

(
ylgt2, y

l
LCA2

)
is the distance between ground

truth class and the lowest common ancestor. Since the
meaning of hierarchical distance is the distance from the
ground truth node to the LCA node, a lower hierarchical
distance represents the better recognition result. HSI-b1 and
HSI-b2 are different from AHD. A larger index means better
performance in recognizing unknown classes.

4.3. Generalized Open Set Recognition

We first compare baseline methods, the Hierarchical
novelty detection method (TD+LOO) [25], and our pro-
posed method on CUB-200 and AWA 1&2 datasets in the
generalized open set recognition task as shown in Table 1.
Here, the random guess baseline is to guess the closest an-
cestor node based on the taxonomy from the known classes.
The clustering baseline calculates the cosine similarity be-
tween the sample feature and the feature from all ancestor
nodes and outputs the most similar node.

According to the result in Table 1, our method outper-
forms all comparing methods under three evaluation meth-
ods. Compared with TD-LOO [25], novel attribute features
enhance the performance of ancestor search algorithm. Be-
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Figure 5. Result visualization on AWA 2 dataset[23]. The yellow
boxes represent the ground truth of the generalized open set recog-
nition. The taxonomy tree graph shows the relationship between
ground truth nodes and the results from random guess (Blue),
TD+LOO [25] (Orange), and our proposed method (Green).

sides, we find that HSI-b1 tends to provide a better score for
totally correct samples, which is more sensitive when the
LCA is close to the leaf nodes. Figure 5 shows some gen-
eralized open set recognition results. The text under images
illustrates the ground truth label and the result of comparing
method. The taxonomy illustrates the relationship between
ancestor nodes. From the visualization, ancestor node re-
sults from our method are more close to the ground truth
node. For example, our method recognizes a gorilla as a
novel great ape, while the result from TD+LOO[25] is a
novel primate. This is because novel attribute features from
hyperbolic side information learning process better capture
the sample variability of the non-leaf classes.

Ablation Study. The ablation study results are reported
in Table 3. In Section 3.1, we generate the unseen attribute
features using Möbius transformation and control the gen-
erating process using the hyperbolic similarity. Here we
design an ablation study on Möbius transformation, and the
constraint of hyperbolic similarity to show how these com-
ponents influence the result of generalized open set recog-
nition. The evaluation methods are identical to the gener-
alized open set recognition task. In our method (Case 4),
two selected attribute features are determined by the hyper-
bolic similarity, and the novel attributes are generated by
Möbius transformation using confidence score. In Table 3,
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Table 2. Open set recognition results in five datasets, ’-’ represents result that is not reported in original paper. Numbers in bold represent
the best performance. Tiny IN represents the Tiny ImageNet dataset. AUC denotes the AUROC result

Method MNIST[24] SVHN[29] CIFAR10[22] CIFAR+50[22] Tiny IN[33]
AUC OSCR AUC OSCR AUC OSCR AUC OSCR AUC OSCR

Softmax 97.83 99.26 88.62 92.84 67.76 88.94 84.32 81.93 57.71 59.93
Openmax [2] 98.13 - 89.41 - 69.51 - 79.63 - 57.64 -
Capsule [18] 99.22 - 94.60 - 83.53 - 88.98 - 71.51 -
GCPL [39] 99.21 99.11 94.30 92.85 84.69 82.42 85.45 88.30 69.43 49.47
RPL [8] 98.91 99.23 93.41 92.46 82.72 85.26 83.29 89.63 68.87 53.21
ARPL [7] 99.02 99.37 94.03 91.78 85.98 81.47 90.32 90.27 74.40 58.42
ARPL+cs [7] 99.51 99.47 94.61 91.85 86.17 81.30 90.65 86.80 78.07 65.58
Ours 99.43 99.40 94.78 92.71 89.52 86.41 90.45 89.76 78.19 65.74

Table 3. Ablation study on CUB-200 dataset. Similarity de-
notes the Hyperbolic similarity constraint, and Möbius represents
Möbius transformation.
Method Similarity Möbius AHD(↓) HSI-b1(↑) HSI-b2(↑)
Case1 1.75 35.23 59.83
Case2 ✓ 1.73 36.25 61.22
Case3 ✓ 1.73 36.78 60.54
Case4 ✓ ✓ 1.71 38.65 62.47

Case 1 is randomly choosing attributes features from two
different known classes without using the Möbius transfor-
mation. Case 2 only uses the Möbius transformation. Case
3 only uses the hyperbolic similarity constrain. From the re-
sults, both Möbius transformation and constraint of the hy-
perbolic similarity could improve the performance of gen-
eralized open set recognition. Besides, we provide analysis
for hyperbolic feature mapping in the Appendix.

4.4. Open Set Recognition

Comparison with State-of-the-arts. We apply the AU-
ROC and OSCR metrics to evaluate the performance of the
basic open set recognition. Since there is no side infor-
mation available in the open set recognition, the portion
of relabeling r is set as zero. The number of hyperbolic
placeholders is equal to the number of non-leaf classes.
Results by AUROC and OSCR are reported in Table 2 in
which the numbers are average scores from five random-
ized trials. In CIFAR+50 experiment, 50 non-overlapping
classes from CIFAR-100 are randomly sampled as unknown
classes. From Table 2, our method has better recognition ca-
pability in CIFAR10[22] and Tiny ImageNet[33] Dataset.
Since the open set setting of comparing methods are not
identical, we report the AUROC and OSCR performance
based on our own open set setting. Some results may dif-
fer from the original paper. Details about the experiment
setting can be found in the Appendix.

Discussion. Results in Table 2 are averaged by five in-
dependent experiment. Our proposed method shows better
recognition ability in more complex datasets. Compared
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hyperbolic similarity
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Figure 6. The AUROC results for different threshold th from ran-
dom attribute generating to selective attribute generating.

with state-of-the-art method ARPL+cs [7], we do not gen-
erate confusing samples to ensure the performance in gener-
alized open set recognition. To show that hyperbolic side in-
formation learning improves the recognition capability, we
compare the AUROC results using different experiment set-
tings. In Figure 6, we report the AUROC performance in
Tiny ImageNet dataset using different hyperbolic similar-
ity thresholds. Our method achieves the best AUROC score
when the threshold t is equal to 0.6. More results can be
found in the Appendix.

5. Conclusions

This paper proposes a hyperbolic side information learn-
ing framework and an ancestor search algorithm to capture
the variability of unknown samples and solve the GOSR
problem. In our framework, the generated attribute features
better capture the variability of unknown samples. Addi-
tionally, we propose hierarchical similarity indexes to mea-
sure the performance of GOSR. From experiment results,
our framework outperforms the state-of-the-art methods in
the GOSR problem and the open set recognition.
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