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Abstract

This paper investigates how to leverage more readily
acquired annotations, i.e., 3D bounding boxes instead of
dense point-wise labels, for instance segmentation. We pro-
pose a Weakly-supervised point cloud Instance Segmenta-
tion framework with Geometric Priors (WISGP) that al-
lows segmentation models to be trained with 3D bound-
ing boxes of instances. Considering intersections among
bounding boxes in a scene would result in ambiguous la-
bels, we first group points into two sets, i.e., univocal and
equivocal sets, indicating the certainty of a 3D point be-
longing to an instance, respectively. Specifically, 3D points
with clear labels belong to the univocal set while the rest
are grouped into the equivocal set. To assign reliable la-
bels to points in the equivocal set, we design a Geometry-
guided Label Propagation (GLP) scheme that progressively
propagates labels to linked points based on geometric struc-
ture, e.g., polygon meshes and superpoints. Afterwards,
we train an instance segmentation model with the univo-
cal points and equivocal points labeled by GLP, and then
employ it to assign pseudo labels for the remainder of the
unlabeled points. Lastly, we retrain the model with all the
labeled points to achieve better instance segmentation per-
formance. Experiments on large-scale datasets ScanNet-v2
and S3DIS demonstrate that WISGP is superior to compet-
ing weakly-supervised algorithms and even on par with a
few fully-supervised ones.

1. Introduction
Point cloud instance segmentation aims to classify 3D

points into multiple objects of interest. Current approaches
[9, 4, 25, 16, 2] commonly require point-level instance la-
bels for training, where semantic and instance labels are
manually assigned to each point. It is often time-consuming
and laborious to label millions of points in each scene [21].
In comparison, it takes much less effort to annotate in-
stances with 3D instance bounding boxes. While learning
with point-level annotations has been widely studied, there
lack solutions to leveraging 3D bounding boxes for instance

segmentation.
While the community has seen effective solutions to

fully supervised point cloud instance segmentation [27,
20, 4, 9], there lacks a solution to the weakly-supervised
problem. On the one hand, directly applying existing
fully-supervised methods to accommodate 3D bounding
boxes would incur significant accuracy degradation, be-
cause points exhibited in multiple bounding boxes would
introduce severe ambiguity to the network training. On the
other hand, although several existing works [10, 28, 29]
have investigated leveraging scribbles, image tags, and
bounding boxes for 2D instance segmentation, it is non-
trivial to adapt them to point clouds due to the distinctive
natures of 2D pixels and 3D points.

In light of the above considerations, we propose a
weakly-supervised framework for point cloud instance seg-
mentation, which, based on 3D bounding box annotations,
effectively incorporates local geometric priors of point
clouds into the learning procedure. A 3D point generally
belongs to one of the following cases: (i) a point is not
within any bounding boxes, thus viewed as background, or
(ii) a point lies in one or more than one bounding boxes,
which is the focus of our research1. Based on the label re-
liability, we group points with clear labels into a univocal
set. In general, those points only reside in a single bound-
ing box, so their labels are trustworthy.

Unlike point-wise instance masks, 3D bounding boxes
might intersect or even contain one another. As a result,
it is challenging to estimate labels of points within the in-
tersection areas. We categorize these points into an equiv-
ocal set. Since equivocal points do not have clear labels,
we propose to explore geometric relationships between the
univocal and equivocal points for reliable label assignment.
Specifically, we adopt two generic and elementary struc-
tural representations of point clouds, i.e., polygon meshes
and superpoints, to capture the local geometry of scenes.
Here, polygon meshes imply geometric connectivity among
different points while superpoints indicate the appearance
and spatial similarity within a local region. Then, we intro-

1Please note that erroneous 3D points have been removed during anno-
tation.
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duce a Geometry-guided Label Propagation (GLP) scheme
to progressively propagate the labels of univocal points to
the equivocal ones based on the geometric priors. In this
manner, we can generate robust labels for points in the
equivocal set.

After GLP, some equivocal points still remain unlabeled
due to the incomplete or missing geometric connections
among 3D points. Inspired by pseudo labeling [14], we
propagate labels to unlabeled points by exploring their high-
level semantic similarity to the labeled points. Thereby, we
train an instance segmentation network with the univocal set
and the equivocal points labeled by geometry-induced pri-
ors. Once the network is trained, we use it to assign pseudo
labels to the unlabeled equivocal points. After obtaining
pseudo-labels of the equivocal points, we will retrain the in-
stance segmentation network to pursue better performance.

Experiments on two popular widely-used 3D indoor
datasets ScanNet-V2 [3] and S3DIS [1] demonstrate the ef-
fectiveness of our method. In particular, our method signifi-
cantly outperforms the baselines and achieves comparable
performance with respect to the fully-supervised method
PointGroup [9]. Moreover, our method is backbone-
agnostic and can be conveniently incorporated into existing
3D point cloud instance segmentation networks, i.e., Point-
Group [9] and SSTNet [16].

2. Related Works
Fully-supervised point cloud instance segmentation.

Point cloud instance segmentation methods [27, 27, 7]
group 3D points into different objects and predict their cat-
egories. They can be categorized into two groups: top-
down and bottom-up. Top-down methods adopt a paradigm
of detection followed by segmentation. For instance, 3D-
BoNet [27] directly regresses bounding boxes for all in-
stances and then predicts instance masks. Hou et al. [7]
predict bounding boxes and estimate instance masks by fus-
ing both geometric and color cues. Liu et al. [20] propose a
Gaussian instance center network to predict instance center
heatmaps. Bottom-up methods first obtain point-wise se-
mantic labels and then group points into instances. Liu et
al. [19] leverage sparse convolution to process point clouds
and then predict point affinity. Wang et al. [25] propose
to segment instances and semantics concurrently. Jiang et
al. [9] estimate point offsets to object centers for clustering
3D instances. Engelmann et al. [4] introduce a graph con-
volutional network to refine proposal features. Furthermore,
Liang et al. [16] and Chen et al. [2] improve segmentation
performance by adopting hierarchical aggregation schemes.
The above mentioned methods require point-level labels in
training, and they will suffer dramatic performance degra-
dation when only weak annotations are available.

Weakly-supervised 2D instance segmentation. In-
stance segmentation predicts a semantic label and an in-

stance number for each pixel. Since obtaining pixel-wise
annotation is time-consuming, weakly-supervised learning
is an alternative way to bypass expensive annotations. Pre-
vious works mainly tackle the task by generating pseudo
masks first and then retraining the segmentation model.
Khoreva et al. [10] propose weakly-supervised semantic
labeling to generate instance-level pseudo labels from 2D
bounding boxes. Zhou et al. [29] take advantage of class ac-
tivation maps [28] to obtain instance-level representations.
Li et al. [15] introduce variation smoothing to produce high-
quality pseudo masks. However, due to the different natures
of 2D pixels and 3D points, these methods are not suitable
to tackle point cloud instance segmentation.

Semi-/weakly-supervised 3D semantic segmentation.
Semi-supervised 3D semantic segmentation methods lever-
age only a small portion of annotated 3D points as super-
vision to learn semantic segmentation. Xu et al. [26] ap-
proximate gradients of unlabeled points from labeled points
to optimize their semantic segmentation network. Hou et
al. [8] label 0.1% of points and train a 3D semantic seg-
mentation network by encoding spatial information through
contrastive learning. Furthermore, Liu et al. [21] introduce
a self-training semantic segmentation approach to generate
semantic pseudo labels from one point per object. Note that
Liu et al.’s method focuses on semantic segmentation rather
than instance segmentation. Compared with these methods,
our work focuses on instance segmentation rather than se-
mantic segmentation. Moreover, different from aforemen-
tioned sparse point supervision, 3D bounding box annota-
tions will inevitably introduce noisy supervision to network
training, thus posing great challenges to 3D instance seg-
mentation. Liao et al. [17] propose a semi-supervised point
cloud object detection and instance segmentation frame-
work (SPIB) with parts of bounding boxes as supervision.
Unlike the specifically designed architecture of SPIB, our
method is designed to be a generic model-agnostic frame-
work with weak supervision.

3. Proposed Method
In this work, we design a Weakly-supervised point cloud

Instance Segmentation framework with Geometric Priors
(WISGP) to segment instances from 3D bounding box an-
notations. We first group points that can obtain explicit la-
bels from 3D bounding boxes into a univocal set Pu. Then,
we group the rest of the points into an equivocal set Pe and
propose Geometry-guided Label Propagation (GLP) to as-
sign highly-confident labels to these points. In particular,
we introduce geometric priors, i.e., polygon meshes and su-
perpoints, to establish local geometric connections among
3D points and then propagate reliable labels to equivocal
points iteratively. After GLP, unlabeled points may still ex-
ist. To finish the last piece of the puzzle, we predict highly-
confident pseudo labels and then assign them to the remain-
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Figure 1: Pipeline of WISGP. Point clouds are split into two complementary sets: univocal and equivocal sets. We assign
labels to univocal points and propagate labels to equivocal points with the help of geometric priors. Then, we train an instance
segmentation model with labels of univocal points and geometry-induced labels to generate pseudo labels. Last, we retrain
the point cloud instance segmentation model with the acquired labels.

ing unlabeled points. Finally, we train an instance segmen-
tation model with high-quality point-level labels, as illus-
trated in Figure 1.

3.1. Univocal and Equivocal Sets

We observe that the spatial relationship between points
and their occupying bounding boxes can roughly determine
the certainty of a 3D point belonging to an instance. Based
on the certainty of points, we split points into two comple-
mentary sets: a univocal set and an equivocal set. Then,
we propose to propagate labels with high confidence (i.e.,
univocal points) to uncertain points (i.e., equivocal points).
In this manner, we can obtain more highly-confident point
labels for instance segmentation.

Univocal set. We categorize points that can achieve con-
fident labels from 3D bounding boxes into a univocal set Pu.
A point enclosed by only a single bounding box is assigned
to the label of the bounding box and is regarded as a univo-
cal point. Meanwhile, we find that some erroneous points
caused by inaccurate 3D registration might appear in object
bounding boxes. For those points, we manually label them
by bounding boxes and then remove them without increas-
ing labeling efforts, as shown in Figure 2a. In addition, for
points that are outside all bounding boxes and do not belong
to any object of interest, we consider them as background
points.

Equivocal set. For the points residing in the intersec-
tion regions of bounding boxes, it is challenging to assign
labels to them directly based on the annotated 3D bounding
boxes. As a point only comes from one particular object,
assigning multiple labels to a point would introduce ambi-

guity and thus misleads the instance segmentation network
during training. For instance, as seen in Figure 2b, the gray
points lie in the intersection of two 3D bounding boxes. Ei-
ther misusing them as chair points or ignoring them would
let a network misunderstand the 3D structure of a chair and
the other object, i.e., table in this case. Therefore, it is im-
portant to distinguish points located in the intersection ar-
eas of multiple 3D bounding boxes in order to infer correct
object structure in instance segmentation. To this end, we
group points located in the intersection area of multiple 3D
bounding boxes into an equivocal set Pe, and then explore
local geometric priors of point clouds and high-level seman-
tic similarity to provide reliable labels to equivocal points,
which is one of our key contributions.

3.2. Univocal Point Label Assignment

We first determine labels Lu for points in the univocal set
by assigning semantic class ci and instance identity idi of
the i-th 3D bounding box Bi to the univocal points residing
in the bounding box Bi. Besides, we notice that some points
that do not belong to any classes of interest or belong to
backgrounds are occasionally included in a bounding box.
For them, we did not manually remove them since they are
physical points but do not belong to any categories. In fact,
we hope a network can learn statistical structure of objects
in training and thus ignore the side effects of incorporating
those points to the univocal set. Last, points outside all 3D
bounding boxes are regarded as background points.
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Figure 2: Different strategies to address different types of points. (a) Illustration of out-of-category and erroneous points.
Microwave does not belong to annotated categories in ScanNet-v2, and red points in the top right of (a) belong to a microwave.
In the bottom right of (a), red points are erroneous points caused by inaccurate the 3D registration or reconstruction process.
(b) Demonstration of an intersection region of two 3D bounding boxes. Red and gray bounding boxes indicate bounding
boxes of a chair and a table. Red points belong to the univocal set while equivocal points located in the intersection are
highlighted in gray. (c) Pseudo labeling unlabeled equivocal points. In the bottom left of (c), GLP labels the chair and table
by red and blue points, respectively. However, due to missing geometric connections among points, gray equivocal points are
still unlabeled after GLP. In the right side of (c), we propagate labels for these unlabeled equivocal points by pseudo labeling.

3.3. Equivocal Point Label Assignment

To fully exploit bounding box annotations in instance
segmentation, we aim to further mine the information from
the equivocal set. Our motivation is to propagate labels
of univocal points Lu to the equivocal points which are
geometrically linked to the univocal points. To be spe-
cific, since equivocal points are located in the intersection
volumes, we first measure the relative spatial relationships
among 3D bounding boxes to decide the necessity of la-
bel prorogation. Then, we introduce geometric prior knowl-
edge, including polygon meshes and superpoints, to deduce
relationships among points. The geometric priors provide
strong clues for us to propagate labels with high-confidence.

3.3.1 Bounding box spatial relationship inference

The spatial relationships among overlapping 3D bounding
boxes typically fall into two cases: (i) inclusion relation-
ship: a bounding box lies in another one, or (ii) overlapping
relationship: bounding boxes intersect with others. In order
to deduce the spatial relationship of bounding boxes, we
calculate the intersection score Si|j =

|Pi∩Pj |
|Pi| on the point

level, where Pi represents the set of points located in the
i-th bounding box. In our experiments, we set the intersec-
tion score threshold to 0.9. The point set Pi is the subset of
Pj , if Si is over the threshold. In other words, the ith 3D
bounding box is considered as being contained in the j-th
3D bounding box. Otherwise, Pi and Pj are regarded as

overlapping sets, and we remark the relationship between
the i-th and j-th 3D bounding boxes as an overlapping rela-
tionship.

3.3.2 Point label propagation via geometric priors.

In accordance with the different spatial relationships among
3D bounding boxes, we present a geometry-guided label
propagation (GLP) scheme to estimate the semantic labels
of equivocal points in different scenarios as follows.

Inclusion relationship. If the intersection score Si|j in-
dicates the existence of an inclusion relationship between
two bounding boxes, we presume that all the points in the
intersection area mainly represent an object enclosed by the
included bounding box. In other words, let Bi represent a
3D bounding box that is included in another bounding box
Bj , and equivocal points located in the intersection area
belong to the instance indicated by Bi. Therefore, we as-
sign the semantic labels ci of the enclosed bounding box
Bi to these equivocal points. Note that if a bounding-box
has been enclosed by another one but still has partial over-
lapping with others, the overlapping points in the bounding
box should not be labeled by the label of the bounding box.
Instead, we will switch to the overlapping scenario to label
the equivocal points of the bounding box.

Overlapping relationship. When multiple bounding
boxes overlap, we aim to designate one specific semantic
category for each equivocal point. To achieve this goal, we
estimate semantic labels of these points based on the as-
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Figure 3: Illustration of geometry-guided label propagation. (a) Mesh based label propagation. (b) Superpoint based label
propagation. Unlabeled equivocal points are highlighted in gray, while red and green points represent points belonging to
two different instances, respectively. Given superpoints, we not only propagate labels to the unlabeled points but also smooth
the noise labels in each superpoint. (c) Geometry-guided label propagation as the iterations proceed. Labeled points are
highlighted in blue. Visualization of intermediate iteration results will be provided in the supplementary material.

signed labels of surrounding points. Specifically, we select
the most common semantic class from n neighbors with as-
signed semantic labels C = {c1, . . . , cn}, which starts from
univocal points, as illustrated in Figure 3a. Considering
the point cloud is sparse and irregular, retrieving neighbor-
ing points with Euclidean distance might be unsuitable and
would neglect geometric structure of objects and scene lay-
outs. To tackle this issue, we introduce polygon meshes to
establish the geometric relationship among points and then
measure the relationship between two points. Specifically,
points that are enclosed by the same polygon mesh are con-
sidered as neighbors, and meshes are constructed by March-
ing Cubes algorithm [22] from 3D point clouds.

In addition, we introduce superpoints [16] to smooth se-
mantic labels in local regions, as visible in Figure 3b. In
our experiments, superpoints are the result of a hand-crafted
graph-based segmentation method [5]. Given point coor-
dinates and colors, the graph-based segmentation method
groups mesh-connected vertices into a superpoint accord-
ing to their appearance and spatial location similarities.
Although the results of the graph-based segmentator are
still coarse, superpoints can provide complementary appear-
ance and geometric hints to polygon meshes, indicating
that points within a local area should share the same label.
Thanks to the superpoints, we can more reliably propagate
semantic labels. To spread the labels to a large extent, we
run GLP iteratively, as shown in Figure 3c (results from the
intermediate iterations will be provided in the supplemen-
tary material.). When no more points are incorporated, our
GLP terminates.

Instance label propagation. Instance labels are also es-
sential for 3D instance segmentation model training. Af-
ter assigning semantic labels to equivocal points, we also
need to determine the instance labels for those points. Since
an object holds unique semantic and instance labels, points
within an object instance should share the same semantic
label. Following this, we take advantage of semantic la-

bels as constraints in assigning instance labels to equivocal
points. To be specific, for each equivocal point, we first
search the most common instance label from its neighbor-
ing points that have the same semantic label as the equivocal
point. Here, we only consider neighboring points with as-
signed instance labels for label propagation. Similar to se-
mantic label estimation, we employ polygon meshes rather
than Euclidean distance to search neighbors of equivocal
points. Moreover, we also propagate the instance labels to
larger regions by iteratively repeating the same procedure,
as illustrated in Figure 3c (the intermediate results of the
instance label propagation will be shown in the supplemen-
tary material).

Pseudo label on unlabeled equivocal points. After
GLP, some equivocal points are still unlabeled because of
incomplete or missing geometric connections among 3D
points. As demonstrated in Figure 2c, unlabeled equivo-
cal points are usually located in isolated regions without
connecting to labeled points geometrically. Inspired from
[14], we aim to predict pseudo labels for unlabeled equiv-
ocal points, denoted as a pseudo label set Ppl. The pseudo
label set is a subset of the equivocal set Pe. In this man-
ner, we are able to achieve more labeled points for final
instance segmentation learning. Here, we propagate label
information via high-level semantic similarity and instance
closeness learned by a neural network.

Considering labels for the univocal set and the equivocal
set labeled by GLP are reliable, we only generate pseudo
labels for points in Ppl by an instance segmentation net-
work. To be specific, we first train an instance segmenta-
tion model with labels of univocal points and GLP-labeled
equivocal points. Then, we assign pseudo labels predicted
by the trained model to the unlabeled equivocal points. As a
result, we obtain point-level labels from 3D bounding boxes
for instance segmentation. Then, we can train an instance
segmentation network with the generated point-level labels.
Note that, our label generation procedure is generic and ag-
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Table 1: Comparison of different supervisions trained with PointGroup [9] and SSTNet [16] on ScanNet-v2. The upper part
demonstrates the results with PointGroup and the lower one shows the results with SSTNet. Specifically, the top row of
each part shows the results of PointGroup and SSTNet with full supervision, respectively. The bottom part shows the results
of instance segmentation models with weak supervision. ∗ stands for the model with full supervision. † represents using
PointGroup as the segmentation model, while ‡ stands for adopting SSTNet in training.

Method mAP
bathtub bed booksh. cabinet chair counter curtain desk door
otherfur. picture refriger. shower. sink sofa table toilet window

PointGroup∗ [9] 0.348
0.597 0.376 0.267 0.253 0.712 0.069 0.266 0.140 0.229
0.339 0.208 0.246 0.416 0.298 0.434 0.385 0.758 0.275

Baseline† 0.251
0.313 0.243 0.232 0.197 0.572 0.055 0.265 0.050 0.131
0.248 0.219 0.235 0.261 0.121 0.334 0.209 0.631 0.197

WISGP † 0.313 0.402 0.347 0.262 0.272 0.691 0.059 0.199 0.087 0.182
0.309 0.262 0.307 0.331 0.238 0.339 0.391 0.737 0.224

SSTNet∗ [16] 0.494
0.777 0.566 0.258 0.406 0.818 0.225 0.384 0.281 0.429
0.520 0.403 0.438 0.489 0.549 0.526 0.557 0.929 0.343

Baseline ‡ 0.293
0.290 0.351 0.248 0.186 0.661 0.092 0.208 0.093 0.233
0.312 0.339 0.322 0.253 0.171 0.427 0.343 0.665 0.257

WISGP ‡ 0.352 0.455 0.328 0.238 0.304 0.753 0.088 0.239 0.176 0.278
0.330 0.284 0.314 0.321 0.329 0.427 0.394 0.834 0.259

Table 2: Results on S3DIS. ∗, †, ‡ indicate fully-supervised
models, PointGroup backbone, and SSTNet backbone, re-
spectively.

Method mAP AP@50 mPrec mRec

PointGroup∗ [9] - 0.578 0.619 0.642
Baseline † 0.232 0.352 0.407 0.415
WISGP † 0.335 0.486 0.500 0.528
SSTNet∗ [16] 0.427 0.593 0.655 0.642
Baseline ‡ 0.282 0.412 0.377 0.479
WISGP ‡ 0.372 0.510 0.443 0.567

nostic against different point cloud instance segmentation
networks.

4. Experiments

To validate the effectiveness of proposed WISGP, we
conduct extensive experiments on challenging real-world
scenes, i.e., ScanNet-V2 [3] dataset and S3DIS [1]. Fur-
thermore, to demonstrate the superiority of our proposed
method when only bounding box annotations are available,
we compare with two state-of-the-art instance segmentation
architectures i.e., PointGroup [9] and SSTNet [16].

PointGroup [9] adopts a U-Net architecture with Sub-
manifold Sparse Convolution (SSC) and Sparse Convolu-
tion (SC) [6] and predicts a semantic score and offset vector
per point. PointGroup clusters points into instances twice
with original coordinates and shifted coordinates according
to the semantic and affinity predictions. SSTNet [16] em-
ploys a Sparse Convolution based U-Net to simultaneously

Table 3: Comparison with SPIB [17] on the ScanNet-v2 val-
idation set. †, ‡ indicate PointGroup backbone, and SSTNet
backbone, respectively. Note that SPIB uses all the training
annotations.

Method mAP AP@50 AP@25

SPIB [17] - - 0.614

WISGP † 0.313 0.502 0.649

WISGP ‡ 0.352 0.569 0.702

predict semantic and affinity. Furthermore, SSTNet pro-
poses a Semantic Superpoint Tree Network to cluster points
and a CliqueNet to prune errors during grouping instances.
For clarification, when we compare with different methods,
we adopt the same network architecture as the competing
methods.

4.1. Dataset and Evaluation

ScanNet-v2 [3] has 1,613 indoor scenes with 18 instance
classes. The dataset is split into training, validation, and
test, containing 1,201, 312, and 100 scenes, respectively.
We acquire 3D bounding boxes by following the procedure
in VoteNet [24]. As bounding box annotations do not label
the floor and wall categories, we treat these two categories
as a background class in ScanNet-V2.

S3DIS [1], known as Stanford 3D Indoor Scene Dataset
(S3DIS) dataset, contains 6 large-scale indoor areas with
271 rooms. Each point in a scene point cloud is annotated
by one of the 13 semantic categories. Following the stan-
dard training and testing splits [1, 9], we train methods on
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Table 4: Impacts of different point sets.

Univocal Set
Equivocal Set

mAP AP@50 AP@25GLP
w/ inclusion

GLP
w/ mesh

GLP
w/ superpoint

Pseudo
labeling

✓ 0.251 0.482 0.643
✓ ✓ ✓ 0.271 0.476 0.634
✓ ✓ ✓ 0.262 0.482 0.662
✓ ✓ ✓ ✓ 0.289 0.515 0.676
✓ ✓ ✓ ✓ ✓ 0.313 0.529 0.693

Table 5: Impacts of pseudo labels.

Pseudo Label mAP AP@50 AP@25

Both univocal and
equivocal sets

0.282 0.513 0.674

Equivocal set alone 0.292 0.513 0.672

WISGP 0.313 0.529 0.693

Area 1, 2, 3, 4, 6 and then evaluate them on Area 5. Addi-
tionally, we adopt 3D bounding boxes provided in Stanford
2D-3D-Semantics (2D-3D-S) dataset [1].

We train our model on the training dataset and evaluate
on the validation set for ScanNet-V2 and on the testing set
for S3DIS. In order to ensure fairness, we report the perfor-
mance on the model trained with the same training epochs
as the compared methods. For ablation studies, we em-
ploy PointGroup as the instance segmentation network to
demonstrate the contributions of our proposed components.

Following the work [3], we use widely-adopted evalua-
tion metrics: mean average precision [18] at overlap 0.25
(mAP@25), overlap at 0.5 (mAP@50) and overlap in a
range [0.5 : 0.05 : 0.95] (mAP). Meanwhile, similar to
the methods [9, 16], we adopt the mean precision (mPrec)
and mean recall (mRec) with IoU threshold 0.5 to evaluate
methods on the S3DIS dataset.

4.2. Implementation Details

We employ the Adam optimizer [11] to train Point-
Group [9] with the batch size of 12 and a learning rate of
10−3 on ScanNet-v2 dataset. We train models with 384
epochs on 4 Nvidia P100 for 50 hours. In addition, fol-
lowing the publicly released training configuration of SST-
Net [16] on ScanNet-v2, we train SSTNet with the AdamW
optimizer [23] for 512 epochs. For training on S3DIS, we
adopt similar configurations as in ScanNet-v2.

Furthermore, surface meshes are provided in ScanNet-
v2 and S3DIS. To be specific, surface meshes are ac-
quired using the Marching Cubes algorithm [22] on the
implicit TSDF. The superpoints of ScanNet-v2 are ob-
tained by applying a 3D adapted graph-based segmenta-
tion algorithm [5, 3]. For superpoints of S3DIS, we adopt
Supervized SuperPoint (SSP) [12] and SuperPoint Graph
(SPG) [13] to generate superpoints over point clouds, fol-
lowing the procedure in SSTNet [16]. Note that our ge-
ometric priors, i.e. surface mesh and superpoints, are pro-
duced during data pre-processing. Thus, there is no extra
time consumption on surface mesh and superpoint genera-
tion in training. We will release our code and data, to facil-
itate reproducibility and future work.

4.3. Main Results

We present the performance of instance segmentation
models with WISGP on the validation set of ScanNet-v2
and the test set of S3DIS in the Table 1 and Table 2. In or-
der to demonstrate the improvement of our method, we treat
models trained on the univocal set as our baselines.

As demonstrated in Table 1, WISGP outperforms cor-
responding baselines by a large margin on ScanNet-v2.
Compared with the baseline, our result is 24% higher on
PointGroup and 20.1% higher on SSTNet. Meanwhile, our
weakly-supervised method achieves 89.9% and 71.2% mAP
of fully supervised PointGroup and SSTNet, respectively.
With PointGroup, WISGP achieves higher performance
than the baseline on all classes except curtain. With SST-
Net, WISGP achieves higher performance than the baseline
on 13 classes out of 18 classes. We notice that points on ob-
ject boundaries that have been contained in other 3D bound-
ing boxes, such as pictures and refrigerators, could influ-
ence network training. Therefore, models trained with our
framework significantly outperform baselines. Moreover,
since Liao et al. [17] did not release code and pertinent data
for instance segmentation, it is difficult to provide compara-
ble results on the other evaluation metrics. Thus, we com-
pare SPIB on mAP@25, and WISGP performs 8.8% better
than SPIB on mAP@25, as demonstrated in Table 3.

In general, fully supervised methods with point-level la-
beling can be considered as an upper bound for our weakly-
supervised method with bounding box annotations. Sur-
prisingly, we observe that WISGP outperforms its full-
supervised counterpart on 4 classes (e.g. cabinet and pic-
ture) with PointGroup. Furthermore, WISGP also achieves
a remarkable improvement over the baseline of PointGroup
and SSTNet across all the evaluation metrics on S3DIS,
as shown in Table 2. Our method is 44.4% higher than
the baseline of PointGroup and outperforms the baseline of
SSTNet by 31.9% on mAP. Meanwhile, WISGP achieves
nearly 82% performance of fully supervised versions with
either PointGroup or SSTNet backbones. Compared with
ScanNet-v2, the mesh of a room in S3DIS is rather coarse,
which means there would be multiple points on the same
mesh face. Therefore, we further establish connections
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among points between neighboring mesh faces. As ex-
pected, our WISGP model gains significant improvements
over baselines on S3DIS. All in all, the superior perfor-
mance of WISGP on both ScanNet-v2 and S3DIS implies
that WISGP achieves a promising generalization ability
thanks to the generic local geometric priors. The visual re-
sults of our methods on both datasets are provided in the
supplementary material due to the page limit.

4.4. Ablation Study

Impacts of different point sets. In order to analyze the
impacts of model training with different sets, we demon-
strate the comparisons of adopting (i) the univocal set (Uni-
vocal Set), (ii) both the univocal and labeled equivocal sets
(Univocal + full GLP), and (iii) all points in the 3D scene
(WISGP), as indicated in Table 4. Compared to the model
trained on the univocal set only, GLP improves performance
for instance segmentators by propagating labels to equiv-
ocal points according to geometric priors. This compari-
son suggests that GLP components provide some equivocal
points with reliable labels. With these reliable labels, seg-
mentation models increase the instance segmentation accu-
racy. Furthermore, after adopting predicted pseudo labels
on the unlabeled equivocal points, we observe further per-
formance improvement. It implies the effectiveness of our
pseudo labeling.

Label propagation based on different geometric pri-
ors. To analyze the impacts of geometric priors, we present
the ablation on using different geometric priors in label
propagation for the equivocal points, as shown in Table 4.
We separately remove polygon meshes and superpoints
from GLP and notice that both geometric priors improve the
performance of segmentation models. Furthermore, com-
pared to GLP without superpoints, we observe that smooth-
ing labels in local regions based on superpoints lead to a
significant improvement on ScanNet-v2.

Impact of pseudo labeling. Table 5 shows the compari-
son of generating pseudo labels on (i) both the univocal and
labeled equivocal sets, (ii) the labeled equivocal set, and (iii)
the unlabeled set. As indicated in Table 5, assigning pseudo
labels to either the univocal set or the labeled equivocal set
degrades the performance of instance segmentation. This
implies that both labels of univocal points and equivocal
points obtained from 3D bounding boxes and geometric pri-
ors are more reliable. On the other hand, some points in the
equivocal set are not annotated after adopting GLP and are
ignored during training. Furthermore, after pseudo label-
ing unlabeled equivocal points, we observe the performance
improvement. This indicates that this fashion of employing
the pseudo labels is more suitable and thus our method can
better exploit the information of 3D points.

Figure 4: Demonstration of WISGP labels on objects with
irregular shapes.

5. Discussion and Limitation

Different from point-level annotations, bounding-boxes
might be not effective to annotate highly irregular objects.
This would affect the final instance segmentation perfor-
mance. However, highly irregular objects rarely appear in
our experiments. In Figure 4, our method can produce re-
liable labels on objects with irregular shapes, i.e., half ring
sofa, by introducing the geometric priors. This indicates
that our WISGP achieves good generalization ability. In ad-
dition, when labeling bounding-boxes, some object points
which are outside the categories of interest may appear in a
univocal set. These points could degrade the final segmen-
tation performance as a network may recognize them as one
of the classes of interest. To ameliorate this issue, we can
actually ask annotators to remove those objects similar to
the erroneous points during labeling without increasing too
many manual efforts.

6. Conclusion

In this paper, we proposed a weakly-supervised point
cloud Instance segmentation framework by fully exploit-
ing local geometric priors of point clouds, namely WISGP.
Benefiting from the introduction of local geometric priors
represented by polygon meshes and superpoints, our frame-
work effectively propagates reliable point-level labels to the
neighboring points within multiple bounding boxes. We
further leverage pseudo labeling to propagate labels to un-
labeled points that share the high-level semantic similarity
with the labeled ones. By fully exploring the geometric and
semantic similarities of 3D scenes, we obtain high-quality
point-level annotations, leading to promising instance seg-
mentation performance. More importantly, our framework
is model-agnostic. With our WISGP, fully-supervised meth-
ods can be easily accommodated with 3D bounding box an-
notations for instance segmentation.
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