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Identical Condition with Different Noise Codes
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“The person is 
attractive and 
has arched 
eyebrows, and 
black hair.”

Figure 1: Our method produces diverse 3D-aware output images reflecting various condition inputs (the first column). For each condition

input, two different output images generated with different noise codes are shown with horizontal rotation.

Abstract

Recent generative models based on neural radiance
fields (NeRF) achieve the generation of diverse 3D-aware
images. Despite the success, their applicability can be fur-
ther expanded by incorporating with various types of user-
specified conditions such as text and images. In this pa-
per, we propose a novel approach called the conditional
generative neural radiance fields (CG-NeRF), which gen-
erates multi-view images that reflect multimodal input con-
ditions such as images or text. However, generating 3D-
aware images from multimodal conditions bears several
challenges. First, each condition type has different amount
of information - e.g., the amount of information in text
and color images are significantly different. Furthermore,

† Both authors contributed equally to this research.

the pose-consistency is often violated when diversifying the
generated images from input conditions. Addressing such
challenges, we propose 1) a unified architecture that ef-
fectively handles multiple types of conditions, and 2) the
pose-consistent diversity loss for generating various images
while maintaining the view consistency. Experimental re-
sults show that the proposed method maintains consistent
image quality on various multimodal condition types and
achieves superior fidelity and diversity compared to the ex-
isting NeRF-based generative models.

1. Introduction
The neural radiance field (NeRF) [18] successfully ad-

dresses unseen view synthesis, a long-lasting problem in

computer vision, by learning to construct a 3D scene from
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a set of images taken from multiple viewpoints via a dif-

ferentiable rendering technique. Because NeRF takes the

3D coordinate and the viewpoint of a target scene as in-

puts, it is capable of synthesizing view-consistent images

(i.e., images corresponding to the input view points). Due

to the success of NeRF, this approach has been widely ex-

tended to various fields, such as view-aware video synthesis

[13, 39], pose estimation [34], scene labeling and under-

standing [48], and 3D object modeling from a collection of

single-category images [40].

While these techniques utilize NeRF only for synthesiz-

ing an unseen view of an image, recent studies that gen-

erate photorealistic multi-view images based on genera-

tive adversarial networks(GANs) [30, 23, 2, 25, 1] have

emerged. Compared to the existing 2D-based generative

models, these studies produce 3D-aware images by gen-

erating view-consistent images for given camera poses.

However, because the generative models synthesize images

without any user-specified condition, these studies require a

test-time optimization [2] for generation of images that con-

tain the desired characteristics of the condition, as shown in

Fig. 1.

Overcoming such a point and extending the capability

of the existing unconditional generative NeRF models, we

perform 3D-aware image synthesis that reflects the given

multimodal conditions. The proposed task, conditional gen-

erative NeRF (CG-NeRF), aims to create view-consistent

and diverse images by reflecting the characteristics of con-
ditions. To the best of our knowledge, our work is the first to

tackle this task, extending the existing generative NeRF ap-

proaches that does not take user-specified multimodal con-

ditions.

In this paper, we propose a unified method adaptively ap-

plicable to various condition types, including color images,

grayscale images, sketches, low-resolution images, and text,

as shown in the condition inputs in Fig. 1. Since differ-

ent types of conditions have disparate amounts of infor-

mation, it is challenging to generate images from various

types of conditions with a unified architecture. To tackle

this problem, we provide the model with coarse character-

istics of input conditions extracted from a semantic multi-

modal encoder, and additional noise codes to fill the missing

fine details in the coarse characteristics. We show that our

method consistently generates diverse photo-realistic im-

ages regardless of condition types in Sec. 4.

For the diversity of the generated images, we design a

model capable of creating fine details while reflecting the

coarse characteristics of the input conditions. However, un-

like the previous unconditional models, an input condition

may excessively decrease the diversity of synthesized im-

ages. While the diversity sensitive loss helps in generating

various images in 2D-based conditional generative mod-

els [43, 3], the pose consistency can be violated in 3D-based

generative models as shown in Fig. 6. To address such dif-

ficulties, we propose a novel pose-consistent diversity (PD)

loss that induces the model to generate diverse images but

explicitly penalizes view inconsistencies.

In summary, our contributions are as follows:

• We propose a unified architecture called the con-

ditional generative neural radiance fields(CG-NeRF),

which generates diverse and photo-realistic images by

reflecting the multimodal condition inputs and effec-

tively disentangling the shape and appearance from the

input conditions.

• To improve the diversity of the output images, we pro-

pose the pose-consistent diversity (PD) loss, which

helps in producing various images while maintaining

the view consistency.

• We conduct extensive experiments and demonstrate

that our unified model generates diverse images, re-

flecting various types of input conditions.

2. Related Work
Neural Radiance Fields Recent advancements [18, 5,

9, 33, 45, 14] in the area of novel view synthesis have

been accomplished by employing the NeRF. The seminal

work [18] has proven the effectiveness of volume rendering

with NeRF, and later studies [5, 38, 46] proposed further

improvements over the original NeRF. While some NeRF

studies enhance the original NeRF in terms of both quality

and efficiency, our work is more related to generative NeRF

methods, which have attracted attention recently.

Generative NeRF Along with the improvements to the

NeRF itself, generative NeRF models [30, 23, 2, 21] have

also emerged. GRAF [30] proposes a generative model

with implicit radiance fields for the novel scene generation.

Moreover, GIRAFFE [23] improves GRAF by separating

the object instances in a controllable way, which lets users

gain more ability to compose new scenes. Another study,

pi-GAN [2], which is more closely related to our work, em-

ploys the SIREN [32] activation function along with the

multilayer perceptron (MLP), which is effective when used

for novel scene generation. Furthermore, some approaches

have attempted to add conditions or users’ constraint while

generating. Few-shot novel view synthesis [45, 20] targets

to reconstruct images observed from novel views, condi-

tioned on sparse input images. However, they have limita-

tions in generating diverse images, and they require ground

truth multi-view images for training. Edit-NeRF [15] pro-

poses editable NeRF, which can edit shapes and textures

of output images by varying the latent codes. Some stud-

ies [37, 4] suggest optimization based method that can sat-

isfy the user’s constraints using real images or text. Dream-

fields [8], which is a concurrent work, takes text as input to

725



(2-2) Decoder

Linear
FiLM SIREN

Linear
FiLM SIREN

Linear
FiLM SIREN

LinearLinear

Volume rendering

Condition
Feature

Image 
Feature

2Dconv

2Dconv

2Dconv

Real or Fake Pose
(2)

(3)

Li
ne

ar
R

eL
U

Li
ne

ar
R

eL
U

Li
ne

ar
R

eL
U

Li
ne

ar

Li
ne

ar
R

eL
U

Li
ne

ar
R

eL
U

Li
ne

ar
R

eL
U

Li
ne

ar

Feature
Extractor

Spatial
Replication

…
(2-1)

[Condition]
Color Image

Grayscale
Sketch

Low Resolution
Text

(1) 

Figure 2: Illustration of our main architecture. Notations are summarized in Table 1.

synthesize images. However, those approaches require test-

time optimization or only handle a limited type of condition

data. Therefore, in this work, we propose a novel model,

CG-NeRF, which can significantly improve the applicabil-

ity of the NeRF methods and allow users to generate various

scenes according to diverse conditions.

CLIP The conditions from which we want to generate

images can exist in various forms, typically in the form of

images or text. To address both cases at the same time, a

model that can take multimodal inputs is required. Among

such models [42, 35, 27], CLIP [27] shows an impressive

ability to embed text and image information into the same

semantic space. We adopt CLIP as our global feature ex-

tractor in various conditions, making our model widely ap-

plicable for both images and text.

3. Proposed Approach

3.1. Overview

We propose a novel method called conditional genera-

tive NeRF (CG-NeRF), which can generate camera-pose-

dependent images conditioned on various types of input

data. Unlike recent unconditional generative models that

learn neural radiance fields from unlabeled 2D images, we

extend the generative model to a conditional model utiliz-

ing extra information as input, such as text, sketches, gray-

scale, low-resolution images, or even color images. We de-

sign a model that can generate diverse images with differ-

ent details, sharing the coarse characteristics of condition

inputs. As shown in Fig. 2, the global feature vector c ex-

tracted from the input condition is fed to the network along

with the noise codes zs and za randomly sampled from a

standard Gaussian distribution pz . The noise codes spec-

ify fine details that are not contained in the given global

Notation Name

In
pu

t

x ∈ R
3 3D coordinate

d ∈ R
2 Viewing direction

c ∈ R
Lc Global feautre vector

zs ∈ R
Ls Shape noise code

za ∈ R
La Appearance noise code

O
ut

pu
t

γs
i ,γ

a
i ∈ R

Lγ Frequency

βs
i ,β

a
i ∈ R

Lβ Phase shift

σpj ∈ R Density

fpj ∈ R
Lf Feature vector

Fp ∈ R
Lf Rendered feature

I, Î ∈ R
H×W×3 Real/Generated image

Fu
nc

tio
n

gθ : RLc+Ls+La+5 �→ R
2Lf Feature fields generator

Ms : RLc+Ls �→ R
Ns×(Lγ+Lβ)

Shape mapping network

Ma : RLc+La �→ R
(Na+1)×(Lγ+Lβ)

Appearance mapping network

Φs : R3 �→ R
Lf Shape block

Φa : R
Lf+2 �→ R

2Lf Appearance block

Table 1: Summarized notations. p ∈ {1, · · · , HV WV }, and j ∈
{1, · · · , J}. J indicates the number of sampling points per ray.

H × W and HV × WV are the spatial resoultion of image and

features, respectively.

features. In the proposed model, the generator Gθ ((2) in

Fig. 2) learns radiance field representations and synthesizes

images Î corresponding to the given global feature vector c
and noise codes zs and za, i.e.,

Î = Gθ(ξ, c, z
s, za), (1)

where ξ is the camera pose for calculating the 3D coordinate

x and the viewing direction d [30]. Below, we describe the

model structure designed for CG-NeRF in detail.

3.2. Model Architecture of CG-NeRF

As illustrated in Fig. 2, the main architecture consists

of three components: (1) a feature extractor E that extracts

global feature vectors from the given conditions, (2) a gen-

erator that creates an image by reflecting the conditions, and
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(3) a discriminator that distinguishes real images from fake

images based on the condition input and that predicts the

camera poses of fake images for the PD loss, which will be

described in detail later.

As CG-NeRF aims to synthesize conditional 3D-aware

images, the condition input is encoded to a global feature

vector through the global feature extractor E ((1) in Fig. 2).

To extract global semantic features from the given condi-

tion inputs in our case, we adopt CLIP [26], accomodating

various types of input conditions such as images and text,

as a state-of-the-art multimodal encoder.

We design our generator network by combining two re-

cent promising techniques, which are proven to generate

high-quality images for the generative neural radiance field

task: a SIREN-based backbone [2] and a feature-level vol-

ume rendering method [23]. The SIREN-based [32] net-

work architecture enhances the visual quality of the NeRF-

based generative model but requires a large amount of mem-

ory for training due to color-level volume rendering at the

full image resolution [2]. To address this issue, we lever-

age feature-level volume rendering, inspired by a recently

proposed method [23]. The feature-level volume rendering

process substantially mitigates the problem because a vol-

ume is rendered at the level of feature vector f , having a

smaller scale than the image resolution.

Given a global feature vector c, a noise code of shape

zs and appearance za, the feature fields generator gθ ((2-1)

in Fig. 2) produces the density σ and feature vector f in the

corresponding x and d as

gθ(xpj ,dp, c, z
s, za) = (σpj , fpj), (2)

where σpj and fpj denote the density and the feature vec-

tor, respectively, at the corresponding 3D coordinate. Fur-

ther details are described in the next section.

Once the density σ and the feature vector f are estimated

by the feature fields generator gθ ((2-1) in Fig. 2) at each 3D

coordinate, the final feature Fp ∈ R
Lf is computed through

a feature-level volume rendering process as

Fp =

J∑

j=1

Tpjαpjfpj , (3)

where the transmittance Tpj =
∏j−1

k=1 (1− αpk). The al-

pha value for xpj is calculated as αpj = 1 − e−σpjδpj ,

and δpj is the distance between neighboring sample points

along the ray direction [18]. The 2D feature map F ∈
R

HV ×WV ×Lf rendered through the volume rendering pro-

cess is then upsampled to a RGB images at a higher resolu-

tion Î ∈ R
H×W×3 using the 2D convolutional neural net-

work (CNN) decoder network ((2-2) in Fig. 2). The decoder

network consists of CNN layers with leaky ReLU activation

functions [41] and nearest neighbor upsampling layers.

3.3. Condition-based Disentangling Network

We propose a novel approach that aims to disentangle

both the shape and appearance contained in a given global

feature vector. For a text condition example “ round bird

with a red body”, “round” and “bird” are shapes, and “red”

is an attribute indicating the appearance. Two mapping net-

works Ms and Ma serve to generate the styles of the shape

and appearance, respectively, from the global feature vec-

tor c and noise codes zs and za. The global feature vector

c ∈ R
Lc contains the prominent attribute of the condition.

In constrast, the noise codes zs ∈ R
Ls and za ∈ R

La are

responsible for the details that the global feature vector does

not include. The mapping network consists of pairs of a lin-

ear layer and ReLU and produces frequencies γ and phase

shifts β as

Ms (c, zs) = cat{(γs
i ,β

s
i )}i=1···Ns

Ma (c, za) = cat{(γa
i ,β

a
i )}i=1...Na+1,

(4)

where Ns and Na denote the numbers of MLPs in each

block. cat indicates channel-wise concatenation. The pre-

dicted frequencies and phase shifts are fed to the two blocks

Φs and Φa in the feature fields generator. Taking these as in-

puts along with the 3D coordinate x and the direction d, two

consecutive blocks encode features using pairs of a linear

layer and activation function of feature-wise linear modula-

tion (FiLM) SIREN. The sine function of the FiLM SIREN

layer modulated by the obtained frequency and phase shift

are applied to the outputs of the linear layers as an activation

function; i.e.,

φi (yi) = sin(γi(Wiyi + bi) + βi), (5)

where φi : RMi �→ R
Ni is the i-th MLP of each Φs and Φa.

Wi ∈ R
Ni×Mi and bi ∈ R

Ni are the weight and the bias

applied to input yi ∈ R
Mi . The two blocks in the feature

fields generator have the following formulations:

Φs (xpj) = φs
Ns

(
φs
Ns−1(· · ·φs

1(xpj))
)

,

Φa(Φs(xpj),dp) = φa
Na+1(cat(φa

Na(· · ·φa
1(Φ

s (xpj))),dp)).
(6)

Inspired by an existing approach [30], we assign the roles

of reflecting the shape to the first block, close to the input,

and the appearance to the second block, close to the output.

The block for shape utilizes the 3D coordinate as the input

to generate shape-encoded features, while the appearance

block takes the output of the previous block as input and

generates encoded features of the shape and appearance.

By utilizing these features and viewing directions as inputs,

features reflecting the viewing direction are generated from

the last layer of the appearance block.

3.4. Pose-consistent Diversity Loss

As our method generates images conditioned on extra

inputs, variations of the output images are restricted, espe-

cially when a color image is given as a condition input. To
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enable the generator network to produce semantically di-

verse images based on the condition input, we regularize

the generator network with the diversity-sensitive loss [43].

This is defined as

Ldiv(θ) = Ezs,za∼pz,ξ∼pξ,c∼pr [‖ Î1 − Î2 ‖1], (7)

where Î1 is Gθ(ξ, c, z
s1, za1) and Î2 is Gθ(ξ, c, z

s2, za2).

However, we empirically discover that simply applying

the diversity-sensitive loss causes undesirable effects that

attempt to change not only the style but also the pose of the

output images (Fig. 6). Because the pose of the output im-

ages should be determined only by the input camera pose

ξ, pose changes in the output images are a significant side

effect. We analyze this undesirable phenomenon as follows;

from the generator network’s point of view, the model max-

imizes the pixel difference via two different methods: (1)

changing the style of the output images as desired or (2)

changing the poses between two output images generated

with the same camera pose, which is strongly undesired.

To explicitly address such an issue, we propose a pose

regularization term applicable to the original diversity-

sensitive loss, which explicitly penalizes pose difference be-

tween images generated from different noise codes zs and

za but from the same camera pose. The intuition behind the

proposed regularization is that the model generates two im-

ages to have only a style difference constrained to have the

same pose, which can be additionally learned by an aux-

iliary network. We propose to add the regularization term

Lpose to the diversity-sensitive loss Ldiv, which is defined as

Lpose(θ) = Ezs,za∼pz,ξ∼pξ,c∼pr
[1−cos(Dξ

ψ(Î1)−Dξ
ψ(Î2))],

(8)

where Dξ
ψ is the auxiliary pose estimator network we addi-

tionally train for the pose penalty loss jointly with the dis-

criminator.

The proposed method simultaneously learns the output

images’ poses by training the pose estimator network. We

modify our discriminator network to contain an auxiliary

pose estimator, by adjusting the channel size of the last layer

to estimate the camera pose values of the output image. Be-

cause we randomly sample camera poses ξ from the prior

distribution pξ to generate view-consistent images, the sam-

pled camera pose is utilized as the ground truth pose when

training the pose estimator. We define the camera pose ξ
with radius rcam, rotation angle κr ∈ [−π, π], and eleva-

tion angle κe ∈ [0, π]. Given that we use a fixed value for

rcam=1, the pose estimator predicts the rotation angle and

elevation angle, applying the Sigmoid function to the output

value multiplied by 2π and π respectively. The camera pose

reconstruction loss is defined as

Lpose(ψ) = Ezs,za∼pz,ξ∼pξ,c∼pr [1− cos(Dξ
ψ(Î)− ξgt)], (9)

where Dξ
ψ(Î) = ξpred = (κ̂r, κ̂e). D

ξ
ψ denotes the auxiliary

pose estimator and ξgt is a randomly sampled camera pose

value to generate Î. Because the angle can be represented by

a periodic function, we design the pose reconstruction loss

with the cosine function to penalize the angle difference,

addressing its discontinuity at 2π.

3.5. Training Objective

To synthesize conditional outputs, we adopt a condi-

tional GAN [7] by training a discriminator that learns to

match images and condition feature vectors. As shown in

Fig. 2, the discriminator extracts the image feature through

a series of 2D convolution layers, and the image feature is

then concatenated with matching condition e to predict the

condition-image semantic consistency. The matching con-

dition e ∈ R
Lc+Ls+La is the global feature vector c con-

catenated with detail codes zs and za. The number of fea-

ture extracting layers is determined by the resolution of the

training images. The discriminator network learns whether

the given image is real or fake and matches its condition

feature vector simultaneously.

At training time, we use the non-saturating GAN loss

with a matching-aware gradient penalty [17, 35]. Instead of

the R1 gradient penalty [17], we adopt the matching-aware

gradient penalty loss, which is known to promote the gen-

erator to synthesize more realistic and semantic-consistent

images to condition-image pairs. We define three different

types of data items: synthetic images with the matching con-

dition, real images with a matching condition, and real im-

ages with a mismatching condition. The target data point

on which the gradient penalty is applied can be defined by

real images with the matching condition feature vector. The

entire formulation of conditional GAN loss, i.e.,

Ladv(ψ) = EI∼pr [f (Dψ(I, e))]

+ (1/2)EI∼pmis [f (−Dψ(I, e))]

+ (1/2)Eξ∼pξ,e∼pr,pz [f (−Dψ (Gθ(ξ, c, z
s, za), e))]

+ kEI∼pr [(‖∇IDψ(I, e)‖+ ‖∇eDψ(I, e)‖)p] ,
Ladv(θ) = Eξ∼pξ,e∼pr,pz [f (Dψ (Gθ(ξ, c, z

s, za), e))]
(10)

where f(u) = − log(1 + exp(−u)). pr and pmis denote

the real data distribution and mismatching data distribution,

respectively. k and p are two hyper-parameters that balance

the gradient penalty effects.

Our full training objective functions for the generator

network Gθ are summarized as

Ltotal = Ladv − λdivLdiv + λposeLpose, (11)

where λdiv and λpose are weights for each loss term.
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Dataset CelebA Cats

Method
Image

Resolution
FID↓ Precision↑ Recall↑ Image

Resolution
FID↓ Precision↑ Recall↑

GRAF 128 66.37 0.71 0.00 64 13.73 0.86 0.20

GIRAFFE 64 24.11 0.88 0.08 64 16.05 0.74 0.37

pi-GAN 128 21.38 0.72 0.45 128 22.57 0.61 0.25

Ours
64 7.81 0.87 0.50

128 13.86 0.91 0.52
128 9.32 0.86 0.47

Dataset FFHQ CUB-200

Method
Image

Resolution
FID↓ Precision↑ Recall↑ Image

Resolution
FID↓ Precision↑ Recall↑

GRAF - - - - 64 41.65 0.80 0.09

StyleNeRF 256 22.054 0.501 0.470 - - - -

Ours 256 10.020 0.866 0.498 128 26.53 0.82 0.22

Table 2: Quantitative comparison in terms of FID, precision, and

recall. A low FID score means that the distribution of the generated

image is close to that of the real image in terms of the mean and

standard deviation. A high precision score implies that the gener-

ated image is realistic, and a high recall score indicates that the

generated images capture greater variation of the real images.

4. Experiments
Dataset setups We evaluate our CG-NeRF on vari-

ous datasets, in this case CelebA [16], CelebA-HQ [10],

FFHQ [11], CUB-200 [36], and Cats [47]. For the con-

dition inputs, we select five different data forms to con-

sider the different properties of input conditions in terms

of the shape and appearance, e.g., color images, grayscale,

sketches, low-resolution images, and text. To generate 3D-

aware images from sketch conditions, first we apply a So-

bel filter to extract pseudo sketch information from the

image [28] after which we apply a sketch simplification

method [31]. For low-resolution image conditions, we ap-

ply bilinear downsampling to images with a ratio of 1/16.

Training images are resized to a resolution of 128×128. To

extract the global feature only of the object, we remove the

background for CelebA-HQ and CUB-200 datasets.

4.1. Experimental results

To the best of our knowledge, there exists a no com-

parable previous work performing conditional generative

NeRF task has been published. Hence, we perform quantita-

tive and qualitative comparison of our model with existing

NeRF-based generative models [30, 23, 2, 4] to demon-

strate the competitive performance of the proposed method.

4.1.1 Quantitative comparison

To evaluate our approach quantitatively, we measure three

metrics: the Frechet Inception Distance (FID) [6], preci-

sion, and recall using publicly available libraries12 [24, 19].

FID is the most popular metric for evaluating the quality of

GANs as it reveals a discrepancy between distributions of

real and fake images. On the other hand, precision and re-

1https://github.com/toshas/torch-fidelity
2https://github.com/clovaai/generative-evaluation-prdc
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Figure 3: Comparison of qualitative results to previous studies

on the CelebA, Cats, and FFHQ. For each dataset, the distance

between the generated and the real image increases from left to

right. To show diverse images, we sample results with different

rank intervals depending on the datasets.

CelebA-HQ FID↓ IS↑
Color Image 7.01 2.14

Grayscale 7.23 2.12

Sketch 7.01 2.16

Low-Resolution 7.91 2.05

Text 7.31 2.13

Cats FID↓ IS↑
Color Image 13.86 2.06

Grayscale 12.51 2.02

Low-Resolution 19.40 2.13

CUB-200 FID↓ IS↑
Text 26.53 3.52

Table 3: Quantitative comparisons (FID / IS) on the CelebA-HQ,

Cats, and CUB-200 datasets with different condition types in terms

of the image quality.

call measure the quality of GANs in terms of fidelity and

diversity, respectively.

As reported in Table 2, to guarantee the most reliable

performance of the previous methods, we evaluate the com-

parison results using a publicly available pre-trained model

and its corresponding experiment setting. Based on the per-

formances we measured, the proposed method shows better

scores in terms of FID, precision, and recall compared to the

existing methods for the most part. For the CelebA dataset,

our method still produces competitive performance on pre-

cision as well as the best performance on FID and recall.

4.1.2 Qualitative comparison

Fig. 3 shows comparisons of our method with other NeRF-

based generative models in terms of the visual quality. For

a fair comparison, according to the definition of precision

[12], we select images in the order of the closest distance to

the real image among fake images existing in the manifold

of the real image. The distance is measured utilizing fea-

tures of the real and fake images in the Euclidean space due

to the high dimensionality of the image and lack of seman-
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“The person is 
smiling and has 
gray hair, big nose, 
and high 
cheekbones.”

Input Average Random Shape / Appearance

Figure 4: Qualitative results with various condition input. For

each condition type, the average output image generated with zero-

value noise codes and output images generated from five different

shape noise codes (in row 1) and appearance noise codes (in row

2) are visualized.

tics in the RGB space. To display diverse images across all

the methods, images are sampled with the distanced rank

interval. Our method shows competitive visual quality re-

gardless of datasets (Fig. 3).

4.1.3 Effects of various condition types

In this section, we perform experiments to analyze the train-

ing behavior of our method depending on the input condi-

tion type. We compare the results with five different types

of condition input to validate that our method yields con-

sistent generation performance. As shown in Fig. 4, as the

color image has the largest amount of condition informa-

tion among the five different condition types, it restricts the

range of style variation of output images generated with

random noise codes. In contrast, weak conditions such as

text or low-resolution images show dynamic changes in

their results with random shapes or appearances. To evalu-

ate our approach in terms of condition types quantitatively,

we measure the FID [6] and Inception Score (IS) [29] as

shown in Table 3. For each dataset, our method consistently

maintains high visual quality across all types of input con-

ditions.

(a) Trained without PD loss (b) Trained with PD loss

Figure 5: Qualitative analysis of the PD loss. Along with condi-

tion inputs which are visualized with red rectangles (grayscale in

row 1, sketch in row 2), Eleven output images generated with dif-

ferent noise codes are visualized.

without PDloss with PDloss

Condition Types Precision↑ Recall↑ Precision↑ Recall↑
Color Image 0.899 0.520 0.900 0.550

Grayscale 0.897 0.532 0.900 0.536

Sketch 0.904 0.547 0.892 0.567

Low-Resolution 0.910 0.497 0.896 0.514

Text 0.898 0.489 0.891 0.510

Average 0.902 0.517 0.895 0.535

Table 4: Effect of the PD loss on precision and recall for mea-

suring the fidelity and diversity, respectively, on the CelebA-HQ

Dataset.

4.2. Analysis of Experiments

4.2.1 Enhanced Diversity

Because the PD loss proposed in this paper can improve the

diversity of the generated images, we analyze the effect of

the PD loss by taking recall and precision measurements.

As shown in Table 4, as a result of applying the PD loss,

the recall value is improved by about 3.5%, and the preci-

sion shows a decrease of about 0.77% on average, show-

ing minimul degradation of visual quality. In addition, the

recall is improved in all conditions; in particular, for the

color and grayscale condition settings, both precision and

recall are improved. From this result, applying the PD loss

can increase the diversity while maintaining similar fidelity

outcomes. Fig. 5 visualizes the result for a qualitative com-

parison of cases with and without the PD loss. The PD loss

encourages the model to generate more diverse images com-

pared to those without this loss, not only on the hair and skin

color but also on the illumination.
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Figure 6: Effects of the pose-penalty when attaching the diversity-

sensitive loss when training. As shown in (a), for the result trained

without a pose-penalty, the canonical view varies as different

shape noise codes are sampled. In contrast, the result trained with

a pose-penalty maintains the canonical view with different shape

noise codes. (b) shows the standard deviation of head poses of ran-

domly generated canonical view images.

4.2.2 Pose Penalty

To validate the importance of the pose-penalty in relation to

the diversity-sensitive loss [43] for our method, we conduct

an ablation study to confirm the effect of the pose-penalty

when attaching the diversity-sensitive loss when training.

As shown in Fig. 6 (a), the diversity-sensitive loss alone

prevents the network from properly learning the canonical

views of objects. This implies that the model maximizes the

pixel-level difference causing the pose difference of the out-

put image, which is an undesirable effect. With the PD loss,

the network properly learns to maximize the style difference

while maintaining the pose. For a quantitative validation,

we measure the head poses of randomly generated canoni-

cal view images using the pre-trained head pose estimator

[44]. As shown in Fig. 6 (b), view-consistency is maintained

with a pose-penalty by a large margin compared to the re-

sult without a pose-penalty, by showing the lower standard

“This is a yellow bird that has a black head, breast and
neck and some black on its wings and tail.”

“This colorful bird has a long, flat beak and blue
feathers”

Figure 7: Multi-view output images(the second row) in CUB-200

dataset. The corresponding input text is in the first row.

deviation of angles of identical view images. Note that the

difference in the standard deviation of the rotation angle is

larger than that in the elevation angle, as the prior camera

pose distribution has a broader range of the rotation angle.

4.2.3 Results of CUB-200

Fig. 7 shows qualitative results on the CUB-200 dataset for

text input condition. Our proposed model successfully uti-

lizes contextual information in the given text input to gen-

erate conditional multi-view images. However, for most ex-

isting NeRF-based generative models, we empirically find

that the visual quality is degraded for CUB-200 dataset

in certain range of viewpoints. We suppose the perfor-

mance degradation comes from large discrepancy between

the prior camera pose distribution and the real one, as de-

scribed in [22]. We plan to address this issue for future

work.

5. Conclusion

In this paper, we propose a novel conditional generative

model called CG-NeRF, which takes the existing genera-

tive NeRF to the next level. CG-NeRF creates photorealis-

tic view-consistent images reflecting the multimodal condi-

tion inputs, such as sketches or text. Our framework also

effectively extracts both the shape and appearance from the

condition and generates diverse images by adding details

through noise codes. In addition, we propose the PD loss to

enhance the variety of generated images while maintaining

view consistency. Experimental results demonstrate that our

method achieves state-of-the-art performance qualitatively

and quantitatively based on the quality metrics of FID, pre-

cision, and recall. In addition, the proposed method gener-

ates various images reflecting the properties of the condition

types in terms of the shape and appearance.
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