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Abstract

The task of out-of-distribution (OOD) detection is vital
to realize safe and reliable operation for real-world appli-
cations. After the failure of likelihood-based detection in
high dimensions had been shown, approaches based on the
typical set have been attracting attention; however, they
still have not achieved satisfactory performance. Begin-
ning by presenting the failure case of the typicality-based
approach, we propose a new reconstruction error-based
approach that employs normalizing flow (NF). We further
introduce a typicality-based penalty, and by incorporat-
ing it into the reconstruction error in NF, we propose a
new OOD detection method, penalized reconstruction error
(PRE). Because the PRE detects test inputs that lie off the
in-distribution manifold, it effectively detects adversarial
examples as well as OOD examples. We show the effective-
ness of our method through the evaluation using natural im-
age datasets, CIFAR-10, TinyImageNet, and ILSVRC2012.

1. Introduction
Recent works have shown that deep neural network

(DNN) models tend to make incorrect predictions with high
confidence when the input data at the test time are signif-
icantly different from the training data [1, 2, 3, 4, 5, 6] or
adversely crafted [7, 8, 9]. Such anomalous inputs are of-
ten referred to as out-of-distribution (OOD). We refer to a
distribution from which expected data, including training
data, comes as the in-distribution (In-Dist) and to a distri-
bution from which unexpected data we should detect comes
as the OOD. We tackle OOD detection [1, 3, 10, 11] which
attempts to distinguish whether an input at the test time is
from the In-Dist or not.

Earlier, [12] introduced the likelihood-based approach:

detecting data points with low likelihood as OOD using a
density estimation model learned on training data. How-
ever, recent experiments using the deep generative models
(DGMs) showed that the likelihood-based approach often
fails in high dimensions [10, 13] (Section 3.1). This ob-
servation has motivated alternative methods [14, 15, 16, 17,
18, 19]. Among them, [13, 20] argued the need to account
for the notion of typical set instead of likelihood, but those
typicality-based methods still did not achieve satisfactory
performance [13, 21, 22]. We first argue in Section 3.2
the failure case of the typicality-based detection performed
on an isotropic Gaussian latent distribution proposed by
[13, 20], which we refer to as the typicality test in latent
space (TTL). Because the TTL reduces the information in
the input vector into a single scalar as the L2 norm in latent
space, the TTL may lose the information that distinguishes
OOD examples from In-Dist ones.

To address this issue, we first propose a new reconstruc-
tion error-based approach that employs normalizing flow
(NF) [23, 24, 25]. We combined the two facts that the pre-
vious studies have shown: 1) Assuming the manifold hy-
pothesis is true [26, 27, 28], the density estimation model,
including NFs, will cause very large Lipschitz constants in
the regions that lie off the data manifold [29]. 2) The Lip-
schitz constants of NFs can be connected to its reconstruc-
tion error [30]. On the premise that the In-Dist examples lie
on the manifold yet the OOD examples do not, we detect a
test input that lies off the manifold as OOD when its recon-
struction error is large. Unlike the TTL, our method uses
the information of latent vectors as-is, enabling the preser-
vation of the information that distinguishes OOD examples
from In-Dist ones. Second, to boost detection performance
further, we introduce a typicality-based penalty. By ap-
plying controlled perturbation (we call a penalty) in latent
space according to the atypicality of inputs, we can increase
the reconstruction error only when inputs are likely to be
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OOD, thereby improving the detection performance. The
overview of our method is shown in Fig. 1.

Contribution. The contributions of this paper are the fol-
lowing three items:

• An OOD detection method based on the reconstruction
error in NFs. Based on the property between the Lips-
chitz constants of NFs and its reconstruction error given
by [30], the proposed method detects test inputs that lie
off the manifold of In-Dist as OOD.

• We further introduce a typicality-based penalty. It en-
hances OOD detection by penalizing inputs atypical in
the latent space, on the premise that the In-Dist data are
typical. Incorporating this into the reconstruction error,
we propose penalized reconstruction error (PRE).

• We demonstrate the effectiveness of our PRE in exten-
sive empirical observations on CIFAR-10 [31] and Tiny-
ImageNet. The PRE consistently showed high detection
performance for various OOD types. Furthermore, we
show on ILSVRC2012 [32] that the proposed methods
perform better than 95% detection in AUROC on aver-
age, even for large-size images. When an OOD detector
is deployed for real-world applications with no control
over its input, having no specific weakness is highly de-
sirable.

Our PRE also effectively detects adversarial examples.
Among several explanations about the origin of adversar-
ial examples, [33, 34, 35, 36] hypothesized that adversar-
ial examples exist in regions close to, but lie off, the mani-
fold of normal data (i.e., In-Dist data), and [37, 38, 39, 40]
provided experimental evidence supporting this hypothesis.
Thus, our PRE should also detect adversarial examples as
OOD, and we demonstrate it in the evaluation experiments.
Historically, the studies of OOD detection and detecting ad-
versarial examples have progressed separately, and thus few
previous works used both samples in their detection perfor-
mance evaluation, but this work addresses that challenge.

2. Related Work
For the likelihood-based methods and typicality test, we

refer the reader to Section 3.1 and 3.2. We introduce
two other approaches: 1) Reconstruction error in Auto-
Encoder (AE) has been widely used for anomaly detec-
tion [41, 42, 43, 44, 45] and also has been employed for
detecting adversarial examples [40]. Using an AE model
that has been trained to reconstruct normal data (i.e., In-
Dist data) well, this approach aims to detect samples that
fail to be reconstructed accurately as anomalies (or adver-
sarial examples). Since the basis of our proposed method
is the reconstruction error in NF models, we will evaluate

Figure 1: Illustration of our method, PRE. The red dot
(xood) and blue dot (xin) represent an OOD and In-Dist sam-
ples, respectively. The cyan circle in latent space Z cen-
tered at the origin O represents the Gaussian Annulus, on
which the typical set (i.e., In-Dist examples) concentrates.
The zood and zin are subject to controlled perturbations ξ
as a penalty (bold arrows), according to L2 distance to the
Gaussian Annulus. While zin will be close to the Gaus-
sian Annulus, zood will be away from it (Section 3.2), so
|ξ(zood)| > |ξ(zin)|. The reconstruction errors measured in
data space X (the length of the dashed lines) are increased
according to |ξ|, which leads to Rξ(xood) > Rξ(xin) and
allows us to detect xood.

the AE-based reconstruction error method as a baseline. 2)
Classifier-based methods that use the outputs of a classi-
fier network has also been taken in many previous works
[1, 2, 3, 46, 4, 6]. This approach has also been taken in the
works of detecting adversarial examples [47, 48, 49]. How-
ever, the limitation of this approach is that label information
is required for training classifiers. Furthermore, the depen-
dence on the classifier’s performance is their weakness. We
show that later in the experimental results.

3. Preliminary

3.1. Likelihood-based OOD Detection

As an approach to OOD detection, [50] introduced a
method that uses a density estimation model learned on In-
Dist samples, i.e., training data. By interpreting the prob-
abilistic density for an input x, p(x), as a likelihood, it
assumes that OOD examples would be assigned a lower
likelihood than the In-Dist ones. Based on this assump-
tion, [38] has proposed a method detecting adversarial ex-
amples using DGMs, specifically PixelCNN [51]. How-
ever, [10, 13] have presented the counter-evidence against
this assumption: DGMs trained on a particular dataset of-
ten assigns higher log-likelihood, log p(x), to OOD exam-
ples than the samples from its training dataset (i.e., the In-
Dist) in high dimensions. [13, 20] argued that this failure
of the likelihood-based approach is due to the lack of ac-
counting for the notion of typical set: a set, or a region,
that contains the enormous probability mass of distribu-
tion (see [20, 52] for formal definitions). Samples drawn
from a DGM will come from its typical set; however, in
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high dimensions, the typical set may not necessarily inter-
sect with high-density regions, i.e., high-likelihood regions.
While it is difficult to formulate the region of the typical
set for arbitrary distributions, it is possible for an isotropic
Gaussian distribution, which is the latent distribution of NFs
[23, 24, 25]. It is well known that if a vector z belongs to
the typical set of the d-dimensional Gaussian N (µ, σ2Id),
z satisfies ‖z− µ‖ ' σ

√
d with a high probability, i.e.,

concentrates on an annulus centered at µ with radius σ
√
d,

which is known as Gaussian Annulus [53]. As dimension
d increases, the regions on which the typical samples (i.e.,
In-Dist samples) concentrate move away from the mean of
Gaussian, where the likelihood is highest. That is why In-
Dist examples are often assigned low likelihood in high di-
mensions.

3.2. Typicality-based OOD Detection

[13, 20] suggested flagging test inputs as OOD when
they fall outside of the distribution’s typical set. The de-
viation from the typical set (i.e., atypicality) in a standard
Gaussian latent distribution N (0, Id) of NF is measured as
abs(‖z‖ −

√
d), where ‖z‖ is L2 norm of the latent vec-

tor corresponding to test input and
√
d means the radius

of the Gaussian Annulus. Their proposed method mea-
sures the atypicality as an OOD score, which we refer to as
the typicality test in latent space (TTL). The authors how-
ever concluded that the TTL was not effective [13, 21, 22].
We have the following views regarding the failure of TTL.
As the latent distribution is fixed in NF, In-Dist exam-
ples will be highly likely to fall into the typical set, i.e.,
abs(‖z‖ −

√
d) ≈ 0. However, the opposite is not guaran-

teed: there is no guarantee that OOD examples will always
be out of the typical set. It is because the TTL reduces the
information of a vector of test input to a single scalar as its
L2 norm. For example, in a 5-dimensional space with the
probability density N (0, I5), the typicality test will judge
a vector z as In-Dist when ‖z‖ '

√
5. At the same time,

however, even a vector such as [
√

5, 0, 0, 0, 0], which has an
extremely low occurrence probability (in the first element)
and thereby possibly should be detected as OOD, will judge
as In-Dist as well because it belongs to the typical set in
terms of its L2 norm (

√
5). Indeed, we observed such an

example of this case in the experiments and will show it in
Section 6.2. We propose a method that addresses this issue.

3.3. Normalizing Flow

The normalizing flow (NF) [23, 24, 25] has been be-
coming a popular method for density estimation. In short,
the NF learns an invertible mapping f : X → Z that
maps the observable data x to the latent vector z = f(x)
where X ∈ Rd is a data space and Z ∈ Rd is a latent
space. A distribution on Z , which is denoted by P z, is
fixed to an isotropic Gaussian N (0, Id), and thus its den-

Figure 2: llustration of the manifold M (represented by
torus as an example), In-Dist examples (green dots), and
OOD examples close to and far fromM (red dots).

sity is p(z) = (2π)−
d
2 exp(− 1

2 ‖z‖
2
). An NF learns an

unknown target, or true, distribution on X , which is de-
noted by Px, by fitting an approximate model distribu-
tion P̂x to it. Under the change of variable rule, the log
density of P̂x is log p(x) = log p(z) + log |det Jf (x)|
where Jf (x) = df(x)/dx is the Jacobian matrix of f at x.
Through maximizing log p(z) and log |det Jf (x)| simulta-
neously w.r.t. the samples x ∼ Px, f is trained so that P̂x
matches Px. In this work, Px is In-Dist, and we train an
NF model using samples from the In-Dist.

4. Method

We propose a method that flags a test input as OOD
when out of the manifold of In-Dist data (Fig. 2). Our
method is based on the reconstruction error in NFs, com-
bined with a typicality-based penalty for further perfor-
mance enhancement, which we call the penalized recon-
struction error (PRE) (Fig. 1). Before describing the PRE
in Section 4.2, We first introduce the recently revealed char-
acteristics of NFs that form the basis of the PRE in Section
4.1: the mechanism of how reconstruction errors occur in
NFs, which are supposed to be invertible, and how they be-
come more prominent when inputs are OOD.

4.1. Motivation to Use Reconstruction Error in NF
for OOD Detection

Reconstruction error occurs in NFs. Recent studies
have shown that when the supports of Px and P z are
topologically distinct, NFs cannot perfectly fit P̂x to Px
[54, 55, 56, 57, 58]. As P z isN (0, Id), even having ‘a hole’
in the support of Px makes them topologically different.
This seems inevitable since Px is usually very complicated
(e.g., a distribution over natural images). In those works, the
discrepancy between P̂x and Px is quantified with the Lips-
chitz constants. Let us denote the Lipschitz constant of f by
Lip(f) and that of f−1 by Lip(f−1). When Px and P z are
topologically distinct, in order to make P̂x fit into Px well,
Lip(f) and Lip(f−1) are required to be significantly large
[30, 58]. Based on this connection, the inequalities to as-
sess the discrepancy between Px and P̂x were presented by
[56] which uses Total Variation (TV) distance and by [55]
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which uses the Precision-Recall (PR) [59] as well. [30] has
analyzed it locally from the aspect of numerical errors and
introduced another inequality:∥∥x− f−1(f(x))

∥∥ ≤ ∥∥Lip(f−1)
∥∥ ‖δz‖+ ‖δx‖ . (1)

See Appendix A in this paper or Appendix C in the orig-
inal paper for the derivation. The δz and δx represent nu-
merical errors in the mapping through f and f−1. When
Lip(f) or Lip(f−1) is large, δz and δx grow significantly
large and cause Inf/NaN values in f−1(f(x)), which is
called inverse explosions. Note that Eq. (1) considers the
local Lipschitz constant, i.e., Lip(f−1)−1 ‖x1 − x2‖ ≤
‖f(x1)− f(x2)‖ ≤ Lip(f) ‖x1 − x2‖ ,∀x1,x2 ∈ A, and
thus it depends on the region A where the test inputs ex-
ist. While computing Lip(f−1), δz, and δx directly in a
complex DNN model is hard [60], Eq. (1) suggests that
the reconstruction error for x (the LHS) can approximately
measure the discrepancy between Px and P̂x locally. Even
though the NF is theoretically invertible, [30] has demon-
strated that it is not the case in practice and the reconstruc-
tion error is non-zero. Another example of the numerical
error in an invertible mapping has been observed in [61].

Connection between OOD and reconstruction errors.
[29] further connected this discussion to the manifold hy-
pothesis, i.e., that the high-dimensional data in the real
world tend to exist on a low-dimensional manifold [26, 27,
28]. Assuming the manifold hypothesis is true, the den-
sity p(x) would be very high only if x is on the manifold,
M, while p(x) would be close to zero otherwise. Thus, the
value of p(x) may fluctuate abruptly aroundM. It means
that the local Lipschitz constants of NFs, i.e., Lip(f−1) in
Eq. (1), become significantly large, if not infinity. As a re-
sult, the reconstruction error, which is the lower bound of
Eq. (1), will be large. By contrast, since In-Dist examples
should be onM, abrupt fluctuations in p(x) are unlikely to
occur. Thus Lip(f−1) will be smaller, and the reconstruc-
tion error will be smaller for In-Dist examples. Thus, this
argument allows us to consider an input with a large recon-
struction error to be OOD.

OOD examples close to and far from manifold. In the
above, we considered OOD examples xood that lie off but
are close toM of the In-Dist Px. We depict it as red dots
near the blue torus in Fig. 2. Adversarial examples are con-
sidered to be included in such xood. On the other hand, there
are also xood far away fromM, as depicted by the cluster on
the left in Fig. 2. Random noise images may be an example
of this. In the region far from M, p(x) should be almost
constant at 0, so Lip(f−1) may not become large. Never-
theless, as we will explain in Section 6.1, the reconstruction
error will be large even for such xood far fromM, as long

as xood are regarded as atypical in P z. We defer explaining
this mechanism to Section 6.1. In a nutshell, atypical sam-
ples are assigned minimal probabilities in P z, which causes
‖δz‖ and ‖δx‖, as opposed to Lip(f−1), to be larger, result-
ing in a larger reconstruction error.

4.2. Our Method: Penalized Reconstruction Error
(PRE)

For OOD inputs that lie off the manifold of In-Dist,M,
regardless of whether they are close to or far fromM, the
reconstruction error in NFs will increase. Thus we can
judge whether a test input is OOD or not by measuring the
magnitude of the reconstruction error, written as

R(x) :=
∥∥x− f−1 (f(x))

∥∥ . (2)

Contrary to the PR- and TV-based metrics that need a cer-
tain amount of data points to compare Px and P̂x, the re-
construction error works on a single data point, and thus
R(x) is suited for use in detection.

Typicality-based penalty. To further boost detection per-
formance, we add a penalty ξ to a test input x ∈ Rd in the
latent space Z as ẑ = z + ξ where z = f(x) ∈ Rd. Since
an NF model provides a one-to-one mapping between x and
z, the shift by ξ immediately gains the reconstruction error.
We conducted the controlled experiments to confirm its va-
lidity and saw that the degree of the reconstruction error is
proportional to the intensity of ξ, regardless of the direction
of ξ. (See Appendix B.) We want to make ξ large only when
x is OOD. To this end, we use the typicality in P z described
in Section 3.2, and specifically, we design ξ as

ξ(z) = −sign
(
‖z‖ −

√
d
)(‖z‖ − √d√

d

)2

. (3)

There may be several possible implementations of ξ(z), but
we chose to emulate the elastic force in the form of an at-
tractive force proportional to the square of the distance from
the center,

√
d. The larger the deviation of z from the typ-

ical set in P z, the larger the value of abs(‖z‖ −
√
d) and

thus the larger the value of ξ(z).

Penalized Reconstruction Error (PRE) Incorporating ξ,
the score we use is:

Rξ(x) :=

∥∥∥∥x− f−1(z + λξ(z)
z

‖z‖

)∥∥∥∥ (4)

where λ is a coefficient given as a hyperparameter. We
call the test based on Rξ the penalized reconstruction er-
ror (PRE). Unlike the TTL that uses the information of
z = f(x) in a reduced form as ‖z‖, the computation of Rξ
uses z as-is without reducing. Therefore, the PRE works
well even for cases where the TTL fails.
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PRE as the OOD detector. The largerRξ(xtest), the more
likely a test input xtest is OOD. With using the threshold τ ,
we flags xtest as OOD when

Rξ(xtest) > τ. (5)

The overview of how the PRE identifies the OOD examples
is shown in Fig. 1. As the NF model is trained with samples
from Px, if a test input xtest belongs to Px (i.e., xtest is In-
Dist), ztest = f(xtest) would be also typical for P z. Then,
as P z is fixed to N (0, I), ‖ztest‖ would be close to

√
d as

described in Section 3.1, and as a result, ξ(ztest) becomes
negligible. In contrast, if xtest is OOD, ztest would be atypi-
cal for P z, and thus ‖ztest‖ deviates from

√
d, which makes

ξ(ztest) large and consequently enlargesRξ(xtest). Thus, we
can view ξ as a deliberate introduction of numerical error
δz in Eq. (1).

We emphasize that the ξ depends only on the typicality
of xtest and not on its distance from the manifoldM. There-
fore, whenever xtest is atypical, Rξ will be large, regardless
of whether it is close to or far fromM, i.e., for any OOD
data points in Fig. 2.

4.3. Reasons not to employ VAE

Variational Auto-Encoder (VAE) [62, 63] is another gen-
erative model that has a Gaussian latent space. Although
VAE has been used in previous studies of likelihood-based
OOD detection, we did not select it for our proposed
method for the following reasons: 1) The primary goal of
VAE is to learn a low-dimensional manifold, not to learn
invertible transformations as in NF. Therefore, there is no
guarantee that the mechanism described in Section 4.1 will
hold. 2) It is known that the reconstructed image of VAE
tends to be blurry and that the reconstruction error is large
even for In-Dist samples [64, 65]; to be used for OOD de-
tection, the reconstruction error must be suppressed for In-
Dist samples, and VAE is not suited for this purpose. 3)
Since the latent space of VAE is only an approximation of
the Gaussian, ‖z‖ cannot correctly measure typicality; in
previous studies that dealt with both VAE and NF, the typi-
cality test in latent space (TTL) was applied only to NF, for
the same reason [13, 20, 16]. In relation to 2) above, we
evaluate in Section 5 the detection performance using the
reconstruction error of Auto-Encoder, which is superior to
VAE in terms of the small reconstruction error.

5. Experiments
We demonstrate the effectiveness of our proposed

method. We measure the success rate of OOD detection
using the area under the receiver operating characteristic
curve (AUROC) and the area under the precision-recall
curve (AUPR). The experiments run on a single NVIDIA
V100 GPU.

5.1. Dataset

We utilize three datasets as In-Dist. The OOD datasets
we use consists of two types: the different datasets from
the In-Dist datasets and adversarial examples. The tests are
performed on 2048 examples that consist of 1024 examples
chosen at random from the In-Dist dataset and 1024 exam-
ples from the OOD dataset.

Dataset for In-Dist. We use widely used natural im-
age datasets, CIFAR-10 (C-10), TinyImageNet (TIN), and
ILSVRC2012, each of which we call the In-Dist dataset.
They consist of 32×32, 64×64, and 224×224 pixel RGB
images, and the number of containing classes is 10, 200,
and 1000, respectively.

Different datasets from In-Dist. We use CelebA [66],
TinyImageNet (TIN) [32], and LSUN [67] as OOD datasets.
The LSUN dataset contains several scene categories, from
which we chose Bedroom, Living room, and Tower, and
treat each of them as a separate OOD dataset. See Appendix
C.1 for processing procedures. As ILSVRC2012 contains
an extensive range of natural images, including architectural
structures such as towers and scenes of rooms, like those
included in LSUN datasets, LSUN was excluded from the
OOD datasets to be evaluated.1 Noise images are also con-
sidered one type of OOD. Following [15], we control the
noise complexity by varying the size of average-pooling (κ)
to be applied. For detailed procedures, refer to Appendix
C.1. Treating images with different κ as separate datasets,
we refer to them as Noise-κ.

Adversarial examples. We generate adversarial exam-
ples with two methods, Projected Gradient Descent (PGD)
[68, 69] and Carlini & Wagner’s (CW) attack [70]. Fol-
lowing [71], we use PGD as L∞ attack and CW as L2 at-
tacks, respectively. For descriptions of each method, the
training settings for the classifiers, and the parameters for
generating adversarial examples, we would like to refer the
reader to Appendices C.2 and C.3. The strength of PGD
attacks is controlled by ε, which is a parameter often called
attack budgets that specifies the maximum norm of adver-
sarial perturbation, while the strength of CW attacks is con-
trolled by k, called confidences. We use 2

256 and 8
256 for

ε in PGD and 0 and 10 for k in CW, which we refer to as
PGD-2, PGD-8, CW-0, and CW-10, respectively. The clas-
sifier we used for both attacks is WideResNet 28-10 (WRN
28-10)2 [72] for C-10 and TIN and ResNet-50 v2 [73]3 for

1A helpful site for viewing the contained images:
cs.stanford.edu/people/karpathy/cnnembed/

2github.com/tensorflow/models/tree/master/research/autoaugment
3github.com/johnnylu305/ResNet-50-101-152
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Figure 3: Histograms of the PRE (our method). The x-axis is Rξ. The Rξ for ‘In-Dist’ is lower and well separated than that
for OOD datasets.

Figure 4: Histograms of L2 norm in the latent space. The x-axis is ‖z‖. The ‘In-Dist’ is not separate from the OOD datases.
In particular, ‘CW-0’ has almost completely overlapped ‘In-Dist’.

ILSVRC2012. The classification accuracies before and af-
ter attacking are shown in Table 4 in Appendix C.1. For
example, on CIFAR-10, the number of samples that could
be correctly classified dropped to 57 out of 1024 samples
(5.556%) by the PGD-2 attack, and the other three attacks
had zero samples successfully classified (0.0%).

5.2. Implementation

Normalizing Flow. As with most previous works, we use
Glow [74] for the NF model in our experiments. The pa-
rameters we used and the training procedure are described
in Appendix C.4. We have experimentally confirmed that
the application of data augmentation upon training the Glow
is essential for high detection performance. We applied the
data augmentation of random 2×2 translation and horizon-
tal flipping on C-10 and TIN. For ILSVRC2012, the image
is first resized to be 256 in height or width, whichever is
shorter, and cropped to 224× 224 at random.

Competitors. We compare the performance of the pro-
posed methods to several existing methods. We implement
nine competitors: the Watanabe-Akaike Information Crite-
rion (WAIC) [13], the likelihood-ratio test (LLR) [14], the
Complexity-aware likelihood test (COMP) [15], the typical-
ity test in latent space (TTL) [13], the Maximum Softmax
Probability (MSP) [1], the Dropout Uncertainty (DU) [47],
the Feature Squeezing (FS) [48], the Pairwise Log-Odds
(PL) [49], and the reconstruction error in Auto-Encoder
(AE). See Appendix C.5 for a description of each method
and its implementation. For the likelihood-based methods
(i.e., WAIC, LLR, and COMP) and TTL, the same Glow

model used in our method is used. For the classifier-based
methods (i.e., MSP, DU, FS, and PL), the classifier is the
WRN 28-10 or ResNet-50 v2 which is the same model we
used to craft the adversarial examples in the previous sec-
tion.

5.3. Results

We measure the success rate of OOD detection using the
area under the receiver operating characteristic curve (AU-
ROC) and the area under the precision-recall curve (AUPR).
The higher is better for both. The results in AUPR are pre-
sented in Appendix D.1. We denote the reconstruction er-
rors in NFs without the penalty ξ by RE. We also show the
histograms in Fig. 3 for PRE (i.e., Rξ) and Fig. 7 (in Ap-
pendix D.4) for RE (i.e., R). As for λ in Eq. (4), we em-
pirically chose λ = 50 for CIFAR-10 and λ = 100 for
TinyImageNet and ILSVRC2012. (The performance with
different λ is presented in Appendix D.2.)

CIFAR-10 and TinyImageNet. Tables 1 and 2 show AU-
ROC for C-10 and TIN. The PRE performed best for the
majority of OOD datasets (the best scores are shown in
bold). Importantly, unlike the other methods, the PRE ex-
hibited high performance over all the cases: the columns
of Avg. show that the PRE significantly outperformed the
existing methods in average scores. When the detection
method is deployed for real-world applications with no con-
trol over their input data, having no specific weakness is
a strong advantage of PRE. The RE showed the second-
best performance after the PRE on C-10. On TIN, while
the RE performed well in the cases where the TTL failed
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Table 1: AUROC (%) on CIFAR-10. The column labeled as ‘Avg.’ shows the averaged scores.

CelebA TIN Bed Living Tower PGD-2 PGD-8 CW-0 CW-10 Noise-1 Noise-2 Avg.

WAIC 50.36 77.94 77.25 84.76 79.35 41.82 73.23 47.90 46.13 100.0 100.0 70.79
LLR 59.77 38.05 33.33 31.42 46.01 59.10 76.09 52.28 54.36 0.80 0.61 41.07

COMP 72.00 82.01 78.87 87.82 5.03 60.69 98.81 51.27 53.02 100.0 100.0 71.77
TTL 84.87 84.19 90.39 91.36 89.68 75.22 98.99 51.14 54.15 100.0 54.80 79.52
MSP 79.32 91.00 93.83 91.67 82.05 23.85 0.0 98.94 5.17 98.25 96.27 69.12
PL 81.13 63.18 54.23 49.39 59.87 78.17 97.00 56.82 80.04 24.26 77.07 65.56
FS 83.35 88.90 89.16 88.23 94.71 90.86 72.47 93.76 94.43 91.99 96.34 89.47
DU 84.64 86.33 86.53 84.76 82.04 74.62 25.54 89.33 80.84 81.09 84.61 78.21
AE 67.36 80.28 73.71 87.01 7.83 50.69 61.80 50.02 50.07 100.0 99.52 66.21

RE (ours) 92.53 94.19 95.92 95.83 94.35 91.66 94.58 96.08 95.09 97.45 95.80 94.86
PRE (ours) 93.62 95.74 97.43 97.52 95.88 92.23 99.93 95.00 95.21 100.0 96.64 96.29

Table 2: AUROC (%) on TinyImageNet. The column labeled as ‘Avg.’ shows the averaged scores.

CelebA Bed Living Tower PGD-2 PGD-8 CW-0 CW-10 Noise-1 Noise-2 Avg.

WAIC 11.92 63.54 67.75 72.87 40.49 49.78 48.44 46.05 100.0 100.0 60.08
LLR 92.76 69.95 70.19 78.27 58.45 96.78 51.66 53.86 50.57 0.0 62.25

COMP 39.83 48.02 61.61 46.72 55.98 95.01 50.54 52.11 100.0 100.0 64.98
TTL 97.51 98.78 99.36 98.68 83.47 100.0 51.89 57.73 100.0 100.0 88.74
MSP 76.88 77.51 73.38 73.91 6.91 0.0 69.09 4.20 68.34 74.76 52.50
PL 49.74 27.08 26.26 28.22 94.24 99.97 34.76 87.66 15.04 31.63 49.46
FS 29.21 27.26 29.36 25.70 71.98 16.86 50.64 82.21 42.17 50.27 42.57
DU 47.06 37.12 32.52 27.98 50.94 68.21 49.02 50.83 48.99 22.47 43.51
AE 14.92 20.90 32.94 23.74 49.89 52.12 50.00 50.03 95.45 70.37 46.04

RE (ours) 46.68 61.97 62.26 59.51 92.86 92.94 92.43 93.26 98.53 98.45 79.89
PRE (ours) 95.55 99.01 99.46 97.37 95.04 100.0 92.42 94.93 100.0 100.0 97.38

(i.e., CW, which we discuss in Section 6.2), the RE per-
formed poorly in CelebA, Bed, Living, and Tower. Notably,
however, the penalty ξ proved to be remarkably effective in
those cases, and the PRE combined with ξ improved signif-
icantly. From the comparison of PRE and RE in the tables,
we see that the performance is improved by ξ. It is shown
that the performance of likelihood-based methods (WAIC,
LLR, and COMP) is greatly dependent on the type of OOD.
On C-10, the performance of classifier-based methods is rel-
atively better than the likelihood-based methods, however,
their performance was significantly degraded on TIN. In ac-
cordance with the increase in the number of classification
classes from 10 (in C-10) to 200 (in TIN), the classifier’s
performance decreased, which caused the detection perfor-
mance to decrease. It may be the weakness specific to the
classifier-based methods. The performance of AE was at
the bottom. Similar results were observed in AUPR as well.

ILSVRC2012. Table 3 shows the AUROC for
ILSVRC2012. It suggests that the proposed methods
perform well even for large-size images. We found that
the reconstruction error alone (i.e., RE) could achieve high
performance and the effect of the penalty was marginal on

ILSVRC2012.

6. Discussion
6.1. Analysis with Tail Bound

In Section 4.1 we explained howR (andRξ) increase for
OOD examples xood close to the manifoldM. This section
discusses how the proposed methods detect xood far from
M, using the tail bound.

OOD examples are assigned minimal probabilities in la-
tent space. The intensity of the penalty for a particular
input x, ξ(f(x)), depends on how its L2 norm in the la-
tent space Z ∈ Rd (i.e.,‖z‖ = ‖f(x)‖) deviates from

√
d,

as Eq. (4). We show the histograms for ‖z‖ in Fig. 4. We
note that

√
d is about 55.43 for C-10, 110.85 for TIN, and

387.98 for ILSVRC2012. Thus, we see that the distribution
modes for In-Dist examples are consistent approximately
with the theoretical value,

√
d (though it is slightly biased

toward larger values on ILSVRC2012). At the same time,
we see that ‖z‖ for xood deviate from

√
d, except for CW’s

examples. We assess the degree of this deviation with the
Chernoff tail bound for the L2 norm of i.i.d. standard Gaus-
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Table 3: AUROC (%) on ILSVRC2012 with our methods. The column labeled as ‘Avg.’ shows the averaged scores.

CelebA PGD-2 PGD-8 CW-0 CW-10 Noise-2 Noise-32 Avg.

RE 94.65 93.96 96.42 94.59 94.87 97.24 97.68 95.63
PRE 94.89 94.24 96.66 94.58 95.64 97.75 97.68 95.92

sian vector z ∈ Rd: for any ε ∈ (0, 1) we have

Pr
[
d(1− ε) < ‖z‖2 < d(1 + ε)

]
≥ 1− 2exp

(
−dε

2

8

)
. (6)

See Appendix E for the derivation of Eq. (6) and the analy-
sis described below. When d = 3072 (i.e., on C-10) and we
set ε = 0.32356413, we have Pr [‖z‖ > 63.765108] ≤ 1

258 ,
for instance. It tells us that the probability that a vector
z ∈ R3072 with its L2 norm 63.87, which corresponds to
the median value of ‖z‖ over 1024 PGD-8 examples on
C-10 we used, occurs in P z (i.e., N (0, I3072)) is less than
1

258 = 3.4694e−18. As another example, the median value
of ‖z‖ for 1024 CelebA (OOD) examples in Z built with
TIN (In-Dist) is 116.81. The probability of observing a
vector z ∈ R12288 sampled from N (0, I12288) with its L2

norm 116.81 is less than 1
226 = 1.4901e−08, as Eq. (6)

gives Pr [‖z‖ > 116.700553] ≤ 1
226 with ε = 0.108318603.

As such, the tail bound shows that those (OOD) examples
are regarded as extremely rare events in P z built with the
In-Dist training data.

Small probabilities increase the reconstruction error re-
gardless of the distance to the manifold. The above ob-
servation implies the following: (OOD) examples not in-
cluded in the typical set of P z are assigned extremely small
probability. It leads to a decrease in the number of signif-
icant digits of the probabilistic density p(z) in the transfor-
mation of the NF, and it may cause the rounding error of
floating-point. Those rounding errors increase δx and δz in
Eq. (1), increasing the reconstruction error in NFs, R (and
henceRξ that the PRE uses). In other words, it suggests that
atypical examples in P z will have larger R (and Rξ), inde-
pendent of the distance to M. The Noise-κ dataset sam-
ples used in our experiments (Section 5) are possibly far
fromM. Both PRE and RE showed high detection perfor-
mance even against Noise-κ datasets. We understand that
the mechanism described here is behind this success.

6.2. Analysis of Typicality Test Failures

Lastly, we analyze why the typicality test (TTL) failed
to detect CW’s adversarial examples (and some Noise
datasets) (Tables 1 and 2). We addressed it by arbitrarily
partitioning latent vectors z ∈ R3072 on C-10 into two parts
as [za, zb] = z where za ∈ R2688 and zb ∈ R384, and
measuring the L2 norm separately for each. (Due to space

limitations, see Appendix D.3 for details of the experiment.)
We then found that the deviation from the In-Dist observed
in za and zb cancels out, and as a result, ‖z‖ of CW’s exam-
ples becomes indistinguishable from those of In-Dist ones.
This is exactly the case described in Section 3.2 where the
TTL fails. The typicality-based penalty in the PRE is there-
fore ineffective in these cases. However, in the calculation
of the reconstruction error (RE), which is the basis of the
PRE, the information of z is used as-is without being re-
duced to the L2 norm, and the information on the deviation
from the In-Dist in each dimension is preserved. Conse-
quently, it enables a clear separation between In-Dist and
OOD

7. Limitation

1) The penalty ξ we introduced is by design ineffec-
tive for OOD examples for which the TTL is ineffective.
However, we experimentally show that it improves perfor-
mance in most cases. 2) The adversarial examples have
been shown to be generated off the data manifold [37]; how-
ever, it has also been shown that it is possible to generate the
ones lying on the manifold deliberately[37, 34, 35]. Since
the detection target of our method is off-manifold inputs,
we left such on-manifold examples out of the scope in this
work. If it is possible to generate examples that are on-
manifold and at the same time typical in the latent space,
maybe by ‘adaptive attacks’ [71], it would be difficult to
detect them with the PRE. This discussion is not limited to
adversarial examples but can be extended to OOD in gen-
eral, and we leave it for future work.

8. Conclusion

We have presented PRE, a novel method that detects
OOD inputs lying off the manifold. As the reconstruction
error in NFs increases regardless of whether OOD inputs
are close to or far from the manifold, PRE can detect them
by measuring the magnitude of the reconstruction error. We
further proposed a technique that penalizes the atypical in-
puts in the latent space to enhance detection performance.
We demonstrated state-of-the-art performance with PRE on
CIFAR-10 and TinyImageNet and showed it works even on
the large size images, ILSVRC2012.
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