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Abstract

Recent studies aim to establish contrastive self-
supervised learning (CSL) algorithms specialized for the
family of Vision Transformers (ViTs) to make them function
normally as ordinary convolutional-based backbones in the
training progress. Despite obtaining promising perfor-
mance on related downstream tasks, one compelling prop-
erty of the ViTs is ignored in those approaches. As previous
studies have demonstrated, vision transformers benefit from
the early stage global attention mechanics, obtaining fea-
ture representations that contain information from distant
patches, even in their shallow layers. Motivated by this,
we present a simple yet effective framework to facilitate the
self-supervised feature learning of transformer based vision
architectures, namely, Multi-level Contrastive learning for
Vision Transformers (MCVT). Specifically, we equip the
vision transformers with individual-based (InfoNCE) and
prototypical-based (ProtoNCE) contrastive loss in differ-
ent stages of the architecture to capture low-level invari-
ance and high-level invariance between views of samples,
respectively. We conduct extensive experiments to demon-
strate the effectiveness of the proposed method, using two
well-known vision transformer backbones, on several vision
downstream tasks, including linear classification, detection,
and semantic segmentation.

1. Introduction

Recently, Transformer [29] has become the new stan-
dard module in designing backbone architectures for vision
tasks. The family of Vision Transformers (ViTs) [13, 28,
21, 35] have achieved superior performance compared to
Convolutional Neural Networks (CNNs) in image classi-
fication [13, 28, 21, 35], object detection [3, 11], seman-
tic segmentation [36], etc. During the same period, self-
supervised learning frameworks [6, 9, 16, 15] have shown
their successes in utilizing quantities of unlabeled data. It
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is a nature idea to combine them together, [10, 33, 5] pro-
vide several initial attempts. By introducing ad hoc tricks or
specializing in the backbone, they replace the convolutional
backbones with the family of ViTs, yet yield in-degraded
performance in the downstream tasks.

The global attention mechanics is considered to be
the most important property in vision transformers [5],
with which they encourage the “local-to-global” correspon-
dence, leading to the effectiveness of self-supervised learn-
ing of vision transformers. Meanwhile, a recent study [25]
demonstrates that the early-stage global attention employed
in the shallow layers could also help the vision transformers
obtain feature representations that contain information from
distant patches.

Motivated by these results, we explore the potential of
learning a vision transformer in the self-supervised ap-
proach with low-level feature representations. To achieve
this, we start by appending auxiliary InfoNCE loss [26, 31,
24] to the early stages of vision transformers. As a re-
sult, we observe consistently improved performances in the
downstream classification tasks, which confirms the ability
to capture instance-wise low-level feature invariance in the
early stages of vision transformers. We then further exam-
ine the possibility of using prototypical contrastive losses
(ProtoNCE) [19] to impose high-level (semantic) feature in-
variance. Specifically, we introduce three types of multi-
level contrastive vision transformers, with InfoNCE and
ProtoNCE attached to different stages of the backbones (See
Section 3.4 for details). We empirically find that the variant
that captures prototype-wise invariance using features from
later stages while preserving instance-wise invariance using
early stages features obtains superior performance.

We present our findings as a simple yet effective frame-
work for training the family of vision transformers in self-
supervised styles. Namely, Multi-level Contrastive learn-
ing for self-supervised Vision Transformers (MCVT). The
overall framework is shown in Figure 1 and Figure 2. Con-
cretely, we project the class token in the early/late stages
of the vision transformer onto embedding spaces through
multi-layer perceptrons (MLPs). We simply use the global

2778



positive negative
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, R >,:
feature IHigh-lcvcl <=~ Cluster-based contrastive :’I ﬁ % ‘\: - d “‘.
Iy \ [/ N Y N
s : : L /|
v i
<==== Info-based contrastive ————(——————--————:—' ————————
4 _—
: <8 | 19
. e i) o
image Y . ! [
patches » forward loss =
<«=--= gradient y b ‘
[ 2 ik L

Figure 1. Illustration of our Multi-level Contrastive Vision Transformers (MCVT) scheme, where info-based and cluster-based contrastive
losses are tailored for low-level and high-level features, respectively. In this manner, low-level and high-level feature in-variances are

iteratively captured during pre-training.

average pooling of the feature representations for the back-
bones that do not employ class tokens. We term the em-
bedded features representations as low-level and high-level
features, respectively. We then apply InfoNCE loss to low-
level features and ProtoNCE loss to high-level features,
which we term with low-level contrastive loss and high-
level contrastive loss, respectively.

We pre-train our MCVT frameworks with two
widely-used vision transformer backbones (ViT [13]
and Swin [21]) on the ImageNet100, ImageNet-1K [12],
where we evaluate the pre-trained models on the two bench-
marks for image classification. We also transfer the models
pre-trained on ImageNet-1K to downstream vision tasks,
using the MS-COCO and ADE20K benchmark datasets for
evaluating their performance on object detection, instance
segmentation, and semantic segmentation.

In the ablation studies, we first draw the similarity
between low- and high-level representations using the
CKA heat map proposed in [25]. Then, we reveal
that the Swin [21] transformer pre-trained with our pro-
posed MCVT approach behaves more similarly to a full-
supervised optimized one than the MoBY [33] approach.
We further investigate several variants of the MCVT by ma-
nipulating the attached loss term at each stage. In the end,
we vary the crucial hyper-parameters such as batch size and
the number of clusters and show that the performance is un-
degraded within a wide range.

To summarize, in this study, our main contributions are
recapped as follows:

* We investigate the effects of low-level features from
earlier stages of a vision transformer in the contrastive
self-supervised learning algorithm. We utilize the low-
level features in both the instance-wise and prototypi-
cal manner for the investigation.

* Based on the observation, we propose a simple yet ef-
fective framework with multi-level contrastive learn-
ing for self-supervised vision transformers, which we

term MCVT.

* In the experimental analysis, we show the proposed
MCVT framework benefits vision transformers of dif-
ferent architectures in different downstream vision
tasks.

* We also show that the representations learned through
the MCVT framework is closer to those learned with a
fully-supervised style, further revealing the effective-
ness brought by utilizing the low-level features.

2. Related Work
2.1. Vision Transformer

In recent years, vision transformers [13, 28, 21, 35, 14]
have gained many researcher’s interests in various down-
stream tasks, such as image classification, object detec-
tion, and segmentation. Typically, Dosovitskiy et al. [13]
first applied a pure transformer directly to the sequences
of input image patches with dimension 16x16. A teacher-
student strategy was further proposed in DeiT [28] to reduce
training parameters and costs, in which a distillation token
was leveraged to make the student learn from the teacher
through attention. More recently, Swin transformer [21] in-
troduced a hierarchical architecture with shifted windows in
the attention modules to learn non-overlapping local infor-
mation and cross-window connection, which achieves state-
of-the-art results on various benchmarks. In this work, we
mainly focus on self-supervised vision transformers with
multi-level contrastive learning to improve the quality of
pre-trained representations. Our approach is orthogonal to
these vision transformers and can be easily applied to these
backbones to learn a better pre-trained model.

2.2. Self-supervised Learning

Self-supervised methods [31, 6, 7, 15, 16, 8, 9, 37, 4,
19, 30, 22, 23] often apply pretext tasks to train a model
by mining the internal characteristics of data without any
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label. In the early period, the instance-level noise con-
trastive estimation was proposed in NIPD [31] to deal with
the non-parametric classification problems. After that, the
instance-wise contrastive learning was widely used in a lot
of work [6, 7, 15, 16, 8, 9, 37]. Typically, MoCo [16] was
introduced with a momentum encoder to maintain negative
samples from a large and consistent dictionary on the fly. A
Siamese network and a stop-gradient operator were lever-
aged in SimSiam [9] to achieve satisfactory results with-
out the momentum encoder and large batch size. On top of
instance-level contrastive learning, some work [19, 4, 30]
adopt cluster-based contrastive learning to pull representa-
tions closer to their assigned prototypes and far from other
prototypes. However, in this work, we take advantage of
low-level and high-level features from vision transformers
for self-supervised learning. Multi-level contrastive learn-
ing is proposed to capture low-level and high-level invari-
ances between views from various stages of the vision trans-
former.

2.3. Self-supervised Vision Transformer

Recently, self-supervised vision transformers [10, 33, 5]
have addressed people’s attention due to their strong per-
formance on various downstream tasks. Specifically, Mo-
Cov3 [10] extended the MoCo [16] method to ViT [13]
for minimizing the distance between representations of two
augmented views. MoCo v2 and BYOL were applied simul-
taneously in MOBY [33] to form a self-supervised frame-
work based on the Swin [21] backbone. In DINO [5],
knowledge distillation was combined with momentum en-
coder and multi-crop training for learning the local-to-
global correspondence in the vision transformer. How-
ever, they only capture the single-scale feature representa-
tion from the global view for pre-training.

As proven to be effective in a previous study [25], vi-
sion transformers can obtain global representations from
shallow layers. Therefore, it is desirable to take into ac-
count low-level features from the shallow stage for learn-
ing more fine-grained invariances. One concurrent work,
MST [20], applied a masked token strategy to the multi-
head self-attention map in both the student and teacher net-
work to capture the local context of an image while preserv-
ing the global semantic information. Another concurrent
work, BEIT [1], proposed a masked image modeling task
to recover the original visual tokens based on the corrupted
image patches. In this work, we leverage low-level feature
invariances from shallow layers and high-level feature in-
variances from deep layers. We are also the first to simul-
taneously leverage info-based and cluster-based contrastive
learning in self-supervised vision transformers to pre-train
better representations.

3. Method

In this section, we propose a simple yet effective
framework with Multi-level Contrastive learning for self-
supervised Vision Transformers, namely MCVT, as shown
in Figure 2. First, we begin with the formal problem setup
for pre-training a self-supervised vision transformer, and
list all notations for easier reading. Then, we elaborate on
the process of extracting low-level and high-level features
from vision transformers with MLP-based projection heads.
Finally, we present the technical details of our MCVT for
self-supervised vision transformers, where three types of
MCVT variants are introduced.

3.1. Problem Setup

We closely follow the problem setup in previous self-
supervised vision transformers [10, 33, 5]. Thus, our work
aims to pre-train a vision transformer backbone with more
meaningful representations for achieving good performance
on downstream tasks. To explain the problem in a unified
manner, we define notations as follows.

Notations. Given a set of training examples X =
{X1,X2,-+ ,Xp}, we apply a vision transformer back-
bone f(-) to generate global-view representations V =
{vi,va, -+, vy}, i.e, v; = f(x;). Suppose the vision
transformer backbone f(-) is composed of s transformer
blocks, that is stages. For example, there are four trans-
former blocks in the Swin [21] transformer. In this case,
s = 4. For each training example x;, we use f(-) to gener-
ate low-level representations U; = {uj},u?,--- ,uj} from
each stage s, where ¢ € [1,n]. Note that the features from
the last stage is the global-scale, that is, uj = v;. A set
of projection heads G = {g1, g2, - - , gs} are applied on U;
to generate low-dimension features #; = {h}, h?,--- /h{}
for contrastive learning.

3.2. High-level Feature Invariance

Similar to the non-transformer based pre-training frame-
works [16, 8, 6, 7], we extract the high-level features from
the last stage of vision transformers. Given a training exam-
ple x;, we take two augmented views x; and x for each im-
age x; under a set of random data augmentations 7. Then
two views are fed into two vision transformer backbones
f(*) to generate the high-level features v; and v/, that is,
u? and (uf)’, where s denotes the number of stages in the
transformers. Finally, we apply a MLP-based projection
head g, to project uf and (uj)’ into a low-dimensional em-
bedding h{ and (h{)’. In order to capture the high-level in-
variance between features h? and (h;)’ from the final stage,
we consider hf and (h?)’ as the high-level features in this
case.

2780



o
= R
=} =]
E=] bS]
£ 3
Images =] & °
A g
g .
- <

<

& £
a

e S

Low-level
Projection Head

A 2

Projection Head

| Low-level I

’ \

o - ———
N o e e e = -

High-Level
Projection Head

clustering

++++++++++++++++ R

Figure 2. [lustration of our Multi-level Contrastive Vision Transformers (MCVT) scheme. Specifically, we generate early-stage features of
image patches from shallow layers and later-stage features from deep layers. Then, early-stage and high-level projection heads composed
of multi-layer perceptrons (MLPs) are leveraged to project features to low-dimension embeddings for multi-level contrastive learning in
terms of low-level and high-level views. The low-level contrastive loss is calculated in terms of the mutual information of low-level features
to capture the instance-wise invariance between views, while the high-level contrastive loss is employed on the mutual information of high-
level features to learn the prototype-wise invariance between global views.

3.3. Low-level Feature Invariance

Motivated by previous study [25] which has shown that
vision transformers can learn global representations from
shallow layers, we take into account low-level features from
the shallow stages for learning more fine-grained invari-
ances. Specifically, we apply a set of projection heads
G = {91,92, - ,gs} on the low-level features U; =
{ul, w2, ui} and2f] = {(u}), (w2, - . (u})'} from
the shallow stages for two augmented views x and x’. For
learning the low-level invariance between features {; and
U] from the shallow stages, we consider I; and U] as the
low-level feature in this case. It is worth mentioning that
the low-level features uf and (uf)’ from the last stage in-
deed represent the high-level features.

3.4. Multi-level Contrastive Vision Transformer

In this part, we are inspired by previous non-transformer
contrastive learning studies [16, 8, 15] and introduce three
types of multi-level contrastive vision transformers. Firstly,
we apply the info-based normalized cross-entropy loss
on both low-level and high-level features to capture the
instance-wise invariance together, which we call MCVT-
info. Then, we use the cluster-based normalized cross-
entropy loss on both low-level and high-level features to
learn the proto-wise invariance simultaneously, which we
call MCVT-proto. Finally, we define the low-level con-
trastive loss with the mutual information of low-level fea-
tures to capture the instance-wise invariance between views.
Meanwhile, we employ the high-level contrastive loss on

the mutual information of high-level features to discrimi-
nate the proto-wise invariance between global views. This
type of MCVT is denoted as MCVT-mix.

MCVT-info. Following previous momentum-based con-
trastive learning frameworks [16, 8], we input two aug-
mented views x; and x; for each image x; under a set of
random data augmentations 7. Then two views are fed into
two vision transformer backbones f(-), f(-) and the set of
projection heads G to generate the query features set #; and
the critical features set for #, for contrastive learning. The
info-based MCVT loss is formulated as:

s exp(h! - (h!)’/7)
tinfo = —1 T 1
LMCVT-inf Z Z 08 P exp(hf - h}/7) @

t=1 i=1

where hi, (hj)’, h} represent the anchor, positive, and neg-
ative embedding from the stage index ¢ for each training
sample x;, and 7 is a temperature hyper-parameter. r de-

notes the number of negative samples.
MCVT-proto. Inspired by previous non-transformer based

contrastive learning frameworks [19, 4], we apply M times
clustering to the representations #; during pre-training,
with the number of prototypes as ky,,m € {1,2,---,M}.
Therefore, we have a set of different number of prototypes
K = {ky,ka,--- ,kn}. The prototypes of the samples us-
ing k,, clusters are marked as C"™ = {c1,c¢a, - ,Cg,, }- In
this way, we define the objective of our MCVT-proto as:
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Algorithm 1 MCVT-mix main learning algorithm
Input: Data X, f(-), G, sets of augmentation 7.
1: Initialize the parameters of f(-),G
2: for each epoch do
3: Obtain two view x;, x} with T
4: Encode features U;, U] with f(-)
5
6
7:

Project features to H,;, H, with G
fort+ 1tos—1do
Compute the low-level loss in Eq. 3 wurt

{h},h2,... hi '}

8: end for

9: for m <— 1to M do
10: Obtain prototypes ¢, with K-means.

11: Compute the high-level loss in Eq. 4 w.r.t h?
12: end for
13: Compute the overall loss in Eq. 5
14: end for

Output: f(-)

exp (hj - (h)’/7)
_, exp(hf - ht/T)
eXp ht c'/¢y')
exp( . m/¢m)

[/MCVT—proto Z Z - 1

t=1 i=1

ZZ**Z

t=1 i=1 m=1

_|_
2

where h! denotes the anchor representation from the stage
index ¢ for each training sample 7. c*, ¢ are the positive
prototype p that the sample ¢ belongs to and the negative
prototype j at m step. ¢,", 7" are the concentration estima-
tion indicator for the distribution of representations around
the prototype p, j at the m step.

MCVT-mix. To discriminate the low-level and high-level
features during pre-training, we propose a self-supervised
approach with a multi-level contrastive vision transformer
(MCVT) by info-based contrastive leaning of features from
shallow layers and cluster-wise contrastive leaning of fea-
tures from deep layers. Specifically, we calculate the low-
level contrastive loss L£;,,, with the info-based normalized
Cross- entropy loss with respect to the low-level features
{hl h2 ... ,hf_l}. The high-level contrastive loss Lp;gn
is deﬁned With the cluster-based normalized cross-entropy
loss in terms of the high-level features h{. Thus, the low-
level contrastive loss L;,,, the high-level contrastive loss
Lhign, and the overall objective of our MCVT-mix are for-
mulated as follows:

s—1

- exp(h{ - (h})’/7)
Liow = S 3
! — ; > Lexp(h¥ - ht/T) )

n 1 M exp(hf .c;n/%n)
= —_ 1 . 4
D TP IS e e B

Lhigh

EMCVT—mix = Elow + A Lhigh (5)

In this manner, the low-level contrastive loss is applied to
capture the fine-grained instance-wise invariance between
augmented views, while the high-level contrastive loss is
employed to learn cluster-wise invariance between global
views. The overall algorithm is summarized as in Algo-
rithm 1.

4. Experiments
4.1. Datasets & Configurations

Following previous methods [10, 33, 5], we use four
benchmarks for comparison, including ImageNet-100 [27]
and ImageNet-1K [12] for image classification, MS-
COCO [34] for object detection, and ADE20K [38, 39]
for semantic segmentation. During pre-training, we use
data augmentation methods with random resize crop, ran-
dom color jittering, random horizontal flip, and random
grayscale. We train for 300 epochs and apply the first 20
epochs as a warm-up step by only using the InfoNCE loss.
The initial learning rate is set to Se-4, and we use a cosine
scheduler to multiply it with a decay rate of 0.1 for every 30
epochs. AdamW optimizer is used with a weight decay of
0.05, a momentum of 0.9, and a batch size of 512. We adopt
the faiss-GPU [17] library for k-means clustering during the
pre-training.

ImageNet-100. For pre-training, we set number of clusters
K =2500,5000,10000, r = 1024. For linear classification,
we train a linear classifier on the frozen backbone weights.
We train it for 100 epochs and use the first 5 epochs as a
warm-up stage. We apply SGD as our optimizer with a base
learning rate of 1.0, a momentum of 0.9, and a weight decay
of 0.

ImageNet-1K. For pre-training, we set number of clusters
K = 25000,50000,100000, r» = 16000. For linear classifi-
cation, we follow the same setting as ImageNet-100. For
end-to-end fine-tuning, we initialize the network with the
pre-trained weights and adapt them for fine-tuning.
MS-COCO. We closely follow previous work [10, 33, 5],
and adopt the Cascade Mask R-CNN [2] as the detec-
tor. The Swin-T [21] backbone weights are pre-trained on
ImageNet-1K using our MCVT. Other settings are the same
as the implementation in this work [21] except that we use
a 1x schedule.

ADE20K. Following the settings in [33, 21], we use the
UPerNet approach [32] based on our ImageNet-1K pre-
trained Swin-T for evaluation. We fine-tune the detector
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Table 1. Comparisons between MoBY and three types of MCVT variants with various transformer architectures (ViT-S and Swin-T) under

the linear classification evaluation on the ImageNet-100 dataset.

Method Arch. Param.(M) Batch Epochs Top-1(%) Top-5 (%)
MoBY ViT-S 22 512 300 86.28 97.08
MCVT-info  ViT-S 22 512 300 87.79 97.69
MCVT-proto ViT-S 22 512 300 81.05 95.27
MCVT-mix  ViT-S 22 512 300 89.31 98.72
MoBY Swin-T 29 512 300 87.92 97.84
MCVT-info Swin-T 29 512 300 89.45 98.78
MCVT-proto Swin-T 29 512 300 82.53 95.82
MCVT-mix Swin-T 29 512 300 91.26 99.12

with the same learning rate in [33, 21] for a fair compari-
son.

Table 2. Comparisons between our MCVT-mix and other methods
with various transformer architectures (ViT and Swin) under the
end-to-end fine-tuning and linear classification for evaluation on
the ImageNet-1K dataset. * denotes that no multi-crop scheme is
used.

Method Arch. Param.(M) Batch Epochs Top-1 (%)
end-to-end fine-tuning:

MoCo-v3  ViT-S 21 1024 300 81.4
DINO ViT-S 21 1024 300 81.5
MCVT-mix ViT-S 21 512 300 81.7
MoCo-v3  ViT-B 85 4096 300 83.2
DINO ViT-B 85 1024 300 82.8
MCVT-mix ViT-B 85 512 300 83.4
linear classification:

MoCo v3 ViT-S 21 1024 300 72.5
DINO* ViT-S 21 1024 300 72.5
MoBY ViT-S 21 512 300 72.8
MCVT-mix ViT-S 21 512 300 73.1
MoBY Swin-T 29 512 100 70.9
MCVT-mix Swin-T 29 512 100 71.6
MoBY Swin-T 29 512 300 75.0
MCVT-mix Swin-T 29 512 300 75.3

4.2. Experimental Results

In this part, we conduct extensive experiments by trans-
ferring our MCVT pre-trained backbone to various down-
stream tasks, including image classification, object detec-
tion, instance segmentation, and semantic segmentation for
comprehensive analysis. To demonstrate the advantage of
our approach, we compare it with existing self-supervised
vision transformers, such as MoCo v3 [10], MoBY [33],
and DINO [5].

ImageNet-100. Table 1 reports the comparison results be-
tween MoBY [33] and three types of MCVT variants us-
ing ViT-S [13] and Swin-T [21] in terms of linear classi-
fication. As can be seen, all our MCVT-info frameworks
with ViT-S and Swin-T architectures achieve better perfor-
mance than MoBY, which demonstrates the effectiveness of

using early-stage features in the info-based low-level con-
trastive loss. Furthermore, applying our MCVT-mix to ViT-
S outperforms the baseline by 3.03% and 1.64% in terms of
top-1 and top-5 accuracy under the same setting of model
size and pre-training epochs. In particular, our MCVT-
mix with Swin-T achieves the best result, outperforming
MoBY [33] by 3.34% and 1.28% in terms of top-1 and
top-5 accuracy. This further shows the state-of-the-art ad-
vantage of our MCVT-mix frameworks for self-supervised
vision transformers.

ImageNet-1K. We compare our MCVT-mix framework
with previous self-supervised vision transformers [10, 5,
33] in Table 2 by using ViT and Swin architectures under
the end-to-end fine-tuning and linear classification for com-
prehensive evaluation. We can observe that our MCVT-mix
frameworks outperform previous methods in terms of all ar-
chitectures with various model sizes. The performance gain
(+0.6%) achieved by our MCVT-mix under the linear clas-
sification is more significant than the gain (+0.3%) under
the setting of end-to-end fine-tuning. This demonstrates the
effectiveness of our method in learning better representa-
tions during pre-training. In the meanwhile, compared to
MoBY [33], pre-training for 100 epochs achieves a better
performance gain (+0.7%) than the gain (+0.3%) of pre-
training 300 for epochs. This is because with low-level and
high-level invariances learned in our approach, we achieve
faster convergence speed and perform better at the first 100
epochs for linear probing evaluation.

MS-COCO. In Table 3, we report the comparison results of
object detection and instance segmentation by fine-tuning
Cascade Mask R-CNN [2] based on Swin-T pre-trained by
three types of our MCVT frameworks. In terms of object
detection, our MCVT-info method consistently performs
better than baselines due to the self-supervision of low-level
invariances involved in the early stage of vision transform-
ers. Besides, our MCVT-mix framework achieves even bet-
ter performance than the supervised baseline, which shows
the effectiveness of our approach in pre-training meaning-
ful representations. Also, when transferred to instance seg-
mentation, our MCVT-mix framework achieves better re-
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sults than the supervised baseline and MoBY [33]. This
further verifies the superiority of our MCVT methods in
self-supervised vision transformers.

Table 3. Comparison results of object detection and instance seg-
mentation fine-tuned on COCO with Cascade Mask R-CNN based
on Swin-T. AP® and AP™ denote the metrics for the bounding box
and the mask, respectively. Bold numbers indicate the first place.

Method AP® APt AP AP™ APm  APR
Supervised ~ 48.1 67.1 522 417 644 450
MoBY 48.1 671 521 415 640 447

MCVT-info 482 67.1 523 417 64.1 449
MCVT-proto 473 663 512 407 63.1 439
MCVT-mix 48.6 67.6 525 421 645 453

ADE20K. Table 4 compares our MCVT variants with
MoBY [33] under the same setting by fine-tuning our pre-
trained Swin-T on the ADE20K benchmark, where the
mloU metric is reported. As can be seen, our MCVT-
mix framework achieves better performance than the self-
supervised baseline, which shows the advantage of our
approach to self-supervised vision transformers. Further-
more, we have a smaller gap between ours and the super-
vised baseline than MoBY. This also validates the effective-
ness of using low-level and high-level invariances as self-
supervision.

Table 4. Comparison results of semantic segmentation fine-tuned
on ADE20K. mloU denotes the mean mean intersection-over-
union averaged across classes for the ADE20K validation set.
Bold and underline denote the first and second place.

Method Backbone Schedule mloU
Supervised Swin-T 160K 45.81
MoBY Swin-T 160K 45.58
MCVT-info Swin-T 160K 45.62
MCVT-proto  Swin-T 160K 45.01
MCVT-mix Swin-T 160K 45.76

Visualizations of representation similarity To verify the
effectiveness of our MCVT pre-trained model, we quan-
titatively evaluate the representation structure within and
across different stages, where the Centered kernel align-
ment (CKA) [18] is applied to calculate the similarity
of all pairs of layer representations. Figure 3 shows the
heatmap between all layers across the model structures pre-
trained with self-supervised learning constrained on only fi-
nal stage output and our MCVT pre-trained model archi-
tecture. We can observe that the CKA heatmap between
all layers across our MCVT pre-trained model is similar to
the full-supervised model. This further demonstrates the ef-
fectiveness of our multi-level contrastive learning for self-
supervised vision transformers.

5. Ablation Study

In this section, we explore the effect of each stage,
batch size, and clustering on the final performance of our
approach. Unless specified, all experiments for ablation
studies are conducted on the ImageNet-100 dataset with
the Swin-T architecture. We evaluate linear classifica-
tion with our MCVT pre-trained Swin-T framework on the
ImageNet-100 benchmark.

Table 5. Comparison of performance of top-1, top-5 accuracy
by ablating each stage on ImageNet-100. %, v/, and X denote
the cluster-based normalized cross-entropy, info-based normalized
cross-entropy, and no loss.

stage 4 stage3 stage2 stagel Top-1(%) Top-5 (%)
v X X X 87.53 97.64
v v X X 88.16 98.05
v v v X 88.63 98.26
v v v v 89.45 98.78
* 4 v v 91.36 99.12
* X X X 89.17 98.58

Effect of each stage. We analyze the effect of each stage
on the final performance of our MCVT framework in Ta-
ble 5. Specifically, we apply the info-based normalized
cross-entropy loss from stage 4 to stage 1. As can be seen,
both the top-1 and top-5 accuracy of our MCVT framework
increases with the number of stages using the info-based
normalized cross-entropy loss, which demonstrates the im-
portance of early-stage features as self-supervision for pre-
training vision transformers. Adding the cluster-based nor-
malized cross-entropy loss to the final stage boosts the per-
formance. This also shows the effectiveness of combining
low-level info-based invariance and high-level cluster-wise
invariance in our MCVT framework. In the meanwhile,
removing the info-based cross-entropy loss from the early
stage deteriorates the performance of our approach, which
verifies the importance of early-stage supervision for self-
supervised vision transformers.

Effect of batch size. Table 6 explores the effect of the
batch size on the performance of linear classification with
our MCVT-mix framework. Specifically, we vary the batch
size from 32, 64, 128, 256, 512, and 1024. With the in-
crease of the batch size to 512, our MCVT-mix framework
achieves upward performance consistently in terms of top-
1 and top-5 accuracy. However, when set the batch size to
1024, we did not observe the rising tendency. Therefore, we
set 512 in all our experiments for the best performance.
Effect of clustering. To explore the effect of
clustering on the final performance of our MCVT-
mix framework, we vary K, the numbers of used
prototypes, from (1250,2500,5000), (2500,5000,10000),
(5000,10000,20000), and (10000,20000,40000) given neg-
ative prototypes of a fixed size, 1024. The experimental re-
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Figure 3. The CKA heatmap between all layers across the model structures pre-trained with self-supervised learning constrained on only

final stage output and our MCVT pre-trained model architecture.

Table 6. Comparison of performance of top-1, top-5 accuracy by
ablating batch size on ImageNet-100.

batch size  Top-1 (%) Top-5 (%)

32 89.49 98.71
64 89.76 98.83
128 89.96 98.93
256 91.12 99.03
512 91.36 99.12
1024 91.32 99.12

Table 7. Comparison of performance of top-1, top-5 accuracy by
ablating the K and r on ImageNet-100.

K r Top-1 (%) Top-5 (%)

10000, 20000, 40000 1024 88.96 98.42
5000, 10000,20000 1024 91.22 99.08
2500, 5000, 10000 1024 91.36 99.12
1250, 2500, 5000 1024 89.88 98.91
2500, 5000, 10000 2048 91.25 99.09
2500, 5000, 10000 512 91.17 99.06
2500, 5000, 10000 256 90.25 98.97

sults are reported in Table 7. When the numbers of used
prototypes are set to (2500,5000,10000), our MCVT-mix
achieves the best performance in terms of top-1 and top-
5 accuracy. This demonstrates the importance of clustering
in our MCVT-mix approach to learn more meaningful rep-
resentations. Furthermore, we vary the number of negative
prototypes from 256, 512, 1024, and 2048 given prototypes
of (2500,5000,10000) to explore the effect of using cluster-
wise invariance. As can be seen in Table 7, the performance
of our MCVT-mix framework drops with the decrease of
negative prototypes, which shows the effectiveness of learn-
ing the cluster-wise invariance from features of the final
stage. However, introducing more negative prototypes de-
teriorates the performance of our MCVT-mix framework.
This is because some false negative clusters are introduced
during pre-training to damage the cluster-based normalized
cross-entropy loss.

6. Conclusion

Summary In this work, we propose MCVT, a simple yet
effective self-supervised framework with multi-level con-

trastive learning for vision transformers. Specifically, the
low-level info-based contrastive loss is leveraged to cap-
ture the fine-grained invariance between local views, and
the high-level cluster-based contrastive loss is applied to
discriminate the coarse-grained invariance between global
views. Furthermore, we comprehensively analyze three var-
ious multi-level contrastive learning frameworks to show
the superiority of our MCVT for self-supervised trans-
formers. Extensive experiments and ablation studies also
demonstrate the state-of-the-art advantage of our method
against baselines.

Limitation First, there are a lot of hyper-parameters that
need to be tuned to achieve the best performance. Particu-
larly, the best hyper-parameters employed in the prototypi-
cal contrastive head may change significantly with different
datasets and downstream tasks, which is also discussed in
the original prototypical contrastive learning [19] paper. We
consider modifying this loss term to make it more suitable
for the vision transformers in future work. Second, we are
aware of the phenomenon discussed in [25]: when datasets
much larger than the ImageNet-1K are employed for self-
supervised learning, the representations in lower layers at-
tend to be both locally and globally. Due to the limitation
of computational resources, we do not conduct experiments
on larger datasets. Therefore, we are unsure about the ef-
fectiveness of our approach w.r.t. larger datasets.

Broad Impact This work provides a promising direction for
applying multi-level contrastive learning on self-supervised
vision transformers with info-based and cluster-based con-
trastive losses. Furthermore, introducing more supervi-
sion signals in the early-stage pre-training process of self-
supervised vision transformers indeed boosts the perfor-
mance of downstream tasks, such as image classification
and semantic segmentation.
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