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Abstract

Zero-shot temporal activity detection (ZSTAD) is the
problem of simultaneous temporal localization and classifi-
cation of activity segments that are previously unseen during
training. This is achieved by transferring the knowledge
learned from semantically-related seen activities. This ability
to reason about unseen concepts without supervision makes
ZSTAD very promising for applications where the acquisition
of annotated training videos is difficult. In this paper, we
design a transformer-based framework titled TranZAD,
which streamlines the detection of unseen activities by casting
ZSTAD as a direct set-prediction problem, removing the need
for hand-crafted designs and manual post-processing. We
show how a semantic information-guided contrastive learn-
ing strategy can effectively train TranZAD for the zero-shot
setting, enabling the efficient transfer of knowledge from the
seen to the unseen activities. To reduce confusion between
unseen activities and unrelated background information in
videos, we introduce a more efficient method of computing
the background class embedding by dynamically adapting
it as part of the end-to-end learning. Additionally, unlike
existing work on ZSTAD, we do not assume the knowledge
of which classes are unseen during training and use the
visual and semantic information of only the seen classes for
the knowledge transfer. This makes TranZAD more viable
for practical scenarios, which we evaluate by conducting
extensive experiments on Thumos’14 and Charades.

1. Introduction

With video content growing rapidly on the internet [1],
automated indexing and analysis of video data have taken
a pivotal position in information retrieval studies. In recent
years, deep learning based temporal activity detection (TAD)
has emerged as a solution for automating the retrieval of perti-
nent activities in long untrimmed videos [67, 15, 16, 57, 9, 60].
However, most of these methods need to be trained with heavy
supervision to achieve good performance. In real-world

applications, it is often quite difficult and expensive to acquire
well-annotated video samples that exhaust all possible
activity classes, which makes existing TAD frameworks
prone to misclassifying activity instances that are previously
unseen during training. Therefore, there is a growing need
to develop methods that can learn with limited supervision.

One such approach is zero-shot learning (ZSL), where
training and testing data come from disjoint sets of classes
sharing some semantic relation. The goal is to transfer
knowledge learned from the detection of seen classes to
the detection of unseen classes, which is accomplished by
exploiting some common prior information such as hand-
crafted attributes or semantic label embeddings. The ability
to generalize to unseen concepts without heavy supervision
makes ZSL very attractive for applications like video analysis
on the edge, where the lower computation power of edge
devices makes large-scale supervised learning infeasible.

Existing ZSL studies have largely focused on image data
with zero-shot classification/recognition (ZSR) being the
most popular [35, 34, 63, 10] followed by zero-shot object
detection (ZSD) [41, 42, 2]. The limited work done on
videos has largely focused on extending ZSR for activity
classification in short-trimmed video clips [39, 8, 7, 28, 58].
However, in real-world settings, web videos are long and
untrimmed, containing multiple action instances, making
TAD a much more challenging problem than simple activity
recognition [49]. In this paper, we address the problem of
TAD in the ZSL setup, formally called Zero-Shot Temporal
Activity Detection (ZSTAD), whereby the knowledge
learned from modeling the spatio-temporal dynamics of seen
activities is transferred to the detection of unseen activities.

Recently, [62] addressed this task by introducing a
modified version of the popular RC3D framework [57],
where semantic embeddings are used for the metric-based
classification of temporal region proposals. RC3D, being
a two-stage detector, relies heavily on several hand-crafted
components such as manually designed anchor sets and non-
maximal suppression (NMS) to improve performance [5].
Due to the dynamic nature of video data, designing anchor
sets that cover all ground-truth instances is very challenging
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[49], which is further amplified for the zero-shot case, where
unseen class activities have no supervision for manually
tuning the anchor-set design. Consequently, this affects
the quality of the unseen class proposals [61]. Additionally,
post-processing steps like NMS increase inference time,
making current ZSTAD frameworks like [62] unsuitable
for applications such as edge computing, where low latency
inference is crucial. Another critical point is [62] assumes
the availability of the unseen class semantic embeddings
during the training phase itself, which they use to construct
a super-class classification loss that significantly boosts their
zero-shot detection performance. However, the information
provided by the unseen class semantic embeddings, although
not as rich as visual information, enables the framework of
[62] to gauge which classes are unseen during training. This
renders the learning model of [62] impractical for real-world
scenarios where retrieval systems may not have any prior
context about the unseen class distribution during the training
phase and are introduced to them only during inference.

To overcome the challenges of two-stage detectors
[45, 19, 57], in recent years, DETR [5] and its variants
[69, 54, 25, 49] have introduced transformer-based set-
prediction models that streamlines localization, by-passing
the need for proposal generation and its hand-crafted
components and consequently achieving faster inference.
However, these models have been introduced for fully
supervised learning and are not fit for the ZSL setup. In this
work, we cast ZSTAD as a set-prediction problem and intro-
duce a transformer-based zero-shot activity detector titled
TranZAD. TranZAD leverages the multi-headed attention
of the transformer [52] along with the prior information
from semantic word embeddings to transfer knowledge from
the seen activities to the detection of semantically related
unseen activities. Additionally, unlike [62], we only use the
semantic information of the seen classes for model training,
thus developing a more practical retrieval framework.

An illustration of our setup is shown in Fig. 1. During the
training phase, videos containing only seen class activities
are available. In order to transfer the knowledge learned from
seen activities to the detection of unseen activities, TranZAD
learns to associate the visual features of an activity with its
corresponding class-specific semantic embedding. This is
accomplished via a contrastive learning strategy, whereby
the transformer model learns to map the visual features of
the activities in a video to the semantic feature space which
are then contrasted with the seen class semantic embeddings
for metric-based classification. In this way, TranZAD learns
a consistent visual-semantic mapping, enabling it to transfer
the association knowledge learned from the seen activities
to semantically related the unseen ones.

ZSTAD being a localization problem, necessitates
distinguishing the background information in videos from
the pertinent activities. This is enabled by assigning a robust

Figure 1: High-level illustration of ZSTAD using TranZAD. TranZAD
is trained on videos containing only seen class activity instances. Prior in-
formation from the semantic word embeddings, of the activity labels, are
utilized to transfer knowledge from the seen to the unseen classes. At infer-
ence, TranZAD utilizes the unseen class semantic embeddings to perform
zero-shot detection of the unseen activity segments.

semantic embedding to the background class to prevent
confusion with the unseen activity classes. Zhang et al.
[62] achieved this by solving an optimization problem
whereby a fixed representation is assigned to the background
class which is least similar to all the label embeddings
(seen and unseen). Their background embedding, derived
solely from the semantic information of the classes, fails to
incorporate their corresponding visual information, rendering
it ineffective in modeling complex and diverse background
information. Moreover, this approach of [62] again relies
on the impractical assumption that the unseen classes are
known apriori during training. We rectify this by learning
the background embedding in a joint end-to-end manner,
enabling it to model more complex background information.

While the contrastive learning based classification enables
effective visual-semantic mapping, it is also necessary to
ensure that visual features of an activity remain consistent
across different videos. This is motivated by the concept
of temporal coherence [33, 44], whereby the features
corresponding to an activity should be focused on the
discriminative aspects, such as gait, and ignore background
nuances such as illumination and occlusion across different
videos, as well as, different time segments of the same video.
To enable this we apply a supervised-contrastive loss [26, 48]
on the intermediate visual representations produced by the
transformer, and show it’s efficacy in boosting the zero-shot
detection performance of unseen classes.
Main contributions. To the best of our knowledge, this is
the first work to utilize a transformer-based set-prediction
framework to address ZSTAD, where the framework is trained
using a semantic information guided contrastive learning
strategy. The main characteristics of our proposed solution
are as follows:
1. We frame ZSTAD as a set-prediction problem and introduce
a transformer-based setup, TranZAD, for direct detection

6244



of unseen activities, removing the need for hand-crafted
components and consequently achieving faster inference.
2. We introduce a novel approach for obtaining the back-
ground label embedding, which enables the modeling of
diverse and complex background scenes.
3. This the first study to explore semantic information guided
contrastive learning of a multi-headed attention model to
address the challenging problem of ZSTAD.
4. Compared to the existing state-of-the-art, TranZAD does
not rely on the explicit knowledge of which classes are unseen
and still achieves superior or comparable performance,
validated by experiments on two popular ZSTAD datasets
THUMOS’14 [22], and Charades [47].

2. Related Work
Temporal Activity Detection. Temporal activity detection
(TAD) is the study of simultaneous classification and temporal
localization of multiple action instances in long untrimmed
videos. Current state-of-the-art TAD methods are primarily
two-stage detectors involving temporal proposal generation
followed by action classification [67, 15, 16, 57, 9, 60]. The
performance of these methods is attributed to fully supervised
training on large-scale annotated data, which makes them
fail to detect unseen activities during inference and require
re-training with heavy supervision on the new activities. This
is often difficult to acquire in the real world. Furthermore,
the proposal generation mechanism relies on hand-crafted
anchor placements [3, 20, 15] or manually-tuned boundary
matching mechanisms [67, 30, 29], as well as NMS-based
post-processing [49] which increases inference time.
Zero-Shot Learning. Zero-shot learning is the study of
generalizing to previously unseen classes by transferring
knowledge from semantically related seen classes. Unlike
the simple classification problem of zero-shot recognition
(ZSR), zero-shot detection (ZSD) is much more challenging
as it focuses on the joint localization and classification of
previously unseen instances [42]. Existing literature on
both ZSD and ZSR have largely focused on image data
[10, 27, 35, 63, 41, 56, 64, 42, 65, 32, 53, 42, 2, 68, 40, 66, 4].
The limited work done on videos [39, 8, 7, 28, 58, 37] are
mostly focused on extending ZSR for classification of short-
trimmed video clips. Recently, Zhang et al. [62] attempted
to address this by introducing a modified RC3D framework,
which maps temporal region proposals to the semantic space
and compares them with Word2Vec [18] embeddings for
metric-based classification. However, their framework suf-
fers from the challenges associated with two-stage detectors
like RC3D [57] and similar to many previous ZSD studies
on images [42, 40], assume the knowledge of which classes
are unseen during training and use the semantic context of
these unseen classes to boost ZSD performance. This does
not reflect many practical scenarios where any information
about the unseen classes may not be available during model

training. Additionally, Zhang et al. [62], like many prior
ZSD studies [42, 41, 40], assign a fixed representation to the
background embedding, which is ineffective in modeling
complex background information of video data.

Transformers in Vision. The success of transformers
in NLP tasks [52] has inspired several computer vision
applications, such as image recognition [43, 13, 14], image
generation [36], object detection [5, 69, 61, 54, 25] and
also video understanding [49, 17]. Recently, Carion et al.
[5] introduced DETR, a transformer-based set-prediction
method for object detection in images, removing the need for
hand-crafted designs and manual-post processing. However,
as shown by Tan et al. [49], directly extending the setup of
[5] to videos is problematic, owing to the inherent slowness
of video features which makes the traditional transformer
encoder prone to over-smoothing the video representations
leading to a reduction in their discriminability. Tan et al. [49]
addressed this by substituting the transformer encoder with
a multi-layered perceptron (MLP). We use this insight of [49]
in our experiments. However, unlike [49], which addresses
activity proposal generation in the fully supervised setup,
our framework focuses on the direct set-based prediction of
unseen activities in a zero-shot setting.

Contrastive Learning Contrastive learning focuses on
learning representations that maximize the alignment of
similar instances. The utilization of contrastive losses has led
to significant performance gains in self-supervised representa-
tion learning [21, 55, 51, 12, 11]. Recently, many studies have
extended the batched contrastive loss to the supervised setting
[26, 48, 59]. In this paper, we utilize supervised contrastive
learning in two ways, 1) to build an effective visual-semantic
mapping relationship for performing semantics-guided
classification, and 2) to enable consistency of the activity
visual features across different temporal segments within the
same video, as well as, across different videos.

3. Methodology

3.1. Problem Description

In ZSTAD, the task is to perform joint classification
and temporal localization of activity categories that are
previously unseen during training. Therefore, given Cs seen
activity classes and Cu unseen activity classes, the training
data set (Xcs ,Ycs) = {(xcs,i,ycs,i)}

Ns
i=1 is composed of Ns

untrimmed videos each containing temporal annotations
from only the seen activity classes, and the testing set
Xcu = {xcu,j}

Nu
j=1 is comprised of Nu videos, with each

containing at least one activity from the unseen classes. The
seen and unseen are semantically related, and we exploit this
relationship to guide the training of our framework.
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Figure 2: Overview of TranZAD. TranZAD addressses ZSTAD as a direct set-prediction problem, and has four components, 1) a multi-layered perceptron
(MLP) encoder (with LE layers) for transforming the extracted video features into a compact representation, 2) a transformer decoder (with LD layers) for
generating the visual features of all the activities in a video, 3) a semantic alignment head which decodes the class labels by contrasting the semantic embeddings
with the visual features, and 4) a boundary head for obtaining the temporal coordinates.

3.2. Overview of Method

In order to transfer knowledge from the seen to the unseen
classes, we leverage the semantic word embeddings of the
textual descriptors of each activity category obtained using
unsupervised vector embedding models such as Word2Vec
[18] and GLoVE [38]. These embeddings provide a measure
of the semantic relationship between the seen and unseen
classes [42, 4, 62]. The seen and unseen class semantic
embeddings are denoted as, Wcs ={wcs,i}

Cs
i=1∈Rd×Cs and

Wcu = {wcu,j}
Cu
j=1 ∈Rd×Cu respectively. The background

class embedding is denoted as wØ, which is used to
distinguish the pertinent activity classes from the background
information in videos. Unlike existing ZSTAD work [62]
we do not assign a fixed representation to wØ but model it
as a learnable network parameter (For eg, in pytorch it is
formulated as nn.Embedding() the weights of which
are made to simulate the background embedding). During
training only, Wcs is available, which along with wØ is used
to establish an effective visual-semantic mapping for the seen
activities, which in turn enables the transfer of knowledge
to the detection of semantically-related unseen activities.

The schematic representation of TranZAD is shown in
Fig. 2. For each video we obtain detections in a sliding win-

dow manner, dividing the video into T overlapping segments
{x̂i}Ti=1, where T depends on the temporal window, overlap
ratio, and video duration. A 3D convolutional network is used
to extract short-term spatio-temporal features of each tempo-
ral segment x̂i, which along with fixed positional encodings
[52] are provided as input to the multi-layered perceptron
(MLP) based encoder for obtaining a compact representation
of x̂i. As discussed earlier, the traditional transformer encoder
[5] is substituted by an MLP since the inherent slowness of
video features makes the former prone to over-smoothing
the video representations in-turn diminishing their discrim-
inability [49]. The encoder representations and M learned
query encodings called action queries are passed to the trans-
former decoder which utilizes multi-headed attention [52] to
aggregate long-term temporal information from the encoder
representations into the action queries and transforms them
into a set of M action predictions, each of which represent
the visual features of the activities in x̂i. The action predic-
tions are parallelly decoded into their respective classes and
temporal coordinates (start and end times), using the semantic-
alignment head and the boundary head, respectively.

The training of the framework is guided by three losses
Lcls, Lloc and Lcon. Lloc is the temporal localization
loss applied on the predicted coordinates generated by
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the boundary head. On the other hand Lcls and Lcon are
supervised contrastive losses, where the former is the main
classification loss associated with the semantic-alignment
head whereby the visual features are first mapped to the
semantic space and contrasted with the Ws and wØ. The
latter on the other hand, is applied on the intermediate visual
features of the decoder and ensures that the visual features
of each activity are consistent throughout the training set
irrespective of background nuances in different videos. The
individual modules and losses are discussed in detail below.

3.3. Network Architecture

Video Feature Extraction. The video features can be
extracted using any 3D convolutional network [50, 6] as the
backbone. Therefore, for each video segment x̂i in a given
sliding window t, the extracted features are denoted as f(x̂i)
with a set temporal length of lt.
Feature Encoder. The encoder is designed as an MLP, which
takes in the feature representation of a video segment f(x̂)
along with fixed positional encodings, pos(f(x̂)) and trans-
forms it into a compact representation [52, 5, 49]. Formally
the output of the encoder with LE layers is given as follows,

ZE=

LE∑
j=1

UT
(E,j)(f(x̂)+pos(f(x̂))) (1)

where, U(E,j) is the weight matrix of the jth layer.
Transformer Decoder. We use the standard transformer
[52] decoder in our framework. It takes as input the encoded
video representation, ZE and M action queries q ∈Rv×M .
The transformer decoder leverages multiple encoder-decoder
and stacked multi-head attention to model the long term
spatio-temporal relationship between all the activities in a
video clip [49, 5]. In this way, the decoder learns all inter-
dependencies in a pair-wise manner and refines the action
queries q into a set of M action predictions ZD ∈ Rv×M .
Thus the output ZD is a collection of the visual features of
all the activities in a video clip, which are then decoded to
their respective class labels and temporal coordinates by
the detection heads. To ensure that ZD is generalizable for
zero-shot detection, it is necessary to infuse information from
the semantic embeddings in the decoding process. This is
done using the semantic alignment head as described below.
Detection Heads. The following detection heads are used
to independently decode the M action predictions into their
class labels and temporal coordinates.

1. Semantic Alignment Head: The primary purpose of
this head is to learn the relationship between the vi-
sual and semantic features of the seen activities by es-
tablishing an effective visual-semantic mapping during
the training phase. As shown in Fig. 2, this is accom-
plished by first mapping ZD to the semantic space using

a feed-forward network with weights UV S ∈Rv×d to
obtain ZS , where ZS=UT

V SZD. Simultaneously, wØ

is concatenated with Wcs to get a background synchro-
nized seen-class embedding matrix WC=[Wcs ;wØ]∈
Rd×(Cs+1). Therefore, the classification score for the
mth action prediction is obtained as follows,

pm,c(c|zS,m)=
exp(ŵT

c ẑS,m/τcls)
C∑

c=1
exp(ŵT

c ẑS,m/τcls)

(2)

where ŵc and ẑS,m are the l2 normalized feature
vectors of the cth semantic embedding and the mth

mapped visual feature respectively, C = Cs + 1, and
τcls is a learnable temperature parameter for scaling
the cosine similarity. The p.m.f. over all C classes is
pm = [pm,1,pm,2,...,pm,C]. Compared to assigning a
fixed value to τcls, we observe a more discriminative
visual-semantic feature alignment by learning it.

2. Boundary Head: The boundary head is a simple
feed-forward network with two output nodes that takes
as input the activity visual features ZD and outputs their
individual temporal coordinates t̂m=(t̂start,t̂end)m.

3.4. Loss Functions

Set based label assignment. The optimal bipartite matching
between a set of Ng ground truth instances and the set of M
activity detections is obtained using the Hungarian matching
algorithm as shown in [5, 49]. The matched ground truth
label of the mth detection is given as σ(m). If a detection
does not match any ground instance then it is assigned the
background class i.e. σ(m)=Ø.
Visual-Semantic Contrastive Loss. This is the classification
loss associated with the semantic-alignment head and is
modeled as follows,

Lcls=− 1

M

M∑
m=1

C∑
c=1

1clog
exp(ŵT

c ẑS,m/τcls)
C∑

c=1
exp(ŵT

c ẑS,m/τcls)

(3)

where 1c is the one-hot vector corresponding to the cth class.
Since the classification score is obtained by contrasting
the visual and semantic information of the seen classes, by
minimizing Lcls, TranZAD effectively learns to associate
the visual features of a seen activity with it’s corresponding
semantic concept. This visual-semantic consistency enables
TranZAD to detect previously unseen activities that are
semantically-related with the seen ones.
Localization Loss. The temporal localization loss of the
boundary head is the following regression loss,

Lloc=
1

Ng

M∑
m,σ(m)̸=Ø

λa ·Ltbox(tσ(m),t̂m)+λb ·LgtIoU (tσ(m),t̂m)

(4)
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where, t̂m and tσ(m) are the detected and matched ground-
truth temporal coordinates respectively,Ltbox andLgtIoU are
the l1 and generalized temporal IoU losses of [49].
Visual Consistency Loss. While the visual-semantic
contrastive loss brings consistency between the visual and
semantic concepts of each activity, it is also necessary to
ensure that the distribution of the visual features for each
activity remains temporally coherent. This means that for
each activity, its visual features should remain consistent
across different temporal segments of the same video as
well as across different videos. We accomplish this by
leveraging supervised contrastive learning [26] on the
intermediate visual features ZD generated by the transformer
decoder. Therefore for each positive pair of detected features
(zD,i,z+D,j) the consistency loss is as follows,

l(zD,i,z+D,j)=−log
exp(

ẑTi ẑ+j
τcon

)

Mpi∑
k=1

σ(k)̸=Ø

exp(
ẑTi ẑ+

k
τcon

)+
Mni∑
k=1

σ(k)̸=Ø

exp(
ẑTi ẑ−

k
τcon

)

(5)

where, a pair is considered positive if their matched ground-
truth classes are the same i.e. yσ(i) = yσ(j), ẑi is the l2
normalized feature of zD,i, Mpi

and Mni
are the number of

positive and negative pairs w.r.t. i, and τcon is a fixed temper-
ature parameter as used in [26]. The total visual consistency
loss over all pairs is formulated as follows,

Lcon=

M∑
i=1,σ(i) ̸=Ø

1

Mpi

Mpi∑
j=1,σ(j)̸=Ø

l(zD,i,z+D,j) (6)

Minimizing Lcon enforces the transformer to focus on the
discriminative aspects of each activity and ignore background
nuances resulting in consistent visual features for each activity
across different videos. It must be noted that the background
visual features are excluded from the computation of Lcon.
This is because the number of predictions matched to the
ground truth classes is sparser than background predictions,
and so using the background class features leads to an over-
whelming influx of irrelevant information to Lcon, causing
distortion in the distribution of the visual feature space.

3.5. Training and Inference

Training. During training only the seen class visual and se-
mantic information is available in Xcs and Wcs respectively.
For each xi in Xs the detections are obtained in a sliding
window manner, where each temporal segment and Wcs are
forward passed to the model and the losses described above
are computed. The entire framework is trained end-to-end
by backpropagating over the following loss,

Ltotal=Ldet+λcon ·Lcon (7)

where, Ldet = Lcls + Lloc and λcon is a hyperparameter
that controls the trade-off between the detection and the

Table 1: Zero-shot temporal activity detection performance
on 8 unseen classes of Thumos’14 in terms of mAP (%) at
different tIoU thresholds. The best results for each backbone
are highlighted in bold.

tIoU
Backbone 0.1 0.2 0.3 0.4 0.5

RC3D+SE C3D 13.96 12.61 10.81 7.91 5.11
RC3D+CONSE C3D 14.16 12.54 10.93 8.02 5.29
ZS RC3D C3D 21.34 16.98 15.01 11.12 9.15
TranZAD-G C3D 21.59 20.61 19.14 16.37 12.84
TranZAD-W C3D 22.27 20.58 19.40 15.93 12.36
TranZAD-G I3D 24.33 22.51 20.04 17.69 14.17
TranZAD-W I3D 23.31 21.54 19.48 17.21 13.84

visual-consistency loss. Since wØ dynamically updates itself
as a part of this end-to-end learning, it is able to incorporate
both visual and semantic information to model a more
generalizable background embedding for ZSTAD.
Inference. During the testing phase, the seen and unseen
class activity segments are detected separately for each
video in Xcu . In either case, prior to the computation of the
classification score, wØ is concatenated with Wcs or Wcu

to obtain the background synchronized seen and unseen class
embedding matrices given as WC and WC′ , respectively
(Fig. 2). The predicted unseen activity segments are used
to evaluate the zero-shot detection performance of TranZAD.

4. Experiments
4.1. Experimental Setup

Baselines. We compare the performance of TranZAD with
the modified RC3D [57] framework of Zhang et al. [62],
which is currently the only work that addresses ZSTAD. We
refer to this baseline as ZS-RC3D and compare with two
additional baselines designed by [62] called RC3D-ConSE
and RC3D-SE, which combine the vanilla RC3D framework
with ZSR methods of [35] and [58] respectively.
Datasets. We perform experiments on two popular activity
detection datasets Thumos’14 [22] and Charades [47], which
have also been used for ZSTAD [62]. For a fair comparison
the class and train-test splits are kept the same as [62] for
both datasets.

• Thumos’14: This dataset has temporal annotations
for 20 activity classes and 200 validation, and 213 test
videos. Following [62], 12 activities are selected as
seen classes and 8 are selected as unseen, with the 200
untrimmed validation videos being used for training,
and the 213 test videos being used for testing.

• Charades: This dataset comprises of 9848 videos of
157 daily indoor activities collected using Amazon
Mechanical Trunk. Following [62], we consider 120
activities as seen classes and the remaining 37 as
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Table 2: Thumos’14 per-unseen class AP (%) at tIoU =0.5. The best results for each backbone are higlighted in bold.

Backbone Baseball Pitch Cricket Bowling Diving Hammer Throw Long Jump Shotput Soccer Penalty Tennis Swing
R-C3D+SE [62] C3D 2.23 3.09 3.13 9.21 12.15 3.42 3.38 4.29
R-C3D+ConSE [62] C3D 2.21 3.07 3.23 9.53 12.54 3.56 3.46 4.72
ZS-RC3D [62] C3D 4.34 4.87 5.03 18.12 20.78 7.06 6.03 6.93
TranZAD-W C3D 5.16 6.35 14.23 21.49 27.55 11.73 5.09 7.30
TranZAD-G C3D 5.08 8.58 15.03 21.26 27.41 12.89 5.14 7.33
TranZAD-W I3D 5.39 8.10 15.91 18.60 32.65 17.06 5.28 7.73
TranZAD-G I3D 6.44 7.79 15.26 18.28 34.59 17.54 5.64 7.82

Table 3: Zero-shot detection performance on 37 unseen
classes of Charades in terms of mAP (%) of [46]. Overall best
results are highlighted in bold.

Backbone mAP
RC3D+SE C3D 9.17
RC3D+CONSE C3D 9.84
ZSRC3D C3D 13.23
TranZAD-G C3D 13.14
TranZAD-W C3D 13.05
TranZAD-G I3D 13.56
TranZAD-W I3D 13.21

the unseen classes, with the training and testing set
comprised of 7985 videos and 1863 videos, respectively.

Additional details of these datasets and their class-splits are
provided in the supplementary material.
Semantic Embeddings. We experiment with both GloVE
[38] and Word2Vec [18] embeddings, each with a dimension
size of 300. The semantic embedding of each activity class
is obtained by averaging the representations of all the words
describing that class. Unlike the simple activity captions
of Thumos’14, which are tags like ‘Basketball Dunk’ the
activity captions of Charades are gerund phrases, such as
‘Someone is Eating’ and so we follow [62] and remove some
of the prepositions and quantifiers from each caption before
obtaining the final embedding. The GloVE model is referred
to as TranZAD-G and the Word2Vec one as TranZAD-W.
Implementation. The feature extractor can be any 3D
convolutional backbone and we show results using both C3D
[50] and I3D [6] features, pretrained on Sports-1M [23] and
Kinetics [24], respectively. The sliding temporal window
is set to 500 and 250 frames for Thumos’14 and Charades,
respectively. The overlap ratio is set to 0.75 during training
and 0.5 during testing for both datasets. In the ZSL setting, the
training data must not contain any instances from the unseen
classes. Therefore, following the same principle as [62], we
remove any window segment with activities belonging to the
unseen classes in the training videos. The temporal length
of the video features lT is set to 100 for Thumos’14 and 50
for Charades. The number of action queries M is set to 32
for Thumos’14 and 8 for Charades. In all our experiments,

Figure 3: Qualitative results of TranZAD on Thumos’14.

we use fixed sine positional encodings [52].
λa and λb are set to 5 and 2 following [49], λcon is set to

0.01. The learnable scaling parameter τcls is initialized with
0.1, and the scalar τcon is fixed at 0.05 for all experiments.
Training is conducted for 100 epochs using the AdamW [31]
optimizer, with a batch size of 64 and a learning rate of 10−4

which is dropped by a factor of 10 after 70 epochs. Additional
implementation details are listed in the supplementary.

4.2. Comparative Results

Results on Thumos’14: The results on Thumos’14 are shown
in Table 1, reported in terms of mean average precision (mAP)
at tIoU thresholds [0.1,0.5]. The performance of the baselines
is taken directly from their paper [62]. With both C3D and
I3D backbones, TranZAD outperforms ZS-RC3D and the
other baselines. Specifically for tIoU =0.5, the best results
of TranZAD with the C3D features achieve > 3% increase
in mAP and with the I3D features, TranZAD achieves >5%
increase. The performance of TranZAD-W and TranZAD-G
are nearly identical, and the slight improvement of the latter
is due to the better representation of the GloVE embeddings
over the Word2VEC ones. Table 2 shows the per unseen class
average performance (AP) at tIoU = 0.5, and it can be ob-
served that TranZAD outperforms ZS-RC3D on the majority
of the unseen classes. This shows that our anchor-free learn-
ing with transformers and an adaptive background embedding
helps to overcome the challenges of a two-stage detector like
ZS-RC3D, resulting in more true positive detections. Visu-
alizations of some qualitative results are shown in Fig. 3.
Results on Charades: For Charades, as per common practice
to performance is computed in terms of Sigurdsson et al.’s
[46] mAP metric and is reported in 3. Overall, TranZAD
achieves comparable performance using both C3D and I3D
features. On average, there is about 79% temporal overlap
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Figure 4: Qualitative results of TranZAD on Charades.

Table 4: Comparison of our framework with ZS-RC3D w/o
super-class classification loss. The 3D backbone is C3D for
both methods. For Thumos’14 the metric is mAP@tIoU=0.5
and for Charades its the mAP of [46].

ZS-RC3D-Lsc TranZAD-W
Thumos’14 8.25 12.36
Charades 11.72 13.05

between activities in the Charades dataset compared to 8% in
Thumos’14, which makes Charades a much more challenging
dataset for ZSTAD. Also, the number of pertinent activities
in each video of Charades is much sparse compared to
Thumos’14, so we use fewer action queries for Charades.
Qualitative results are shown in Fig. 4. It must be noted that
the performance of ZS-RC3D receives a significant boost by
using unseen class semantic context during training, which
is only possible if the model knows which classes are unseen
beforehand. We analyze this as follows.
Removing the need for unseen class context. A significant
boost in the performance of ZS-RC3D [62] can be attributed
to using context information about the unseen classes during
training. This means that ZS-RC3D is aware of which
classes are unseen apriori, which is not practical. Specifically,
ZS-RC3D utilizes the unseen class semantic embeddings to
compute a background embedding as well as super-classes
the latter being used as a supervisory signal for a max-margin
classification loss Lsc. As shown in Table 4 the performance
of ZS-RC3D drops when Lsc is not used (even though it’s wϕ

is obtained using seen+unseen class embeddings), with the
drop being most significant for the Charades dataset. In con-
trast, our TranZAD framework does not use any information
from the unseen classes during training (visual or semantic).
Despite that it achieves better or comparable performance
to ZS-RC3D and is more applicable for practical scenarios.

4.3. Ablation Studies

Impact of learned background embedding. We study
the effectiveness of our learned wØ by comparing with the
strategy of Zhang et al. [62] for obtaining wØ. Therefore,
we remove wØ as a learnable network parameter and assign
it a fixed representation obtained following [62]. As seen in
the third row of Table 5 and 6, the performance of TranZAD
degrades when we assign wØ the fixed representation of [62].
This shows that it is more important to learn wØ, so that it
incorporates both semantic and visual cues to model more

Table 5: Effectiveness of learned background embedding
and visual consistency loss on Thumos’14. Results are with
I3D features in terms of mAP@tIoU =0.5.

Lcon learned wØ TranZAD-G TranZAD-W

× × 12.58 11.12
× ✓ 12.79 13.18
✓ × 12.76 12.89
✓ ✓ 14.17 13.84

Table 6: Effectiveness of learned background embedding
and visual consistency loss on Charades. Results are re-
ported with I3D features in terms of mAP of [46].

Lcon learned wØ TranZAD-G TranZAD-W

× × 12.09 12.01
× ✓ 12.17 12.52
✓ × 12.31 12.24
✓ ✓ 13.56 13.21

diverse background information in videos.
Impact of visual consistency loss. As shown in Table 5,
the addition of Lcon enables increased consistency of the
visual features of each activity across different videos. This
consequently boosts the zero-shot detection performance
of TranZAD by effectively enhancing the discriminability
of the visual features. From the second row of Table 5 and
6, it can be observed that, for both Word2Vec and GLoVE
embeddings, the performance declines when Lcon is not
included i.e. λcon=0. A sensitivity analysis of λcon is given
in the supplementary.

5. Conclusion

In this paper, we introduce a transformer-based setup
called TranZAD to address the challenging task of ZSTAD.
TranZAD streamlines the detection of unseen activities
by performing direct set-based prediction, removing hand-
crafted designs, and consequently achieving faster inference.
We show how the visual and semantic information of only the
seen classes can be used to train TranZAD via a contrastive
learning strategy enabling improved reasoning of previously
unseen activities. We also propose an adaptive approach for
modeling the background class embedding enabling greater
distinguishability of unseen classes from the background
information in videos. Experimental analysis on Thumos’14
and Charades establishes TranZAD as a new baseline for
the modeling and search of semantic relationships in videos
under data and computational scarcity.
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