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Abstract

We present LAVA, a simple yet effective method for multi-
domain visual transfer learning with limited data. LAVA
builds on a few recent innovations to enable adapting to
partially labelled datasets with class and domain shifts.
First, LAVA learns self-supervised visual representations
on the source dataset and ground them using class label
semantics to overcome transfer collapse problems associ-
ated with supervised pretraining. Secondly, LAVA max-
imises the gains from unlabelled target data via a novel
method which uses multi-crop augmentations to obtain
highly robust pseudo-labels. By combining these ingre-
dients, LAVA achieves a new state-of-the-art on ImageNet
semi-supervised protocol, as well as on 7 out of 10 datasets
in multi-domain few-shot learning on the Meta-dataset.1

1. Introduction

Using limited data to effectively adapt to new tasks is
a challenging but essential requirement for modern deep
learning systems. It enables leveraging the power of such
systems while avoiding excessive data annotation which is
usually costly, time consuming, and often requires domain
expertise [9, 17, 52]. A promising direction is to develop
methods that are capable of transferring knowledge across
collective data of many tasks. In this work, we examine
low-resource multi-domain visual transfer: given a visual
learner pretrained on a source dataset2, our goal is to effec-
tively transfer to a target dataset with potential class and/or
domain shift. We focus on low-resource cases where the
target dataset is very small but fully labelled (as in few-
shot learning - FSL); or cases where it is sufficiently large
but only partially labelled (as in semi-supervised learning
- SSL). We propose a transfer method which simultane-
ously addresses such cases and demonstrates a strong per-
formance on multiple transfer benchmarks.

*corresponding author: islam.nassar@monash.edu
1Code:github.com/islam-nassar/lava.git
2We use ImageNet [40] as the source dataset in all our experiments.
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Figure 1: Method Overview. LAVA uses the source dataset to
learn self-supervised initialisations as well as a mapping between
visual features and label semantics. During transfer, LAVA uses a
teacher-student setup to adapt by multi-crop pseudo-labeling unla-
belled instances, and by matching the semantics of labelled ones.

LAVA’s first design goal is to employ a pretraining strat-
egy which supports generalisation beyond classes and do-
mains with limited labelled data. Hence, we begin by
investigating the effect of source pretraining on the vi-
sual transfer performance. In line with recent research,
we find that supervised pretraining leads to sub-optimal
transfer[2, 12, 30]. Supervision with labels, more often than
not, is too eager to learn specialised features which can suc-
cessfully discriminate the source classes/domains but fails
to generalise beyond them. We argue that its other limita-
tion is the semantic-free nature of the labels used. Labels
are represented using one-hot vectors explicitly encourag-
ing to ignore label semantics. For example, the learner is
encouraged to treat “bus” and “school bus” as two unre-
lated classes. In Fig. 2, we use DomainNet [33] clipart
dataset to qualitatively demonstrate two artifacts associated
with supervised pretrained representations: class collapse,
whereby the pretrained representations collapse into incor-
rect source classes just because they share superficial simi-
larities with target classes; and domain collapse, where the
class semantics are preserved but the visual domain infor-
mation is disregarded. LAVA’s first ingredient is introduc-

147



monalisa monalisa monalisa monalisa monalisa book jacket book jacketbook jacketbook jacket

hamburger hamburger hamburger hamburger sandwich cheeseburger cheeseburgercheeseburgercheeseburger

Nearest Neighbours (LAVA) Nearest Neighbours (Supervised)

Figure 2: Class & Domain collapse. We display two query images from clipart target (left), and their 4 nearest neighbours, from clipart
and ImageNet, in LAVA’s representation space (middle) and an ImageNet-supervised learner’s (right) before training on target instances.
ImageNet instances are bordered in blue. We observe that the supervised learner suffers from two types of representation collapse: (i)
class collapse (upper), where the learner picks an irrelevant source class which shares superficial patterns with target class; or (ii) domain
collapse (lower), where the learner picks a relevant source class but ignores the visual domain. Please refer to Sec. 5 for more details.

ing a two-fold approach to address the collapse problem: 1)
self-supervised source pretraining to learn task-independent
features leading to better transfer; and 2) using the language
modality to ground the self-supervised representations to an
independent semantic space: during pretraining, LAVA uses
source class labels to learn a mapping between the visual
representations of the source instances and the language se-
mantic representation of their class labels. At transfer time,
such mapping is used to infer relations between “seen” and
“unseen” classes by virtue of their foreknown semantic sim-
ilarities. (Sec. 3.1)

LAVA’s second design goal is to leverage unlabelled tar-
get data (if available) to improve transfer performance. For
that, we employ multi-crop augmentation which was orig-
inally proposed to encourage learning representations that
are invariant to spatial augmentations for self-supervised
contrastive learning [8]. We extend the idea to semi-
supervised learning exploiting the observation that images
can often contain multiple semantic classes and hence using
a single label per image can hurt the performance. Consider
the image in Fig. 3, due to random cropping used during
training, it is conceivable that the teacher model (perform-
ing the pseudo-labeling) receives a view centered around
a different object than the student, leading to a label that
is not compatible with the image. Therefore, we calculate
pseudo-labels based on multiple local and global views of
images to account for those containing multiple semantic
concepts. We show that enforcing a single pseudo-label
per image is sub-optimal. Instead, applying a pair-wise ag-
gregate loss across multiple views enhances the quality of
pseudo-labels. (Sec. 3.2)

LAVA’s main contributions are:1) a practical method
which combines and extends a few recent innovations to
address various transfer learning regimes; 2) provides em-
pirical insights about transfer collapse problems associated
with supervised pretraining and proposes a strategy to ad-

dress them; 3) extends the multi-crop augmentation strategy
to the semi-supervised setting via pseudo-labeling; 4) sets a
new state-of-the-art on the ImageNet [40] SSL benchmark
and demonstrates strong performance on other challenging
SSL and FSL benchmarks including the Meta-Dataset [49].

2. Related Work

Few-Shot learning (FSL) Existing FSL approaches can be
categorized into metric-learning methods that learn an em-
bedding space to compare query and support samples [23,
32, 43, 51], meta-learning approaches that adapt a base
learner to new classes [7, 14, 20, 25, 27, 37, 41], or a com-
bination of both [49]. Most existing FSL methods work
well when the train and test sets are from the same domain
e.g. subsets of ImageNet (mini-ImageNet [51], and tiered-
ImageNet [38]). They lack out-of-domain (OOD) general-
ization, once there is a distribution mismatch between train
and test data. Recently introduced meta-dataset [49] pro-
vides a challenging benchmark for multi-domain FSL. FSL
methods developed on meta-dataset therefore aim to tackle
OOD generalization [12, 28]. For instance, Transformer
module is employed to capture relationships between dif-
ferent domains in [12, 28]. Even though our approach is
generic across different low-label regimes, our results on
meta-dataset show that we perform favorably against recent
approaches which are specifically developed for FSL.

Semi-supervised learning. A common approach for SSL
is to train the model with a joint loss formulation i.e.
a supervised cross-entropy loss for the labelled samples,
and a un/self-supervised regularization term for unlabelled
samples. Examples include UDA [53], S4L [55] and
[16, 29, 50]. Another approach to SSL is using pseudo-
labels which are generated by either training the model
on the labelled samples and pruning the confident predic-
tions on unlabelled data [5, 6, 24, 30, 39, 44], or by us-
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Figure 3: We display the effect of cropping (top), commonly used in vision training, to highlight our multi-crop pseudo-
labelling motivation: cropping can potentially change the main focus to a different semantic object. Since in a teacher-
student setup, each network receives a different view of the image, images with multiple semantic objects (bottom) 3can hurt
performance if we rely on a single pseudo-label per image.

ing a teacher-student configuration, where a slowly updat-
ing teacher model is used to generate soft-predictions on
the unlabelled samples, which serve as a supervisory signal
for the student model [35, 46, 54]. LAVA leverages the lat-
ter paradigm but improves pseudo-labels using a multi-crop
augmentation strategy.

Semantics and Self-supervision for FSL. Rich seman-
tics [1, 15, 36] and self-supervision [12, 21] have been ex-
plored to help FSL. [1] introduces an auxiliary task to pro-
duce class-level semantic descriptions and showed improve-
ments on fine-grained tasks, while [36] learns rich features
from large number of (image, text) pairs. On the other
hand, recent work [12, 47] recognised the usefulness of self-
supervised features and their ability to generalise, [21] ad-
justed the instance discrimination SimCLR [10] method to
use the few support labels for positive and negative min-
ing, while [12] explicitly adds SimCLR [10] episodes to
the training pipeline. Unlike existing approaches, LAVA
only uses class-level label semantics and employs self-
supervision [9] as a pretraining step rather than incorporat-
ing it into the FSL task.

3. Method
We consider the problem of adapting a classifier pre-

trained on a set of source classes Csrc using labelled sam-
plesDsrc to a target dataset of Ctgt classes by using labelled
instances Dtgt = {(xi,yi)}ni=1, and unlabelled instances
Utgt = {uj}mj=1, with u, x denoting an unlabelled, and la-
belled image respectively, and yi is the class label. Note

3These images are not cherry-picked. They were identified in our analysis (see
Sec. 5) to have inconsistent pseudo-labels.

that such setup suits both SSL and FSL settings. However,
in FSL, Csrc and Ctgt are strictly disjoint and the few-shot
transfer utilises a fully labelled support set.

LAVA employs a teacher-student setup with a teacher
identical in architecture to an online student (see Fig. 1).
The student is trained to match the “soft” label generated
by the teacher when each receives different views of a given
image. The student and teacher networks, parametrized by
θs and θt respectively, are updated alternatively: given a
fixed teacher, the student is first updated by gradient descent
to minimize the network loss; subsequently, the teacher
parameters are updated as an exponential moving average
(EMA) of the student’s, i.e. θt ← γθt + (1− γ)θs, where γ
is the momentum parameter.

3.1. Generalising beyond domains and classes

Our first aim is to use the source dataset to pretrain our
teacher and student with good initial representations to sup-
port out-of-distribution transfer while avoiding the collapse
problems mentioned in Sec. 1.
Self-supervised Pretraining. We employ the recently
proposed DINO [9] method (without modification) to learn
self-supervised initialisations fromDsrc after discarding the
labels. DINO, like other self-supervised methods [3, 10, 13,
18, 19, 26], learn visual features which are invariant to com-
mon factors of variation (e.g. colour distortion, pose, scale)
while not being tied to a specific set of classes or visual
domains. Therefore, they encode richer information which
better supports generalisation. At transfer time, we use the
target instances without their labels to further fine-tune the
DINO representations to the target dataset. We provide in
the appendix a detailed procedure of fine-tuning DINO fea-
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tures to target instances in low-resource cases. We note that
our method is not specifically tied to DINO. However, we
chose it due to its demonstrated performance and its similar
teacher-student setup making it seamless to integrate with
our method. We ablate such choice in our experiments.
Semantic Grounding. To combat the class collapse prob-
lem and to aid generalisation to unseen classes, we employ
language semantics as an independent modality to ground
visual features. During the source pretraining, we addition-
ally learn a semantic MLP module ωθ∗ (* denotes s and
t for student and teacher respectively) mapping the pro-
jection qi

∗ for a given labelled image xi to an embedding
mi

∗ = ωθ∗(q
i
∗). We apply a hinge loss which minimizes the

discrepancy between the semantic projection mi
s

4 and the
corresponding embedding Ωi obtained by applying a pre-
trained language model on the class label, as per:

Lsem =
1

|Dsrc|
∑

xi∈Dsrc

max(0, η − ⟨mi
s,Ω

i⟩+ ⟨mi
s, Ω̂

i⟩),

(1)
where ⟨·, ·⟩ denotes cosine similarity, η > 0 is a scalar
hinge margin, and Ωi and Ω̂i are the language embeddings
of the true and a randomly-sampled false class respectively.
In effect, LAVA learns how to map the visual representa-
tions of the source instances to the language model repre-
sentation space so that each instance is mapped closer to its
true class language embedding and further away (up to a
margin) from all other class embeddings. At transfer time,
ωθ∗ is fine-tuned (together with the backbones) without re-
initialisation. This is in contrast to the classifier head which
must be re-initialised to match the target classes.

Unlike the discrete nature of one-hot class labels, us-
ing language embeddings to ground visual representations
acts as a continuous space to represent class labels. In
such space, “bench” is close to “park bench” and “zebra” is
closer to “horse” than it is to “car”. This is intuitively use-
ful to learn visual-semantic relations which enhance gen-
eralisation to novel concepts. However, it also implicitly
assumes that linguistic similarity is always a good proxy
for visual similarity, which is sometimes not true e.g. “wine
glass” and “wine bottle” while linguistically similar, are
usually visually distinct. Hence, we explored few alterna-
tives for the source of semantics including knowledge graph
embeddings [30], “Glove” [34] and other variants of lan-
guage models (see appendix for details). We find that lan-
guage models trained on paraphrasing tasks [45] provide
the best performance in our setup. We conjecture that this
is because it helps the model to unify similar visual con-
cepts which appear under different names across datasets
(e.g. “airplane” vs “plane”, “horse cart” vs “carriage”, etc.).

4We use the student semantic projection mi
s to apply the loss, while mi

t is only
used during inference.

3.2. Multi-crop pseudo-labelling

When transferring to a partially labelled dataset, LAVA
leverages unlabelled samples by using the teacher to itera-
tively produce pseudo-labels to expand the labelled samples
used to train the student. We differ from previous similar
SSL approaches (e.g. MeanTeacher [46]) primarily in the
way we generate the pseudo-labels: we encourage more ro-
bust pseudo-labels via multi-crop augmentation. We gener-
ate pseudo-labels based on a set T i of multiple sized crops
of a given unlabelled image ui; similarly, student predic-
tions are generated based on another set Si5. The pseudo-
label is then aggregated over the combined views.

Formally, LAVA uses the backbone fθ∗ to map an unla-
belled image ui to zi

∗ = fθ∗(u
i), followed by an MLP

gθ∗ mapping zi
∗ to a projection qi

∗ = gθ∗(z
i
∗). Finally,

using a linear layer followed by a temperature sharpened
softmax, qi

∗ is normalised into a probability distribution
pi
∗ ∈ R||Ctgt||. Then, we apply our loss as per: Lpl =
1
|U|

∑
ui∈U Li

multi, where Li
multi represents the aggregate

loss over targets pi
t|ui ∈ T i and predictions pi

s|ui ∈ Si.
Design choices. Aggregating multi-crop losses involves a
few design alternatives such as: using a single pseudo-label
(e.g. via voting) or averaging across the different crops;
using hard pseudo-labels (e.g. using argmax or sampling)
or soft pseudo-labels; and finally, the count, scale, and
size of the crops are important hyperparameters as they
respectively impact the diversity of pseudo-labels, the lo-
cality of the crops, and the memory consumption during
training. Our empirical study found that using soft sharp-
ened pseudo-labels and averaging over pairs of crops yields
the best performance across different domains (refer to ap-
pendix for more details). More concretely, we eventually
opted for: Li

multi =
1

|Ai|
∑

(ũj
s,ũj

t)∈Ai −pj
t log p

j
s, where

(ũj
s, ũj

t ) is a pair of crops of ui passed to the student and
teacher respectively; and Ai = {(ũj

s, ũ
j
t )|ũj

s ∈ Si, ũ
j
t ∈

T i} is the set of all crop pairs.

4. Experiments
We evaluate LAVA against state-of-the-art (SOTA) base-

lines in three regimes: 1) SSL transfer with domain shift
on DomainNet [33]; 2) SSL without domain shift on Ima-
geNet [40], and 3) multi-domain FSL on Meta-dataset [49].
Training. Unless otherwise stated, we use a batch size
of 256 with a learning rate of 5e−4 and Adam [22] opti-
mizer with a cosine scheduler. For our multi-crop pseudo-
labelling, we use 6 small scale crops and 2 large scale crops
(different for teacher than student) following same scales
in [9], and a teacher momentum γ = 0.996. We use mpnet-
base-v2 [45] language model6 to obtain the label embed-

5Spatial augmentations (e.g. color jittering, random flips) are also applied on all
the crops.

6github.com/UKPLab/sentence-transformers
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Table 1: Comparison to semi-supervised baselines on four domains of the DomainNet dataset. We report average accuracy over 3 runs for
three amounts of labelled instances. All the baselines are implemented in the same codebase using the same network backbone.

Real Clipart Sketch Quickdraw
2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot 2-shot 4-shot 8-shot

FixMatch [44] 23.06 34.68 42.14 30.21 41.21 51.29 12.73 21.65 33.07 24.51 32.98 43.91
SemCo [30] 24.38 40.03 51.13 28.39 46.96 55.48 15.71 28.62 41.06 26.17 34.17 44.12
MeanTeacher++ [46] 51.44 66.16 68.77 46.02 52.43 63.09 25.8 38.79 51.16 29.78 39.12 47.11

LAVA (supervised init.) 57.47 69.51 75.41 38.45 53.05 64.74 36.15 45.15 52.15 32.61 41.67 48.44
LAVA (no semantic loss) 58.57 67.88 72.12 48.57 58.75 65.18 38.76 47.55 53.91 35.95 44.01 54.91
LAVA 58.79 68.04 72.19 48.65 59.05 65.08 39.12 47.63 54.39 36.66 44.12 54.75

dings for our semantic loss. We report accuracy based
on the softmax classifier (see Fig. 1), but when relevant,
we compare it with the K-Nearest Neighbour (KNN with
K=20) accuracy based on the representation zt and/or the
semantic accuracy obtained by applying a cosine classifier
on the semantic projection mt.

SSL on DomainNet. This dataset includes images from
6 visual domains spanning 345 object classes. We ex-
amine LAVA’s ability to transfer from ImageNet to 4 do-
mains with decreasing similarity: real, clipart, sketch, and
quickdraw. To ensure fixed settings across all baselines
(e.g. labelled splits, backbone, learning rate schedule, etc.),
we follow recommendations in [31] and re-implement the
three closest baselines in our codebase. FixMatch [44] uses
consistency regularization with confidence-based pseudo-
labelling, SemCo [30] builds on FixMatch but leverages la-
bel semantics (via a knowledge graph) to account for pre-
known similarities among classes, and MeanTeacher [46]
uses momentum teachers for SSL. We extend it to Mean-
Teacher++ where we employ the same spatial augmenta-
tions we use (instead of the original gaussian noise) and we
use the same backbone as ours (ViT-S/16 [48]). For all ex-
periments, we initialise models with pretrained ImageNet
weights and follow the SSL standard approach: we use a
fraction of the labelled data (expressed in images/class) to-
gether with all the unlabelled data to adapt to target. We fix
the training to 70 epochs 7 (w.r.t unlabelled data) for LAVA
and we use early stopping for all the baseline methods us-
ing a validation set. For each of the 4 domains, we examine
low-, and moderate-shot transfer scenarios using 2, 4 and
8 images/class. We explore both self-supervised initialisa-
tion (i.e. DINO) and supervised initialisation [48] for all the
baselines. We report the best results among the two for the
baselines and both results for LAVA in Tab. 1. Finally, to
examine the contribution of our semantic loss to SSL, we
report results for LAVA when switching it off.

We observe LAVA outperforms baselines consistently,
sometimes, with large margins. Interestingly, FixMatch and
SemCo obtains their best results using supervised source

7The 70 epochs are split into 50 epochs of DINO target pretraining and 20 epochs
for training LAVA

pretraining rather than self-supervised (see self-supervised
results in appendix). One possible explanation is that this
is due to the very different method of augmentations used
in DINO pretraining compared to FixMatch and SemCo.
As conjectured, we see that the impact of self-supervised
initialisation for LAVA becomes more significant when the
visual domain is different from that of ImageNet. For ex-
ample, we observe an impressive 10% boost in the cli-
part 2-shot setting from 38.4% to 48.6%, proving that self-
supervised features helps generalisation beyond domains.
Among the baselines, MeanTeacher++ is the closest to
LAVA; the main two differences are our multi-crop pseudo-
labelling strategy and the semantic loss. We witness a sig-
nificant boost of LAVA over MeanTeacher especially with
fewer labelled samples. This confirms the usefulness of our
multi-crop pseudo-labelling strategy in low-data regimes.
Finally, we get a marginal boost when using semantic loss
in SSL across almost all experiments.

SSL on ImageNet. To examine SSL transfer under the
same domain, we follow ImageNet evaluation protocol by
using 1% and 10% of the labels to train LAVA. Due to the
demanding computational requirements for running experi-
ments on ImageNet, we opted to only re-run SOTA method
PAWS [2] with the same ViT-S backbone as ours. PAWS
combines self-supervised learning with a non-parametric
method of generating pseudo-labels based on a small la-
belled set. For all the other baselines, unless ViT-S re-
sults are reported in the original work, we only report the
Resnet50 results. We note however, that the ViT-S model
has less parameters (21M) compared to Resnet50 (24M),
yet recent work [9, 48] showed an approximate 1-2% im-
provement in favour of ViT-S. Again, we see (Tab. 2) a
significant boost for LAVA against other methods. Inter-
estingly, as opposed to DINO, LAVA achieves large gains.
Note, however, that DINO reports Linear evaluation re-
sults on frozen features and does not fine-tune end-to-end,
so (64.5% and 72.2%) are not directly comparable to the
(69.3% and 76.4%) of LAVA. However, K-NN results can
be directly compared to measure the differential between
LAVA and DINO.

FSL on Meta-dataset.. We use the “ImageNet-only” pro-
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Table 2: SSL results on ImageNet with 1% & 10% of the labels.

Method Arch. Epochs 1% 10%

Different Architecture:

FixMatch [44] RN50 300 – 71.5
MPL [35] RN50 800 – 73.9
SwAV [8] RN50 800 53.9 70.2
SimCLRv2++ [11] RN50 1200 60.0 70.5

Same Architecture:

DINO-NN [9] ViT-S 300 61.3 69.1
DINO [9] ViT-S 350 64.5 72.2
PAWS-NN [2] ViT-S 300 63.5 72.3
PAWS [2] VIT-S 300 68.9 75.2

LAVA-NN ViT-S 300 67.2 73.3
LAVA ViT-S 350 69.3 76.4

tocol to evaluate multi-domain FSL on Meta-dataset [49].
Specifically, we use images of 712 out of 1000 classes
of ImageNet as our source dataset, choose our hyperpa-
rameters by validating on 158 classes and evaluate using
episodes coming from the remaining 130 classes of Ima-
geNet as well as other 9 datasets. Meta-dataset measures
cross-domain FSL by evaluating on datasets including fine-
grained tasks (such as Birds, Aircrafts, Fungi, Flowers, Tex-
tures, Traffic Signs), characters and symbols (Omniglot),
and real and quickly drawn objects (ImageNet, MSCoCO
and Quickdraw). During source pretraining, we use all the
instances coming from the 712 train classes without their
labels for source pretraining8. And, we use the same in-
stances with their labels to train the Semantic MLP (ωθ).
During transfer, we freeze the backbone fθs and finetune
LAVA using the support set for 300 epochs. We use the stan-
dard Meta-dataset setting where each episode contains vary-
ing number of ways (i.e. classes) and imbalanced shots (i.e.
images per class). As per the common practice, we report
results averaged over 600 episodes for each dataset.

As seen in Tab. 3, with such a simple strategy and with-
out resorting to any meta-learning techniques, LAVA out-
performs the closest baseline [12] on 7 out of 10 datasets
and for the other 3, it exceeds the second best with a
large margin. It is important to note here that it is not
straight forward to directly compare between the FSL base-
lines: primarily, because different methods employ differ-
ent styles of training (e.g. meta-training [12, 14, 43] vs fine-
tuning), different initialisation (self-supervised [12] vs su-
pervised [14, 43]) and different backbones (Resnet18 [42,
49] vs Resnet34 [12]). However, we think of our method as
orthogonal to other methods: since we are using language
semantics, which is not available for other methods, we are
cautious about directly comparing with them and hence we
report the results for reference and not comparison. A pos-
sible future direction is to explore how semantics (or other

8Unlike meta-learning methods, we do not use episodes during the training.
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Figure 4: Multi-crop Pseudo-labelling analysis.

possible ways of grounding class relationships) help other
strong methods such as “Cross Transformers”.

5. Analysis and Ablations
We gain key insights by analysing the following: 1)

the multi-crop strategy dynamics and its usefulness to pro-
duce higher quality pseudo-labels; 2) the importance of self-
supervised learning for out-of-domain generalisation; 3) the
role of language semantics towards class generalisation; and
finally 4) the effect of key hyperparameters.
Multi-crop Pseudo-labelling. To study LAVA’s dynam-
ics, we conduct an “oracle” experiment where we use the
ground truth labels (originally hidden to emulate an SSL
setup) to calculate the true pseudo-labels accuracy of the
multiple crops seen by the student and the teacher networks
as the training proceeds. We calculate accuracies based on
the argmax of the soft predictions ps and pt for the stu-
dent and teacher respectively. Fig. 4 provides few interest-
ing observations. First, based on the large crops, the teacher
model exhibits a consistently better performance compared
to the student after an initial ramp up phase (due to the
EMA). This demonstrates the usefulness of the teacher-
student setup, whereby the student model is always guided
by a slightly better teacher. Second, as expected, we ob-
serve that the small crops (only seen by the student) have
lower accuracy, on average, compared to large crops; but in-
terestingly, the disagreement among the predictions associ-
ated with the small crops decrease as training proceeds, sug-
gesting that the model is learning from the different small
views of an image a consistent representation which truly
captures its main object. Next, we repeat the same process
for our closest baseline (MeanTeacher++) to examine the
difference in pseudo-labelling quality obtained by each of
the methods. Note that with the modifications we introduce
to MeanTeacher++, the difference between the two meth-
ods in such setting is only the multi-crop pseudo-labelling.
We observe in Tab. 4 that indeed, the multi-crop strategy
brings a significant benefit across three different domains
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Table 3: Results on Meta-Dataset when only pre-training on ImageNet train split. Mean accuracy, 95% confidence interval
are reported over 600 test episodes. Our method outperforms the best method in 7 out of 10 datasets.

K-NN MatchNet ProtoNet Finetune fo-Proto BOHB ProtoNet-L ALFA-fo-Proto CTX LAVA
[49] [49] [49] [49] MAML [49] [42] [49] MAML[4] [12] (ours)

ImageNet 41.03±1.01 45.00±1.10 50.50±1.08 45.78±1.10 49.53±1.05 51.92±1.05 53.69±1.07 52.80±1.11 62.76±0.99 68.75±0.54
Omniglot 37.07±1.15 52.27±1.28 59.98±1.35 60.85±1.58 63.37±1.33 67.57±1.21 68.50±1.27 61.87±1.51 82.21±1.00 77.92±0.50
Aircraft 46.81±0.89 48.97±0.93 53.10±1.00 68.69±1.26 55.95±0.99 54.12±0.90 58.04±0.96 63.43±1.10 79.49±0.89 81.14±0.49
Birds 50.13±1.00 62.21±0.95 68.79±1.01 57.31±1.26 68.66±0.96 70.69±0.90 74.07±0.92 69.75±1.05 80.63±0.88 84.88±0.77
Textures 66.36±0.75 64.15±0.85 66.56±0.83 69.05±0.90 66.49±0.83 68.34±0.76 68.76±0.77 70.78±0.88 75.57±0.64 82.05±0.50
Quick-Draw 32.06±1.08 42.87±1.09 48.96±1.08 42.60±1.17 51.52±1.00 50.33±1.04 53.30±1.06 59.17±1.16 72.68±0.82 68.44±0.57
Fungi 36.16±1.02 33.97±1.00 39.71±1.11 38.20±1.02 39.96±1.14 41.38±1.12 40.73±1.15 41.49±1.17 51.58±1.11 55.02±0.67
Flowers 83.10±0.68 80.13±0.71 85.27±0.77 85.51±0.68 87.15±0.69 87.34±0.59 86.96±0.73 85.96±0.77 95.34±0.37 95.43±0.66
Traffic-Sign 44.59±1.19 47.80±1.14 47.12±1.10 66.79±1.31 48.83±1.09 51.80±1.04 58.11±1.05 60.78±1.29 82.65±0.76 69.24±1.06
MSCOCO 30.38±0.99 34.99±1.00 48.03±0.99 41.00±1.10 34.86±0.97 43.74±1.12 41.70±1.08 48.11±1.14 59.90±1.02 63.75±0.45

Table 4: Initialisation study. Cross-domain performance when
using different initialisation and different fine-tuning methods.

Real Clipart Quickdraw
2-shot 8-shot 2-shot 8-shot 2-shot 8-shot

Fully-supervised 73.74 76.55 71.87 72.75 61.22 67.23

Initialisation:
Sup. (ImNet)∗ 54.92 64.81 22.49 35.39 10.68 18.78
DINO (ImNet) 46.17 59.42 15.19 26.97 8.98 16.81
DINO (Target)∗∗ 50.45 62.54 40.35 55.03 30.05 43.64

Fine-tuning from *:
Linear Probing 49.03 64.89 21.5 36 6.08 13.9
MeanTeacher++ 54.26 70.60 34.58 60.22 16.38 35.75
LAVA 57.47 75.41 38.45 64.74 32.61 48.44

Fine-tuning from **:
Linear Probing 49.68 64.42 38.86 56.6 28.73 47.5
MeanTeacher++ 51.44 68.77 46.02 63.09 29.78 47.11
LAVA 58.79 72.19 48.65 65.08 36.66 54.91

especially when less labelled data is available. Additionally,
we captured a fine-grained view of the pseudo-labels to ex-
amine what are the images that most differ in pseudo-labels
among the two methods. As expected (see Fig. 3 - bottom),
those are the images which contain multiple semantic ob-
jects. We provide further examples in the appendix.

Initialisation Study. Here, we are interested to examine
the effect of pretraining when training LAVA using few la-
bels across different visual domains. In Tab. 4, we report re-
sults using different initialisations and different fine-tuning
settings across real, clipart, and quickdraw domains. In the
top section, we display KNN accuracy based on the model
representation zt when initialised with 1) Supervised Ima-
geNet features [48]; 2) DINO ImageNet features [9]; and
3) DINO features when trained on the target dataset with-
out labels (the standard LAVA initialisation). Note that for
those results, the labels are only used to obtain the KNN ac-
curacy on the validation set of the respective target dataset
but never for fine-tuning so they are only meant to com-
pare the quality of “off-the-shelf” pretrained features. First,
we observe that using only ImageNet data, supervised pre-

training is more useful than self-supervised across the three
domains and shots with a degrading performance as the do-
main deviates from ImageNet. Note that 23% of Domain-
Net classes also exists in ImageNet, explaining why class-
specific features might be helpful in such case. However,
once we have access to the target instances (without their
labels), we observe that self-supervised target training (i.e.
LAVA initialisation) dramatically improves the representa-
tions to become more suited to the target domain without
any labeling expense. Even when the target domain is very
close to ImageNet (e.g. real), we see a 4% gain in the 2-
shot regime (46.17 to 50.45). This boost is even more pro-
nounced in highly dis-similar domains, e.g. 25% and 21%
boosts for clipart and quickdraw with only 2 shots per class.

On the other hand, in the middle and bottom sections of
Tab. 4, we report transfer results based on the supervised
initialisation and the LAVA initialisation. We also report re-
sults using two other transfer methods: 1) Linear Probing
on top of frozen representations [9]; and 2) MeanTeacher++
described in Sec. 4. Finally, as an upper bound, we report
the fully-supervised results obtained when using the entire
target dataset (with labels) to train ViT in a supervised man-
ner, then using the few shots to obtain the KNN accuracy
reported. Here, we observe that LAVA benefits from self-
supervised DINO initialisation in all domains, but the gain
is more clear when the target domain is different than Im-
ageNet and the available labels are less. For example, we
witness an impressive 10%, and 4% boosts in the 2-shot sce-
nario for clipart and quickdraw, respectively. Additionally,
to quantify what LAVA brings on top of the DINO initialisa-
tion, we compare LAVA with MeanTeacher++ and observe
that LAVA outperforms it in all cases thanks to our multi-
crop pseudo-labelling strategy. Finally, we notice that LAVA
is almost closing the gap to fully-supervised training using
all the target labels: by only using 8-shots, LAVA achieves
75.4% on the real domain compared to the 76.5% obtained
when all the labels are used for training.

Language Semantics. Now, we examine the role of la-
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Figure 5: Left: we display the t-SNE visualization of the language model embeddings for a subset of MSCOCO classes (black) and their
nearest neighbours in ImageNet train split (red). Right: we report precision per class over 100 FSL episodes for both the semantic and
softmax predictions.

bel semantics towards generalisation to unseen classes and
we investigate if LAVA indeed mitigates the “class collapse”
problem. To study the impact of label semantics, we con-
sider the 100 FSL episodes of MSCOCO in the Meta-
dataset experiment. Recall that we first pretrain on instances
of 712 classes of ImageNet Csrc then transferred to a dif-
ferent set of classes in MSCOCO Ctgt. In Fig. 5-left, we
display a subset of MSCOCO C ∈ Ctgt together with their
nearest neighbors among Csrc, when they are projected into
the language model semantic space. This space is pretrained
using language and so it captures the linguistic semantic
similarity between different sentences/words. On the right
plot, we display the average precision per class c ∈ C based
on the softmax classification head as well as the semantic
projection head9. We observe that for any given MSCOCO
class, when the most semantically-similar class in ImageNet
is also visually similar (e.g. “bus” and “school bus”), the
language head has significantly higher precision per class.
In contrast, in cases when the nearest neighbour is not visu-
ally similar (e.g. “wine glass” and “wine bottle”), both heads
have comparable performance. This suggests the benefit of
the learnt semantic mapping module ωθ: during test time
and without any further training, when the model receives
an image sharing similar visual features associated with one
of the source classes Csrc, the semantic head maps it to the
most closely related linguistic concept in Ctgt.

Collapse Analysis. We follow a similar setup as [12]
to investigate LAVA’s ability to avoid transfer collapse (see
Sec. 1): we begin by uniformly sampling 100 images per
class from ImageNet Csrc as well as 1000 query images
from clipart dataset. Subsequently, we compute the repre-
sentation zt for all of the sampled images. Besides LAVA,
we also compute representations obtained by a supervised
learner; and a DINO-initialised learner. In Fig. 2, we re-
port examples of query images with their 4 nearest neigh-
bours among all the sampled images. The representation
of a given query image is said to be collapsed if its nearest

9For a given image, semantic predictions are obtained by finding the class whose
language embedding is nearest to mt.

neighbours mostly belong to source classes. To quantify the
collapse in the three methods, we calculate the percentage
of the 10 nearest neighbours which are instances of source
classes over the 1000 query images. We find that this fig-
ure is 25% for the supervised learner, 21.7% for DINO, and
17% for LAVA. We provide further details in the appendix.

Hyperparameters sensitivity. During preliminary experi-
ments, we identified few important design choices to tune:
number of large scale and small scale crops, the pseudo-
labelling aggregation loss function, the teacher momentum
update rate (γ), and the source of label semantics embed-
dings.We used a held-out validation set on each of real and
clipart domains to tune the hyperparameters (except the
source of label semantics for which we used MSCOCO val-
idation in the FSL regime), then we obtained a single set
of parameters which we used across all experiments in this
paper. We refer the reader to the appendix for a complete
list of hyperparameters of LAVA in addition to a study to
demonstrate their effect on LAVA’s performance.

6. Conclusion

We introduced a unified strategy for multi-domain visual
transfer with limited target data. LAVA employs label se-
mantics and self-supervised pretraining to learn initial rep-
resentations which support generalisation; and uses multi-
crop augmentation to maximise the gains from unlabeled
data via pseudo-labeling. We demonstrated LAVA’s success
in image classification over multiple benchmarks. We be-
lieve our approach is generic and can be extended to other
visual learning tasks such as object detection and action
recognition. We leave these explorations to future work.
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