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Abstract

When deploying deep neural networks (DNNs) to a de-
vice, it is traditionally assumed that available computa-
tional resources (compute, memory, and power) remain
static. However, real-world computing systems do not al-
ways provide stable resource guarantees. Computational
resources need to be conserved when load from other pro-
cesses is high, or available memory is low. In this work,
we present a training procedure to produce DNNs that can
be compressed in real-time to arbitrary compression levels
entirely on-device. This enables the deployment of a single
model that can efficiently adapt to its host device’s available
resources. We formulate this problem as learning an adap-
tively compressible network subspace, where one end is op-
timized for accuracy, and the other for efficiency. Our sub-
space model requires no recalibration nor retraining when
changing compression levels. Moreover, our generic train-
ing framework is amenable to multiple forms of compres-
sion. We present results for unstructured sparsity, struc-
tured sparsity, and quantization on a variety of architec-
tures. We present models that require a single extra copy
of network parameters, as well as models that require no
extra parameters. Both models allow for operation at any
compression level within a wide range (for example, 0% to
90% for structured sparsity with ResNet18 on ImageNet).
At each compression level, our models achieve an accuracy
comparable to a baseline model optimized for that partic-
ular compression level. To our knowledge, our method is
the first to enable adaptive on-device network compression
with little to no computational overhead.

*Equal contribution. Correspondence to mchorton@apple.com.
†Work done during an internship at Apple.

1. Introduction

Deep neural network models are deployed to a vari-
ety of computing platforms, including phones, tablets, and
watches [5]. These models are generally designed to con-
sume a fixed budget of resources, but the compute resources
available on a device can vary over time. Computational
burden from other processes, as well as battery life, may in-
fluence the availability of resources to a model. Adaptively
adjusting inference-time load is beyond the capabilities of
traditional neural networks, which are designed with a fixed
architecture and a fixed resource usage.

A simple approach to the problem of providing an
accuracy-efficiency trade-off is to train multiple neural net-
works of different sizes. Multiple networks are stored on
the device and loaded into memory when needed. There is
a breadth of research in the design of efficient architectures
that can be trained with different capacities, then deployed
on a device [10, 19, 9]. However, there are a few draw-
backs to using multiple networks to provide an accuracy-
efficiency trade-off: (1) it requires training and deploying
multiple networks (which induces training-time computa-
tional burden and on-device storage burden), (2) it requires
all compression levels to be specified before deployment,
and (3) it requires new networks to be loaded into mem-
ory when changing the compression level, which prohibits
real-time model switching on memory-constrained edge de-
vices.

Previous methods such as Network Slimming [31] and
Universal Slimming [30] address the first issue in the set-
ting of structured sparsity by training a single network
conditioned to perform well when varying the number of
channels pruned. However, these methods require Batch-
Norm [11] statistics to be recalibrated for every accuracy-
efficiency configuration before deployment. This requires
users to know every compression level in advance. If a
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(a)

Learning Compressible Subspaces

Input: Network subspace !⇤(↵), compression level cal-
culator �(↵), compression function f(!, �), stochastic
sampling function ↵n 2 [↵1, ↵2]n, dataset D, loss func-
tion L.
Replace BatchNorm layers with GroupNorm.
while !⇤ has not converged do

for batch B in D do

Sample a vector ↵ ⇠ ↵n

l 0
for ↵ 2 ↵ do

# compute loss on batch
l += L(f(!⇤(↵), �(↵)),B)

end for

backpropagate loss l
apply gradient update to !⇤

end for

end while

return !⇤

(b)

Figure 1: (a) Depiction of our method for learning a linear subspace of networks !⇤ parameterized by ↵ 2 [↵1, ↵2]. Networks
with ↵ ⇡ ↵2 exhibit high accuracy and low efficiency, while networks with ↵ ⇡ ↵1 trade off accuracy in favor of high
efficiency. By varying ↵ 2 (↵1, ↵2), we obtain a spectrum of networks which demonstrate an accuracy-efficiency trade-off.
(b) Our training algorithm.

large number of compression levels are chosen, the stor-
age burden of BatchNorm statistics is significant (Figure 2),
especially for low-compute devices. If only a few compres-
sion levels are chosen, a user will have to sacrifice accuracy
and underutilize available resources by choosing a smaller
model if the desired compression level is not available.

This situation is exacerbated when multiple models are
running on-device. Consider an intelligent system depen-
dent on the output of a large number of separate models.
Reducing resource usage when few compression levels are
available will require aggressive compression of a few mod-
els, which may strongly degrade overall performance. If a
large number of compression levels are available, the user
can instead slightly reduce the size of each model. In other
words, providing more compression levels allows the user
to finely control the resource distribution among models.

We address the problem of training a model that can be
compressed in real-time and on-device after deployment.
Inspired by Wortsman et al. [27], we formulate this prob-
lem as learning an adaptively compressible network sub-
space (Figure 1(a)). Our solution is efficient, meaning we
provide models that incur no parameter overhead on-device
compared to a single model of the same architecture (though
we also provide results for models that do incur parameter

overhead). Our solution is adaptive, meaning our model
can run at any compression level after deployment (rather
than a predefined set of compression levels). Our solution
is real-time, meaning we can adjust compression levels at
inference time at negligible computational cost.

Contributions: Our contributions are as follows. (1) We
introduce our method, Learning Compressible Subspaces
(LCS), for training models capable of efficient, adaptive,
real-time compression after deployment. To our knowl-
edge, this has not been done previously. (2) We demon-
strate that neural network subspaces can be used to en-
code models that specialize at one end for high-accuracy
and at the other end for high-efficiency. (3) We pro-
vide an empirical evaluation of our method using unstruc-
tured sparsity, structured sparsity, and quantization. (4)
We open source our code at https://github.com/
apple/learning-compressible-subspaces for
research purposes.

2. Related Work

Architectures Demonstrating Accuracy-Efficiency

Trade-Offs: Many popular network architectures include a
hyperparameter to control the number of filters in each layer
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Table 1: Our method with a linear subspace (LCS+L) and a point subspace (LCS+P), LEC [16], NS [31], and US [30].
Note that “Adaptive” refers to post-deployment compression at any compression level. |!| denotes the number of network
parameters, |b| denotes the number of BatchNorm parameters, and n denotes the number of compression levels for models
that do not support arbitrary compression levels.

LCS+P LCS+L LEC NS US
No Retraining 4 4 8 4 4

No Norm Recalibration 4 4 8 8 8
Adaptive 4 4 8 8 8

Stored Parameters |!| 2|!| n|!| |!| + n|b| |!| + n|b|

Figure 2: Parameter overhead in Megabytes (MB) for stor-
ing an extra set of pre-calibrated BatchNorm statistics for
every possible sparsity configuration between 0% sparsity
and the given compression level. Our method avoids this
overhead by eliminating the need for storing BatchNorm
statistics (Section 3.5). See Appendix A.2 for more details.

[10, 19, 9] or the number of blocks in the network [23]. In
Once For All [3], the need for individually training separate
networks is circumvented. Instead, a single large network
is trained, then queried for subnetworks.

We differ from these methods in two ways. First,
we compress on-device adaptively (without specifying the
compression levels before deployment). Previous works re-
quire training separate networks (or in the case of Once For
All, querying a larger model for a compressed network) be-
fore deployment. Second, we do not require deploying a set
of weights for every compression level.

A method for post-training quantization to variable bit
widths appears in [20], but it relies on calibration data and
cannot be run on low-compute edge devices. Thus, com-
pression levels must be specified before deployment. They
also present a method for quantization-aware training to
variable bit widths, but most of their results keep activation
bit widths fixed, whereas we vary it.

Training-Aware Compression: Recent works train a

single neural network which can be configured at inference
time to execute at different compression levels. These meth-
ods are the closest to our work. In Learning Efficient Con-
volutions (LEC) [16], the authors train a single network,
then fine-tune it at different structured sparsity rates. Other
methods train a single set of weights conditioned to per-
form well when channels are pruned, but require recalibra-
tion (or preemptive storage) of BatchNorm [11] statistics at
each sparsity level. These methods include Network Slim-
ming (NS) [31] and Universal Slimming (US) [30]. Similar
methods train a single network to perform well at various
levels of quantization by storing extra copies of BatchNorm
statistics [6, 29], or by recalibrating the BatchNorm statis-
tics [13].

We differ from these methods by avoiding the need
to recalibrate or store BatchNorm statistics (Section 3.5)
and by allowing for adaptive selection of any compres-
sion level at inference time, neither of which have been
done before (Table 1). Additionally, we avoid the over-
head of storing BatchNorms at every desired compression
level. Figure 2 demonstrates the substantial overhead of
storing BatchNorm parameters for every possible compres-
sion level. Note that [31] avoids this storage overhead by
only storing a few sets of BatchNorm statistics. However,
this has the drawback of only allowing a few accuracy-
efficiency configurations, which is problematic as explained
in Section 1. Note that in the case of quantization, it’s
feasible to store BatchNorm statistics for every compres-
sion level, since there are a small, discrete number of com-
pression levels to choose from (e.g., different bit widths).
We include a few preliminary quantization experiments to
show that our general approach applies to this compression
method, but we point out that avoiding BatchNorm storage
costs is not essential in this case. Note that our method
is broadly applicable to a variety of compression methods,
whereas previous works all focus on a single compression
method.

Other Post-Training Compression Methods: Other
works have investigated post-training compression. In [17],
a method is presented for compressing 32 bit models to
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8 bits, though it has not been evaluated in the low-bit
regime. It involves running an equalization step and assum-
ing a Conv-BatchNorm-ReLU network structure. A related
post-training compression method is shown in [8], which
shows results for both quantization and sparsity. However,
their sparsity method requires a lightweight training phase.
We differ from these methods in providing real-time post-
deployment compression for both sparsity and quantization
without making assumptions about the network structure.

Neural Network Subspaces: The idea of learning a
neural network subspace is introduced in [27] (though an-
other formulation was introduced concurrently in [2]). Mul-
tiple sets of network weights are treated as the corners of a
simplex, and an optimization procedure updates these cor-
ners to find a region in weight space in which points inside
the simplex correspond to accurate networks. This approach
is shown to produce models with improved accuracy and
calibration.

3. Compressible Subspaces

3.1. Compressible Lines

Our method involves training a neural network subspace
[27] that contains a spectrum of networks that each have a
different accuracy-efficiency trade-off. We recast the sub-
space formulation of [27] to train a linear subspace with
high-accuracy solutions at one end and high-efficiency so-
lutions at the other end.

To learn a compressible subspace, we choose a model
architecture and denote its collection of weights by !. We
randomly initialize two sets of network weights, !1 and !2,
to define the endpoints of our subspace. Our network sub-
space spans the line between !1 and !2 and is defined by
!⇤(↵) = ↵!1 + (1 � ↵)!2, where ↵ 2 [↵1, ↵2], and
0  ↵1 < ↵2  1. In other words, by varying our sub-
space parameter, ↵, we can obtain a set of weights !⇤(↵)
through interpolation.

We now adjust our subspace so that one end (e.g., ↵ ⇡
↵1) yields highly compressed networks, but the other end
(e.g., ↵ ⇡ ↵2) yields highly accurate networks. Intermedi-
ate values (e.g., ↵ ⇡ (↵1 + ↵2)/2) should exhibit moderate
compression. In other words, tuning ↵ 2 [↵1, ↵2] allows
us to move along our subspace, and we would like differ-
ent points along our subspace to exhibit different accuracy-
efficiency trade-offs. To achieve this, we introduce a func-
tion �(↵) which determines how much to compress the net-
work at ↵, and a compression function f(!, �) which per-
forms the compression.

To train our subspace, we first sample a position in our
subspace by randomly choosing some ↵ 2 [↵1, ↵2], yield-
ing a network with weights !⇤(↵). We then compute �(↵),
which determines how much to compress the network. Fi-
nally, f compresses the network, obtaining a network with

weights f(!⇤(↵), �(↵)). We then perform a standard for-
ward and backward pass of gradient descent with it, back-
propagating gradients to !1 and !2. We continue training
in this manner until convergence.

Once our model is trained, a user can deploy !1 and !2

on-device to allow efficient, adaptive, real-time compres-
sion, as depicted in Figure 1(a). To change compression
levels in real-time, the user first determines how many re-
sources are available on the device. This step is application-
dependent, and may involve looking at the amount of cur-
rently available memory or the current CPU load. The user
chooses the compression level �0 based on currently avail-
able resources. From this quantity, the user calculates the
appropriate ↵0 = ��1(�0) value corresponding to the de-
sired compression level. Next, the user computes the com-
pressed network, f(!⇤(↵0), �0). This network is used until
a new compression level is desired by the user. Note that
computing f is negligible compared to the cost of a network
forward pass in all our experiments (see Section A.1).

3.2. Compressible Points

In Section 3.1, we discussed formulating our subspace
as a line connected by two endpoints in weight space. This
formulation requires additional storage resources to deploy
the subspace (Table 1), since an extra copy of network
weights is stored. For many cost-efficient computing de-
vices, this overhead may be significant. To eliminate this
need, we propose training a degenerate subspace with a sin-
gle point in weight-space (rather than two endpoints). We
still use ↵ 2 [↵1, ↵2] to control our compression ratio, but
our subspace is parameterized by a single set of weights,
!⇤(↵) = !. The compressed weights are now expressed
as f(!⇤(↵), �(↵)) ⌘ f(!, �(↵)). This corresponds to ap-
plying varying levels of compression during each forward
pass.

This method still produces a subspace of models in the
sense that, for each value of ↵, we obtain a different com-
pressed network f(!, �(↵)). However, we no longer use
different endpoints of a linear subspace to specialize one
end of the subspace for accuracy and the other for efficiency.
Instead, we condition one set of network weights to tolerate
varying levels of compression.

3.3. Sampling the Subspace Parameter

When training our compressible subspaces, we need to
sample our subspace parameter, ↵, at each iteration of train-
ing. In [30], a “sandwich method” for training with vary-
ing levels of structured sparsity is proposed. This method
involves performing n rounds of forward and backward
passes in each iteration of training. One round uses the max-
imum sparsity level, another round uses the minimum spar-
sity level, and the remaining n � 2 rounds use randomly
chosen sparsity levels. After all n rounds of forward and
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backward passes, the gradient update is applied.
To incorporate this method into our algorithm, we intro-

duce a stochastic function, ↵n : ⌦ ! [↵1, ↵2]n, where ⌦
represents the state of the stochastic function (e.g., the in-
ternal state of a random number generator). For each train-
ing batch, we sample ↵ 2 [0, 1]n from ↵n. We perform n
forward and backward passes using compressed networks
f(!⇤(↵i), �(↵i)) for i 2 {1, ..., n}, where ↵i is the ith el-
ement of ↵. Then, the gradient update is applied.

In most experiments, we omit the sandwich rule (by set-
ting n = 1) because we found the benefit to be marginal
compared to the increased training cost. However, we use
the sandwich rule with n = 4 when comparing to [30] in
the structured sparsity setting, where we found the accuracy
improvements to be more significant.

An overview of our overall algorithm is given in Fig-
ure 1. Next, we detail our compression methods f .

3.4. Compression Methods

We experiment with three different formulations for our
compression function f(!, �). These correspond to un-
structured sparsity, structured sparsity, and quantization.

In our unstructured sparsity experiments, our compres-
sion function f(!, �) is TopK sparsity [32], which prunes a
fraction � of the weights with the smallest absolute value
from each layer (we ignore the input and output layers).
Our compression level calculator is �(↵) = 1 � ↵. Our
stochastic sampling function ↵n samples a single ↵ value
uniformly along an interval [↵1, ↵2]. We experiment with
different settings of [↵1, ↵2] corresponding to the wide-
sparsity regime and high-sparsity regime. See Section 4 for
experimental details.

In our structured sparsity experiments, our compression
function f(!, �) retains a fraction � of the input and out-
put channels in each layer and prunes away the rest (we
ignore the input channels in the first layer, and the output
channels in the last layer). Our compression level calcula-
tor �(↵) : [↵1, ↵2]! [a, b] is the unique affine transforma-
tion over its domain and range. Here, [a, b] is the width
factor range where a and b are the minimum and maxi-
mum fraction of channels retained (see Section 4 for model-
specific parameter settings). Our stochastic sampling func-
tion ↵n samples n = 4 values as [a, b, U(a, b), U(a, b)],
where U(a, b) samples uniformly in the range [a, b]. This
choice mirrors the “sandwich rule” used in [30].

In quantization experiments, our compression function
f(!, �) is affine quantization as described in [12]. Our
compression level calculator is �(↵) = 2+6↵. Our stochas-
tic sampling function ↵n samples a single ↵ value uni-
formly over the set {1/6, 2/6, ..., 6/6}. This corresponds
to training with bit widths 3 through 8. We avoid lower bit
widths to circumvent training instabilities we encountered
in baselines.

Figure 3: Analysis of observed batch-wise means µ̂ and
stored BatchNorm means µ during testing for models
trained with TopK unstructured sparsity. The models are
trained with different target sparsities and evaluated with
various inference-time sparsities. (a)-(b): The distribution
of |µ � µ̂| across all layers. (c)-(d): The average value of
|µ � µ̂| for individual layers. (e)-(f): The correlation be-
tween the average of |µ� µ̂| and test set error. Note that in
(b) and (d), sparsities of 0 and 0.493 produce near-identical
results, thus those curves are overlapping.

3.5. Circumventing BatchNorm Recalibration

Previous works that train a compressible network re-
quire an additional training step to calibrate BatchNorm
[11] statistics at each compression level [30, 31]. This
precludes both methods from evaluating at arbitrarily fine-
grained compression levels after deployment (Table 1). We
seek to eliminate the need for recalibration or storage of
statistics.

To understand the need for recalibration in previous
works, recall that BatchNorm layers store the per-channel
mean of the inputs, µ, and the per-channel variance of the
inputs, �2. The recalibration step is needed to correct µ
and �2, which are corrupted when a network is adjusted.
Adjustments that corrupt statistics include applying sparsity
and quantization.

In Figure 3, we analyze the inaccuracies of BatchNorm
statistics for two models trained with specific unstructured
sparsity levels and tested with a variety of inference-time
unstructured sparsity levels. We calculate the differences
between stored BatchNorm means µ and the true mean of a
batch µ̂ during the test epoch of a cPreResNet20 [7] model
on CIFAR-10 [14]. In Figure 3a and Figure 3b, we show the
distribution of mean absolute differences (MAD), |µ � µ̂|,
across all layers of the models. Models have lower Batch-
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Norm errors when evaluated near sparsity levels that match
their training-time target sparsity. Applying mismatched
levels of sparsity shifts the distribution of these errors away
from 0. In Figure 3c and Figure 3d, we show the average of
|µ�µ̂| across the test set for each of the BatchNorm layers.
Across layers, the lowest error is achieved when the level of
sparsity matches training. In Figure 3e and Figure 3f, we
show the average of |µ � µ̂| and the corresponding test set
accuracy for various levels of inference-time sparsity. We
find that the increased error in BatchNorm is correlated with
decreased accuracy. See Appendix A.3 for similar analyses
with structured sparsity and quantization.

Thus, BatchNorm layers’ stored statistics can become
inaccurate during inference-time compression, which can
lead to accuracy degradation. To circumvent the need for
BatchNorm, we adjust our networks to use GroupNorm
[28]. This computes an alternative normalization over g
groups of channels rather than across a batch. It does not
require maintaining a running average of the mean and vari-
ance across batches of input, so there are no stored statistics
that can be corrupted if the network changes.

GroupNorm typically uses g = 32 groups, but it also in-
cludes InstanceNorm [26] (in which g = c, where c is the
number of channels) as a special case. We use g = c in
structured sparsity experiments, since the number of chan-
nels is determined dynamically and is not always divisible
by 32. For all other experiments, we use g 2 {1, 8, 32} de-
pending on the architecture as discussed in Appendix A.6.

4. Experiments

We present results in the domains of unstructured spar-
sity, structured sparsity, and quantization. We train using
Pytorch [18] on Nvidia GPUs. On CIFAR-10 [14], we ex-
periment with the pre-activation version of ResNet20 [7]
presented in the PyTorch version of the open-source code
provided by [16]. We abbreviate it as “cPreResNet20.”

We additionally experiment with a variety of archi-
tectures on the ImageNet [4] dataset. In particular, we
present results using standard convolutional neural net-
work (CNN) architectures: ResNet18 [7], and VGG19 [21];
lightweight CNNs: MnasNet-B1 [22], MobileNetV2 [19],
MobileNetV3-Small, and MobileNetV3-Large [9]; and vi-
sion transformer models: DeiT-Ti, DeiT-S [24], and CaiT-
XXS [25]. All models are trained using an input resolution
of 224 ⇥ 224. Our baseline model accuracies are summa-
rized in Appendix A.5.

We train cPreResNet20 for 200 epochs and ImageNet
CNNs for 90 epochs. We follow hyperparameter choices in
[27] for our methods and baselines (though we do not use
the � regularization they describe), with a few architecture-
dependent parameters detailed in Appendix A.5. For trans-
former models, we train for 300 epochs and follow the hy-
perparameter settings in [24]. Our baselines for each archi-

Figure 4: Our method for unstructured sparsity using
a linear subspace (LCS+L+GN) and a point subspace
(LCS+P+GN) compared to networks trained for a partic-
ular TopK target. The TopK target refers to the fraction of
weights that remain unpruned during training.

Figure 5: Our method for unstructured sparsity using
a linear subspace (LCS+L+GN) and a point subspace
(LCS+P+GN) compared to networks trained for a particular
TopK target.

tecture always use the same training hyperparameters as our
own methods.

4.1. Unstructured Sparsity

We present results for our method using MobileNetV2
and ResNet18 in Figure 4. For MobileNetV2, we use
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an ↵ range of [0.025, 1], corresponding to a wide spar-
sity training regime, while for ResNet18 we use a range
of [0.005, 0.05], corresponding to a high sparsity training
regime (because ResNet18 is overparameterized, we op-
erate over a high sparsity range to make the accuracy-
efficiency trade-off clearer).1 Additional hyperparameter
details are provided in Appendix A.6.

Our method achieves a strong accuracy-efficiency trade-
off in both cases. Our line subspace (LCS+L+GN) achieves
a higher accuracy at high sparsities, at the expense of a
lower accuracy at low sparsities. To our knowledge, effi-
cient, adaptive, real-time compression has not been previ-
ously explored for unstructured sparsity. Thus, our base-
lines are networks that are trained to perform at a partic-
ular TopK sparsity level, and each network is evaluated at
a variety of sparsity targets. These methods peak in accu-
racy near their target sparsity, but decrease sharply at higher
sparsities.

We present additional results for our method using trans-
former architectures in Figure 5. Transformers contain Lay-
erNorm [1] rather than BatchNorm, which does not require
recalibration. Hence, we do not need to modify normal-
ization layers in this case. As before, our method pro-
duces a strong accuracy-efficiency trade-off across a variety
of sparsity levels. Our LCS+L+LN method underperforms
on DeiT models relative to LCS+P+LN, but still achieves
stronger results than baselines at high sparsities. We hy-
pothesize that the benefits of learning fewer parameters out-
weighs the benefits of increased capacity in this case, but we
leave more investigation to future work.

In Appendix A.9, we provide runtime characteristics of
our models. We also present results for the wide spar-
sity regime using cPreResNet20, ResNet18, VGG19, Mnas-
Net, MobileNetV3-Small, and MobileNetV3-Large; addi-
tionally, we show results for the high sparsity regime using
DeiT-Ti and DeiT-S.

4.2. Structured Sparsity

We present results for our method using structured spar-
sity in Figure 6. For all structured sparsity experiments,
we use an ↵ range of [0, 1]. We use a width factor range
of [0.25, 1] for both VGG19 and ResNet18. As discussed
in Section 3.5, we use a special case of GroupNorm [28]
known as InstanceNorm [26] since the number of chan-
nels in the network varies. We performed preliminary
experiments with LayerNorm, but InstanceNorm achieved
stronger results in our case. In the case of structured spar-
sity, filters are able to specialize without the need for an
extra copy of network weights, since some filters are only
used when the model is lightly pruned. Therefore, we only

1In the unstructured setting, we do not compress the first and last lay-
ers of our models. Hence a compressed model’s sparsity rate may not be
exactly 1� ↵.

Figure 6: Our method for structured sparsity using a linear
subspace (LCS+L+IN) and a point subspace (LCS+P+IN)
compared to Sandwich and Discrete.

create extra copies of our InstanceNorm parameters when
using LCS+L+IN, as an extra copy of network weights was
unnecessary. We provide a table demonstrating the memory,
flops, and runtime of structured sparsity models in Table 2.
See Appendix A.7 for additional hyperparameter details.

To our knowledge, efficient, adaptive, real-time com-
pression has not been explored before for structured spar-
sity. As such, we compare our methods to two baselines that
train a network to operate at different sparsity levels. In the
first method, which we denote Discrete, we train a network
at four discrete width factors of {0.25, 0.5, 0.75, 1}. In the
second method, which we denote Sandwich, we train a net-
work using the sandwich rule (Section 3.3). At test time,
both methods are evaluated at arbitrary sparsities. We do
not perform BatchNorm calibration for either method. Note
that our baselines are similar to NS and US, but our base-
lines operate at arbitrary width factors without BatchNorm
calibration.

Models trained with our method demonstrate a strong
accuracy-efficiency trade-off. By contrast, the trade-off
produced by Sandwich peaks in the middle. We hypoth-
esize that this is due to the sandwich rule training for-
mulation in which sparsity levels are randomly sampled.
This could cause the BatchNorm statistics to be more ac-
curate (on average) near the middle of the sparsity range.
The trade-off produced by Discrete contains peaks and
troughs. This method trains only at discrete width factors
of {0.25, 0.50, 0.75, 1} and produces stronger accuracies at
these sparsities than at sparsities that it was not explicitly
trained for.

In preliminary experiments with transformers, we found
that adaptive compression for structured sparsity did not
converge to high accuracies. We hypothesize this may
be due to inter-channel variation of transformers described
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Table 2: Runtime characteristics for structured sparsity.
Note that models of a particular architecture and sparsity
level all have the same memory, FLOPS, and runtime, so
we only report one value. Runtime was measured on a Mac-
Book Pro (16-inch, 2019) with a 2.6 GHz 6-Core Intel Core
i7 processor and 16GB 2667 MHz DDR4 RAM. Memory
consumption refers to the size of model weights in the cur-
rently executing model.

cPreResNet20
(CIFAR-10)

Sparsity (%) 0 43.491 60.614 74.655 85.614 93.491
FLOPS (⇥106) 33.75 19.07 13.29 8.55 4.85 2.2
Memory (MB) 0.87 0.49 0.34 0.22 0.12 0.06
Runtime (ms) 3.13 2.64 2.09 1.83 1.64 1.28

Acc (LCS+P+IN) 87.51 86.07 84.46 82.02 78.39 75.96

Acc (LCS+L+IN) 88.49 86.22 84.54 81.92 78.73 75.25
Acc (Sandwich) 70.62 83.13 81.11 62.18 40.04 21.81
Acc (Discrete) 72.87 75.46 57.09 70.07 16.86 19.76

ResNet18
(ImageNet)

Sparsity (%) 0.0 42.91 59.89 73.88 84.89 92.91
FLOPS (⇥106) 1814.1 1042.66 736.42 483.16 282.89 135.61
Memory (MB) 46.72 26.67 18.74 12.2 7.06 3.31
Runtime (ms) 45.85 30.34 22.51 14.31 9.84 6.02

Acc (LCS+P+IN) 63.32 60.21 57.42 53.77 48.75 44.62

Acc (LCS+L+IN) 63.93 59.66 56.84 53.00 48.11 44.14
Acc (Sandwich) 58.91 60.39 53.76 44.72 22.51 8.34
Acc (Discrete) 50.63 57.58 22.93 48.52 0.84 1.34

VGG19
(ImageNet)

Sparsity (%) 0.0 43.28 60.35 74.37 85.35 93.28
FLOPS (⇥106) 19533.52 11008.56 7656.48 4911.33 2773.1 1241.81
Memory (MB) 82.12 46.58 32.56 21.04 12.03 5.52
Runtime (ms) 388.49 246.81 172.64 105.77 60.0 29.55

Acc (LCS+P+IN) 66.77 64.47 62.11 58.35 53.45 49.5

Acc (LCS+L+IN) 66.97 63.79 61.42 57.57 52.66 49.11
Acc (Sandwich) 36.27 43.99 42.17 36.5 20.42 7.07
Acc (Discrete) 34.05 44.91 18.44 36.26 0.57 0.14

Figure 7: Our method for quantization using a linear sub-
space (LCS+L+GN) and a point subspace (LCS+P+GN)
compared to networks trained for a particular bit width tar-
get.

in [15], but we leave more investigation to future work.
See also Appendix A.9 for results using MnasNet, Mo-
bileNetV2, MobileNetV3-Small, and MobileNetV3-Large,
as well as speed and memory usage characteristics.

4.3. Quantization

We also provide preliminary experiments for quantiza-
tion. Note that in the quantization setting, there are a small
number of discrete compression levels. As such, it is usu-

ally feasible to simply store extra BatchNorm parameters
for all desired parameter settings before model deployment.
Thus, our main purpose for experimenting in this setting is
to characterize the behavior of our method under another
compression technique besides pruning and to verify the
versatility of our method.

We present results for our method in Figure 7, compar-
ing to baseline models trained at a fixed bit width and eval-
uated at a variety of bit widths. See Appendix A.8 for train-
ing details. Generally, baselines achieve high accuracy at
the bit width at which they were trained, and reduced ac-
curacy at other bit widths. By contrast, our method using
a linear subspace (LCS+L+GN) achieves high accuracy at
all bit widths, matching or exceeding accuracies of indi-
vidual networks trained for target bit widths. In the case
of VGG19, we found that our accuracy even exceeded the
baselines. We believe part of the increase is due to Group-
Norm demonstrating improved results on this network com-
pared to BatchNorm (which does not happen with ResNets,
as reported in [28]). See Appendix A.9 for ResNet18 re-
sults, and for memory usage characteristics of models.

5. Conclusion

We present a method for learning a compressible sub-
space of neural networks. Our method produces a model
that can be deployed on-device and used for efficient, adap-
tive, real-time model compression. Our model can be com-
pressed after deployment in real-time, to any compres-
sion level, without retraining, and without specifying the
compression levels before deployment. Additionally, our
LCS+P method incurs no parameter overhead. We show
that our generic algorithm outperforms baselines in the do-
mains of unstructured sparsity and structured sparsity. We
demonstrate that it is flexible enough to apply to quantiza-
tion.

Our compressible subspaces yield several positive real-
world impacts. Devices equipped with our models can dy-
namically adjust their energy consumption by efficiently
compressing models according to the device’s available re-
sources. Additionally, our method circumvents the need for
training multiple models tailored to multiple devices. In-
creasingly larger DNNs are inaccessible to older devices
and devices with lower compute, and training models spe-
cific to each device’s hardware constraints would be pro-
hibitively expensive. Using our method, users can train a
single model and efficiently compress it to a particular de-
vice’s hardware constraints prior to deployment.
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