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Abstract

Healthcare is seen as one of the most influential appli-
cations of Deep Learning (DL). Increasingly, DL models
have been shown to achieve high-levels of performance on
medical diagnosis tasks, in some cases achieving levels of
performance on-par with medical experts. Yet, very few are
deployed into real-life scenarios. One of the main reasons
for this is the lack of trust in those models by medical profes-
sionals driven by the black-box nature of the deployed mod-
els. Numerous explainability techniques have been devel-
oped to alleviate this issue by providing a view on how the
model reached a given decision. Recent studies have shown
that those explanations can expose the models’ reliance on
areas of the feature space that has no justifiable medical in-
terpretation, widening the gap with the medical experts. In
this paper we evaluate the deviation of saliency maps pro-
duced by DL classification models from radiologist’s eye-
gaze while they study the MIMIC-CXR-EGD images, and
we propose a novel model architecture that utilises model
explanations during training only (i.e. not during inference)
to improve the overall plausibility of the model explana-
tions. We substantially improve the similarity between the
model’s explanations and radiologists’ eye-gaze data, re-
ducing Kullback-Leibler Divergence by 90% and increasing
Normalised Scanpath Saliency by 216%. We argue that this
significant improvement is an important step towards build-
ing more robust and interpretable DL solutions in health-
care.

1. Introduction

Applications of Deep Learning (DL) to healthcare have
been growing rapidly in a wide range of medical scenarios;
ranging from critical care [24] and diabetes risk prediction
[1] to the diagnosis of chest x-rays (CXRs) [28]. This is
partly driven by the rising accuracy of such models, with
some beginning to achieve performance on-par with (or

even exceeding) that of medical professionals [22]. How-
ever, despite these developments we are yet to see a similar
growth in the number of DL models being deployed into
real-world medical scenarios [2]. This is down to numerous
limiting factors; most notably, before such techniques can
become established in the medical field, they must be eth-
ical in their decision-making, trustworthy, transparent and
explainable [5, 12].

It is in these areas that many DL models can perform
poorly. In particular, many models fail to accurately cap-
ture the causal relationships between input features and the
output classification and rely instead on task irrelevant fea-
tures. For example, a wide-ranging study on the use of
Machine Learning (ML) and DL techniques for COVID-19
prediction from chest x-rays (CXRs) [17] has shown that
many models are making spurious correlations, leading to
the models being unable to accurately generalise. Further-
more, recent studies on the robustness of DL models have
shown that changes to training hyperparameters can greatly
affect the learned features [26] - this damages the trust be-
tween clinicians and DL techniques as it highlights just how
sensitive to small changes the models are, even when those
changes are independent of the medical questions the model
is trying to answer.

Thus, the gold-standard for any ML model is to be able
to achieve high-levels of performance whilst learning the
concrete causal relationships present in the data. Unfortu-
nately, the presence of learned causal features is extremely
difficult to verify due to a lack of useful data supporting the
task. Following practices in pedagogy, expert’s Eye Gaze
Data (EGD) can be used as a proxy for causal relationships
[23, 19]. The release and initial analysis of the MIMIC-
CXR-EGD dataset [15] showed that even current state-of-
the-art CXR classification models fail to learn the same set
of features as used by radiologists in their diagnoses.

In this paper, we present a novel deep learning architec-
ture that learns a more consistent feature set than previous
techniques. Using the MIMIC-CXR-EGD dataset, which
to the best of our knowledge is the only large-scale image
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dataset with accompanying expert eye-gaze data, we com-
pare the similarity between explanations computed from DL
models and the EGD from radiologists. We report that there
is a significant increase in overlap (increasing from -0.4634
to 0.5410 when measured by Normalised Scanpath Saliency
and improving from 9.1233 to 0.8398 when measured by
Kullback-Leibler Divergence) between explanations from
our proposed technique and the EGD than there is from any
other model architecture tested; including current state-of-
the-art methods specifically designed to combat this issue.
We also show that our proposed architecture produces more
consistent explanations than previous models, increasing
explanation consistency [26] from 0.1785 to 0.5333 with
no cost to model performance nor the need for specialist’s
EGD at inference time.

2. Related Work
In order to explain the decisions made by DL models, nu-

merous explainability techniques have been developed with
the aim of “opening up” the black-box architectures. In this
paper we focus on two post-hoc techniques [13] that are de-
signed to explain deep learning models; our aim is to com-
pare the explanations from a variety of established architec-
tures (as well as our novel models) and so the techniques
used must be model-agnostic and easy to apply. SHAP
[16] is a permutation-based approach which has theoretical
groundings in game theory. Grad-CAM [18] is a gradient-
based approach which uses the gradient of any target con-
cept flowing into the final convolutional layer of a network
to produce a saliency map. We focus on these two tech-
niques in this paper as not only are they the current de-facto
standards, but they can also both be applied to a wide-range
of model architectures allowing for the easy comparison of
explanations from varying model types.

Previous work has used these explainability techniques
to investigate the robustness and adaptability of DL models
[26, 8], finding that even small changes to the training pro-
cedure can result in significant changes to the learned fea-
tures. These results, coupled with many network’s suscepti-
bility to issues such as adversarial attacks [10] and shortcut
learning [9], suggest that many modern DL architectures
are not necessarily learning causal relationships in the data
to achieve high performance and might be relying on spuri-
ous correlations. It can be extremely difficult to verify that
the learned features are indeed causal - there are only a lim-
ited number of mostly toy datasets that include descriptions
of their causal relationships [3].

In the absence of such data, recent work has used EGD
of experts making decisions on a visual task as a proxy for
concrete causal relationships [15]. Such data can be used
to determine whether models are learning features that do-
main experts would use in their assessment of the data - this
use case has groundings from real-world applications, with

similar techniques being used pedagogically in fields such
as radiology [25]. The MIMIC-CXR-EGD dataset [15] is a
subset of MIMIC-CXR [14], containing 1,083 CXR images
from three classes (Pneumonia, Congestive Heart Failure
and Normal). Accompanying the images are aligned EGD
from a trained radiologist. Both raw eye gaze information
and calculated fixation points are available for this EGD -
we refer readers interested in the EGD collection process to
[15]. Alongside the release of the dataset the authors also
show that explanations from traditional classification mod-
els do not significantly overlap with the radiologist’s EGD.
They propose a multi-task UNet model which uses EGD at
train-time to learn to both classify the CXR image and re-
produce the ground-truth EGD in order to improve the sim-
ilarity between model explanations and EGD. However, the
results are not very convincing and the study lacked a verifi-
able method of comparing their model explanations and the
EGD. Additionally, this technique requires the use of expert
EGD during training which is costly and difficult to collect,
especially in the medical domain. We compare our method
against both the baseline models and the improved UNet ar-
chitecture using static EGD heatmaps proposed in [15] re-
sulting in significantly higher degree of similarity between
model explanations and EGD across all tested metrics.

3. Method

Our proposed architecture consists of an ensemble archi-
tecture M made up of S sub-models (of any architecture)
and a discriminator, D. We begin by describing the archi-
tecture of our model, and then detail its training procedure.

We define an explanation ensemble model as M : X →
Y , where X is the set of inputs, and Y the outputs. M
consists of S sub-models m0, ...,mS , where S ∈ N, each
of which has the same architecture suited to the task. In
our proposed network, each mi is trained with a different
hyperparameter setup - i.e. with different random seeds, or
training data order. Architecture hyperparameters, such as
layer size and learning rate, are kept constant. The final
output of the explanation ensemble is the average output of
all sub-models:

M(x) =

∑
i∈[0,S] mi(x)

S
(1)

The network also adds a discriminator, D : E → S,
where E is the set of model explanations (calculated via any
feature importance attribution method) and S = [0, S]. We
denote the explanations of sub-model mi on the inputs x as
Ei(x). The discriminator is trained on the explanations pro-
duced by each of the S sub-models, with the aim of learn-
ing to identify which of the sub-models a given explanation
originated from. As the task of the discriminator has been
shown to be easily learned [26] the architecture of D should
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be chosen carefully, ensuring it is not too complex that M
is drastically overfitting.

The S sub-models and discriminator D are all trained
together, optimising the loss function in Equation 2, where
CELoss(·, ·) is cross-entropy loss and β ∈ [0,∞) is a hy-
perparameter weighting D’s contribution during a training
epoch. The subtraction of the discriminator loss in Eq. 2
ensures that the sub-model mi “fools” the discriminator by
learning to produce explanations that are similar to that of
the other sub-models in the ensemble.

loss =
∑
i

CELoss(mi(x), y)−β ·CELoss(D(Ei(x)), i)

(2)
Every α epochs (where α is another tunable hyperparam-

eter), the discriminator D is updated with respect to the loss
function CELoss(D(Ei(x)), i), without back-propagating
through the sub-models, allowing D to learn how to ef-
fectively classify the explanations. This only needs to be
done every α epochs due to the ease of the task [26]. This
equates to the S sub-models and D being updated in a two-
player minimax game - the goal of D is to learn to separate
the sub-models’ explanations, whereas the sub-models are
aiming to fool the discriminator, all whilst also optimising
m0, ...,mi on the downstream task. The result is a set of S
sub-models that produce similar explanations. The assump-
tion here is that this learnt explanation is closer to represent-
ing the causal relationships and less reliant on the spurious
correlations.

Training of this model can be unstable - this is a direct
consequence of the discriminator and ensemble sub-models
having opposing goals. For example, if each sub-model
gives each feature of the input equal weight then the loss
of the discriminator will be maximised, reducing Eq. 2.
However, this would also result in the sub-model predicting
the same class for every input. Training stability is linked
to a “good” choice of α. This can be optimised like any hy-
perparameter (e.g. through a grid-search or random search),
although we have empirically found through experimenta-
tion that α = 2 provides stable training.

To summarise, the intuition behind our architecture is to
train a discriminator D which encourages each of the S sub-
models in an ensemble to learn a similar set of features.
As each of the sub-models is trained with a different hy-
perparameter setup, they will each learn a slightly differ-
ent set of features. As training progresses, D will learn to
use the noisy features of each sub-model to (correctly) clas-
sify which sub-model explanations originate from - and in
turn, the sub-models will learn to use different features for
its classification, in order to fool D. The final result is an
ensemble model that has learned to “ignore” a wide range
of spurious features, with each of the sub-models only us-
ing features which all mi agree are important. As multiple

models must agree that any given feature is important for it
to be used, it is more likely that these are causally related
with the target, and thus is more likely to be included in an
expert’s eye-gaze data.

4. Experimental Setup

All experiments1 are carried out on the MIMIC-CXR-
EGD dataset [15]. The models are trained on the same 3-
label classification task: given a CXR image, predict its
diagnosis (Pneumonia, Congestive Heart Failure or Nor-
mal). We train three architectures to compare our explana-
tion ensemble to: 1) baseline: a standard UNet architecture
trained with a learning rate (LR) of 0.003 with Adam opti-
miser, batch size 32, and pre-trained EfficientNet-b0 [21] as
the encoder and bottleneck layers; 2) improved UNet: the
modified UNet architecture [15] using static heatmaps dur-
ing training to both classify and reproduce the EGD given a
CXR using identical hyperparameters; and 3) standard en-
semble: an ensemble architecture consisting of 10 UNet ar-
chitectures identical to 2), trained with LR=0.003 using the
Adam optimiser and batch size 4 [15]. A reduced batch was
used due to memory constraints. Each experiment allows us
to compare our results against a different standard of model:
1) is a standard classification model and used as a baseline,
2) is the SOTA for similarity between model explanations
and EGD, and 3) confirms that our results are not just a re-
sult of utilising an ensemble architecture (and instead are
inherent to our proposed architecture and training proce-
dure). UNet was chosen to allow for direct comparison with
the current state of the art model on the MIMIC-CXR-EGD
dataset in [15]. We also experimented with Vision Trans-
formers [7], however due to the small size of MIMIC-CXR-
EGD they are unable to gain levels of performance match-
ing those of our baseline and so we do not include their
results in this paper. Across all experiments the same 80/20
train-test split is used for the MIMIC-CXR-EGD dataset.

We train our proposed explanation ensembles using stan-
dard UNet with a classification head as our sub-models.
Batch sizes of 4 and a learning rate of 0.00001 using the
Adam optimiser are used. We use a CNN for our discrimi-
nator, with two convolution layers. Max pooling (with ker-
nel size and stride of 2) and ReLU activations are used af-
ter each convolution layer. We set β = 0.2 to ensure the
two parts of the main loss function are of the same order of
magnitude. We use 10 sub-models per Explanation Ensem-
ble (see the Supplementary Material for results on different
numbers of sub-models). We report the accuracy (across all
three labels) for all models as a performance metric.

In order to allow for direct comparison with [15], we
compute the explanations for all models using Grad-CAM

1Code to reproduce these experiments can be found at:
https://github.com/mattswatson/learning-to-mimic
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[18] on the final convolution layer. We sampled exam-
ples from the test set for inspection. We compare the sim-
ilarity of these explanations to EGD heatmaps generated
from the eye-gaze fixations, which gives us scalar values
of importance for each pixel based on the radiologist’s eye
gaze [15]. To measure similarity to the EGD heatmaps we
follow standard practice of comparing saliency maps [4];
we report both the Kullback–Leibler Divergence (KLD) as
a distribution-based metric, and the Normalised Saliency
Scanpath (NSS) as a location-based metric. KLD is an
information-theoretic measure of the difference between
one probability distribution and another; importantly, note
that it is a divergence metric, meaning smaller values indi-
cate better similarity. NSS is designed to be used to com-
pare saliency maps with a ground-truth, and is the nor-
malised saliency at fixed locations. We note that metrics
such as Intersection over Union (IoU) are not suited to com-
paring EGD and saliency heatmaps [4] as one must con-
sider how much importance is placed on each pixel (by
both the model and the expert), rather than treating expla-
nations/EGD as binary heatmaps.

It is known that NSS is sensitive to false positives, how-
ever that is desirable here - we hypothesise that the (non-
explanation ensemble) models are learning many noisy fea-
tures which are not necessarily causally linked to output -
we want to penalise the models if this is indeed the case.
Negative NSS values highlight negative correlation, with
chance at 0 and positive values indicating positive corre-
lation.

Explanation consistency [26] measures the change in
model explanations under different hyper parameter settings
perpendicular to the task. Higher consistency is linked to
explanations more robust to spurious correlations [26]. We
would expect our explanation ensemble model to achieve
higher explanation consistency than other models tested.
For each architecture, 10 models are trained with different
random seeds. The Grad-CAM explanations are generated
on the test set for these 10 models, with these explanations
also being used to calculate the explanation consistency C
for each architecture. Following the methods of [26], we
use a binary logistic regression classifier to measure the sep-
arability of two sets of explanations.

Furthermore, we confirm our results on Grad-CAM by
repeating these experiments with SHAP. This confirms that
our results are not limited to one explanation technique; if
both explainability methods agree on the outcome, then we
can conclude with increased certainty that the model is in-
deed learning “better” (i.e. similar, causal) features.

5. Results and Discussion
Table 1 reports the best model performance as well as

summary statistics for both the KLD and NSS metrics used
to compare the similarity between the model’s Grad-CAM

explanations and the EGD. Table 1 in the Supplementary
Material reports the results for each training hyperparam-
eter setup used. The performance of both the Baseline
and Improved UNet models are equal to the results re-
ported in [15], confirming that these models are behaving
as expected. Furthermore, both ensembling techniques per-
form better than these two models; this is to be expected
given that they are ensemble architectures [6]. Importantly,
our Explanation Ensemble architecture is shown to improve
upon the performance of the baseline models by 3.39% in-
dicating that the models are not sacrificing model perfor-
mance for improved explanations. Given that the expla-
nations from Explanation Ensembles are shown to better
align with radiologist EGD, this also suggests that features
used by radiologists are better for disease classification than
those learned by the baseline model.

Both Table 1 and Figure 1 report the Kullback-Leibler
Divergence and Normalised Scanpath Saliency between
the Grad-CAM explanations from each model architecture
and the radiologist’s EGD heatmaps (for details on EGD
heatmap generation, see [15]). From Figure 1 we can see
that our Explanation Ensemble model produces explana-
tions that are more similar to the EGD than all other ar-
chitectures tested, when measured by both a distribution-
based measure (KLD) and a location-based metric (NSS).
To confirm that these conclusions are statistically correct,
we perform a Paired t-test at the α = 0.05 significance
level between the similarity metrics from the baseline and
Explanation Ensemble models. Our null and alternative hy-
potheses are the same for both KLD and NSS: H0 : µd =
0, H1 : µd ̸= 0, where µd is the mean of the differences be-
tween the KLD/NSS values for the two architectures. The
distributions of the differences were confirmed to be nor-
mal before carrying out the t-test. Table 2 reports both
the test statistics and p-values for each of our hypothesis
tests. Given that all p-values are significantly less than α,
we can conclude that our explanation ensemble architec-
ture produces explanations that are statistically more simi-
lar to radiologist EGD than both baseline and current state-
of-the-art techniques. Significantly, all models except ex-
planation ensembles achieve negative NSS scores, showing
anti-correspondence against the EGD [4] and making our
explanation ensemble architecture the only method tested
to use features that are positively correlated with those used
by experts. This is further highlighted by the large reduction
in KLD from our methods when compared with the base-
line models tested; this underlines how significantly dif-
ferent the features used by current state-of-the-art models
and medical experts are (and follows results suggesting that
many networks suffer from shortcut learning [9] and spuri-
ous correlations [27]), and shows that our proposed method
is a significant improvement. While we have focused on
Explanation Ensembles of size 10 in this paper, the effect
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Table 1. Table reporting the performance of the best-performing model for each architecture, alongside the similarity between the model
Grad-CAM explanations and the EGD. Note that KLD is a divergence metric, and so smaller is better. Grad-CAM explanation consistency
was calculated across all 10 training hyperparameter setups for each architecture.

KLD NSS
Model Accuracy Mean (± std. dev) Median (± IQR) Mean (± std. dev) Median (± IQR) Consistency

Baseline 75.55% 14.4041± 7.6886 13.4535± 10.5240 −0.8579± 1.2345 −1.0391± 1.4737 0.1785
Improved UNet 76.51% 9.9371± 6.4179 9.1221± 8.4260 −0.3244± 1.5237 −0.4634± 1.9781 0.1596

Normal Ensemble 79.86% 3.8839± 3.2510 2.7740± 4.0799 −0.1646± 1.5721 −0.1307± 2.0840 0.3042
Explanation Ensemble (Ours) 78.94% 0.8196± 0.1273 0.8398± 0.1658 0.6757± 1.1178 0.5410± 1.5653 0.5333

Figure 1. Boxplots of mean (a) NSS and (b) KLD between model Grad-CAM explanations and radiologist EGD, across each of the 10
training random seeds tested. Note that KLD is a divergence metric meaning smaller values are better.

of changing the number of sub-models is explored in Fig-
ure 1 of the Supplementary Material. These experiments
show that as the number of sub-models increase so does the
agreement between model explanations and the EGD - how-
ever, it is important to note the trade-off between training
cost and increased performance as the Explanation Ensem-
ble size increases.

In addition to improved similarity with expert EGD, ex-
planation consistency (Table 1) is also significantly im-
proved in our explanation ensemble model. This can also
be seen by the significantly smaller range of NSS and
KLD of the explanations from the explanation ensembles
(as reported in Figure 1) when compared with other ar-
chitectures tested. This inherently increases trust in the
model, as it shows that our architecture is more robust than
the others tested. It also further highlights how our net-
work learns “better” (i.e. similar to those in EGD) fea-
tures than the baseline models - our model is learning fewer
noisy/spurious features and instead placing more impor-
tance on the features that have a higher probability of being
causally related to the task.

We also investigate the similarity between SHAP values
and the EGD data; this is shown in Figure 2. Similarly to

the Grad-CAM results, we see that our proposed Explana-
tion Ensemble architecture improves the similarity upon all
other model architectures tested. Similar patterns can be
seen between all 4 architectures tested across the KLD and
NSS values on the Grad-CAM and SHAP results, with the
boxplots highlighting that the level of improvement of our
explanation ensemble architecture is at the same scale re-
gardless of the explainablility technique used. As both the
results of Grad-CAM and SHAP agree, we can conclude
that our proposed model is learning to use features simi-
larly to a radiologist. These results can also be seen from
a visual comparison of explanations: Figure 3 shows exam-
ple CXRs and their corresponding EGD and explanations
from all models tested, showing that our explanation en-
semble places much more importance on regions similar to
the expert radiologist (i.e. around the lungs and heart) than
both the baseline and current state of the art models. No-
tice how columns 2 (baseline Grad-CAM) and 3 (Improved
UNet Grad-CAM) in Figure 3 show how much of the fea-
ture attribution is placed in spuriously correlated features
(such as the top-left corner and the image borders). On the
other hand, our explanation ensemble architecture learns a
significantly different set of features (using features around
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Figure 2. Boxplots showing the mean (a) NSS and (b) KLD between model SHAP explanations and radiologist EGD, across each of the
10 training random seeds tested. Note that KLD is a divergence metric meaning smaller values are better.

the lungs and heart, with these areas much more closely
matching the areas shown in the EGD heatmap in the first
column), further showing that our training technique has a
notable affect on the representations learned by the model.
This is desirable, as it highlights how our model is learn-
ing to use features similar to those used by experts, making
it less likely that our model is over-reliant on spurious fea-
tures.

Figure 4 shows how the learned features of our explana-
tion ensemble model change as training progresses. Note
that this figure shows only the most important pixels of
each model - when showing the importance of all pixels,
the heatmaps become difficult to analyse by eye. In partic-
ular, Figure 4 highlights how our training process (i.e. the
discriminator and our loss function in Equation 2) encour-
ages the sub-models of our ensemble to learn similar fea-
tures as training progresses, despite the sub-models starting
with vastly different sets of explanations. This verifies that
our intuitive understanding of our explanation ensemble ar-
chitecture, and most importantly our understanding of why
it produces explanations closer to expert’s EGD, is correct.

Table 2. Test statistics t and p-values for the Paired t-test per-
formed between the Explanation Ensembles and Baseline (top)
and the Explanation Ensembles and Improved UNet (bottom)
models.

Test Statistic p-value
KLD 18.005 6.8698× 10−34

NSS -9.9137 5.7567−17

Test Statistic p-value
KLD 14.4617 7.5950× 10−27

NSS -5.8058 3.5764× 10−8

6. Conclusion

Through the use of two explainability techniques and
both distribution- and location-based metrics, we have
shown that our Explanation Ensemble technique improves
upon baseline models in both terms of performance and
explanation similarity to EGD on the MIMIC-CXR-EGD
dataset. Furthermore, we have shown that the Explanation
Ensemble architecture also improves upon the current state-
of-the-art models which share learned features with radiol-
ogist’s EGD. In addition to improving agreement between
model explanations and expert EGD, our proposed model
architecture also improves classification performance and
explanation consistency when compared with current state
of the art techniques. Qualitative analysis of our results
shows that our proposed architecture is a highly significant
improvement upon current models, and whilst we do not
claim that our results are yet perfect they are a huge im-
provement in what is a very difficult task. Furthermore,
unlike the previous state of the art [15] technique, our pro-
posed architecture does not require EGD heatmaps during
training - due to the cost of collecting EGD (especially
in fields such as medicine, where expert knowledge is re-
quired), we believe this is a significant advantage over pre-
viously proposed methods.

In future work, it would be interesting to perform an in
depth causal analysis of the learned features of our model
and compare this with a causal analysis of the learned fea-
tures of baseline models. The improved performance, in-
creased explanation consistency and improved better agree-
ment with expert EGD suggests that our architecture may
be learning more causal features than the baseline models,
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Figure 3. 3 samples from the MIMIC-CXR-EGD dataset, overlaid with the radiologist’s EGD and Grad-CAM explanations from the
baseline, improved UNet and Explanation Ensemble models.

with the baseline models possibly relying more on spuri-
ous features. We hypothesise this as one would only ex-
pect causal features to be those that are learned consistently
across multiple variations of a well-performing model. Fur-
thermore, the increased agreement with expert radiologists
(whom you would expect to use causal features in their di-
agnoses) further supports this conclusion. However, to fully
verify this hypothesis, an extensive causal analysis of the
trained models, and their learned features, must be under-
taken (using techniques such as those used in [20] and [11])
and so we leave this for future work.

Due to its increased similarity with a medical profes-
sional’s decision making process, we believe that more trust
will be placed in our model by clinicians than current state-
of-the-art techniques. We hope that these results encourage
the use of our architecture in other areas of medical practice,

and other sensitive fields, as well as the release of further
datasets similar to MIMIC-CXR-EGD which can facilitate
this type of research.
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