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Figure 1. System overview and examples of estimated hand poses.

Abstract

Hand pose analysis is a key step to understanding dex-
terous hand performances of many high-level skills, such
as playing the piano. Currently, most accurate hand track-
ing systems are using fabric-/marker-based sensing that po-
tentially disturbs users’ performance. On the other hand,
markerless computer vision-based methods rely on a pre-
cise bare-hand dataset for training, which is difficult to ob-
tain. In this paper, we collect a large-scale high preci-
sion 3D hand pose dataset with a small workload using a
marker-removal network (MR-Net). The proposed MR-Net
translates the marked-hand images to realistic bare-hand
images, and the corresponding 3D postures are captured by
a motion capture thus few manual annotations are required.
A baseline estimation network PiaNet is introduced and we
report the accuracy of various metrics together with a blind
qualitative test to show the practical effect.
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1. Introduction

Hand motion analysis is one of the most essential tech-
niques for characterizing human behavior, elucidating its
underlying mechanism, and acquiring specific skills. Cur-
rently, most of the high precision hand tracking methods are
either glove-based [2, 26], or marker-based [3], which at-
tach special sensors or markers to the hand. However, these
are difficult to equip and too bulky for dexterous skills[20].
On the other hand, many computer vision-based methods
utilize convolutional neural networks (CNN) to estimate 3D
hand motion from images, however, these methods rely on a
robust dataset with high-quality ground truth, which is cur-
rently insufficient in many specific areas.

Some predecessors [15, 22] make great efforts in collect-
ing large-scale data with ground truth, but to achieve this,
they set up studios with hundreds of cameras for bootstrap-
ping and hire a large number of people to perform manual
annotations, which is both times- and cost-consuming. On
the other hand, synthetic methods [35, 17] using 3D simula-
tions are introduced to reduce the workload of data collec-
tion. However, the domain gap between artificial data and a
real one is still enormous for precise hand pose estimations.

Most models trained with these general-purpose datasets
are robust across activities but less accurate on some dex-
terous skills. One representative example is piano play-
ing [9, 8] that includes very unique and awkward hand poses
and heavy self-occlusions (such as a thumb-under or hand-
overlay motion in Fig 1.), which is in a class by the pianists
and therefore does not exist in any current dataset, to the
best of our knowledge. Nevertheless, a degree-perfect hand
motion analysis is required to reconstruct the performance
and to provide feedback, which is difficult for conventional
general methods.
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In this paper, taking piano playing as an example, we
introduce a novel method to collect precise 3D hand pose
datasets by means of a marker-removal network to re-
move the reflective markers from the images. Instead of
a studio with hundreds of cameras, the proposed method
only requires a marker-based motion capture (MoCap) sys-
tem (consisting of 12 high-speed cameras) and removes
the markers which cause extra features. Inspired by vari-
ous image-to-image translation tasks such as denoising net-
work [11] or generative adversarial networks (GANs) [17,
34], we develop an encoder-decoder network using auto-
matic marker-synthesizing to translate the markers on the
images, called Marker-removal network (MR-net). As a re-
sult, realistic bare-hand images with accurate 3D data can
be obtained. The collected data are further processed with
interpolation and joint re-targeting. For the dataset, we in-
vite 21 experienced pianists to perform different tasks con-
sisting of various hand motions in two different studios. A
total number of 2.5M images are collected.

Finally, to demonstrate the benefit of our dataset, a base-
line called PiaNet is trained to regress root-relative 3D
hand joint positions. Three quantitative experiments are
performed to compare our network in different conditions.
Besides conventional quantitative metrics such as PCK,
MPIJPE, and MPJPA, a qualitative study is also performed
by inviting experienced pianists for a blind test to rank the
estimated 3D hand pose from online piano videos. In sum-
mary, this paper illustrates a whole pipeline of how to col-
lect a precise posture dataset using the proposed MR-Net
and how to use the data to train a strong baseline that out-
performs other SOTA by using one specific scenario as a
representative — piano playing. Our contributions can be
concluded as follows:

* A marker-removal network for translating marked-hand
to bare-hand images results in few domain gaps com-
pared to real-world data and can be applied to many other
marker-based motion captures.

e Using the MR-Net, we collect the PianoHand2.5M,
which is the first large-scale precise 3D hand image
dataset for piano scenarios from professional pianists.

* A strong baseline PiaNet for 3D hand pose estimation in
piano playing, which outperforms some state-of-the-art
methods in various metrics.

e A qualitative study indicates that PiaNet achieves good
results in practical use such as online videos.

2. Related Work
2.1. RGB-based 3D Hand Pose Dataset

Compared with the large number of depth-based hand
pose datasets [30, 27, 4, 25], existing RGB-based datasets
[32, 35,17, 23, 18, 29] have a very limited number of frames
and subjects because obtaining accurate 3D annotation from

RGB images is difficult. Stereo Tracking Benchmark (STB)
[32] is one of the most commonly used datasets to report
single RGB-based hand pose estimation, but the number of
frames (18K) and subjects (1) is very limited. Rendered
Hand Pose (RHP) Dataset [35] contains 44K images of two
isolated hands, the images are synthesized by animating 3D
human models and have a large domain gap from the real
one. Mueller et al. [17] tried to reduce the domain gap
of synthesized data by using GAN, however, GAN-based
methods might introduce unnatural artifacts to the data.

For RGB-based datasets with a large number of images,
Simon et al. [22] proposed a hand dataset (680K) using the
CMU Panoptic studio, which consists of humans perform-
ing different tasks and interacting with each other. Moon et
al. [15] captured a large-scale (2.6M) two hands interaction
dataset with different lights and camera angles. However,
these two methods both utilized hundreds of depth cameras
which are almost not possible to reproduce. Also, a large
number of cameras can make synchronizations very diffi-
cult, thus not suitable for capturing with a fast shutter time,
which is required for fast motion like piano playing.

Recently, Zimmermann et al. [36] collected a single
hand pose and mesh dataset named FreiHand with only 8
RGB cameras, and they utilized a semi-automatic method
for annotation. Although manual verification was still re-
quired which might involve human error, their work showed
a direction for capturing using a relatively simple setup.

The above-mentioned RGB-based datasets focus on ob-
taining general hand poses instead of a specified applica-
tion. In terms of piano, there is a piano fingering dataset
published by Nakamura et al. [19] but no hand posture in-
formation is included. The only public dataset (to the best
of our knowledge) which includes piano hand motions is the
previously mentioned CMU Panoptic HandDB [22], how-
ever, the number of piano images is very limited.

2.2. RGB-based 3D Hand Pose Estimation

Many works [35, 5, 31, 17, 33, 13] are trying to estimate
hand poses from RGB image sequences. Zimmermann and
Brox [35] are the first who tried to train a CNN-based model
that estimates 3D joint position directly from an RGB im-
age. Ge et al [5] directly regressed a hand mesh from RGB
images using a GraphCNN [1], but the training requires spe-
cial hand meshes as ground truth which is difficult to obtain.

For real-time estimation, Mediapipe [14, 31] from
Google provided a very easy-to-use API to access which
enabled on-device real-time hand pose estimation, however,
their estimation result is 2.5D instead of 3D position, which
cannot calculate the 3D joint angle. Mueller et al. [17]
employed CycleGAN [34] for bridging the domain gap to
generate realistic synthetic data. Zhou et al. [33] trained
a lightweight inverse-kinematics network that enhances the
regression of angle-based hand poses. Liu et al. [13] ex-
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tended the work of Moon et al. [15] and achieved a light
network that better extracts global features from a single
image.

These works show the maturity of the current hand pose
estimation technologies. However, as mentioned before,
all these networks require a precise and robust dataset to
achieve good performance.

2.3. Piano-related Hand Pose Research

There are quite a few researches [16, 3, 8, 26, 10] deal-
ing with hand postures that are related to piano playing.
Moryossef et al. [16] extracted fingering information from
public videos and MIDI files. Furuya et al. [3] used a mo-
tion capture system to record the 3D hand kinematics for
teaching musically untrained individuals to practice a sim-
ple and short melody. Johnson et al. [8] are the first to de-
tect hand postures for piano instructions, but they utilized
a depth camera which was less common and cannot be ap-
plied to recorded or online videos. Moreover, the low reso-
lution and speed of a depth camera can hardly ensure high-
precision piano instruction. Takahashi et al. [26] utilized a
soft exoskeleton glove to support a novice to play a musical
excerpt, of which a coach hand-pose dataset is required for
instruction. Reversely, Liang et al. [12] made use of real-
time hand pose estimation to develop a virtual piano appli-
cation using a depth camera. All these researches show the
necessity of a precise professional pianist hand pose dataset,
which also indicates future applications for our work.

3. Methodology

In this section, the whole process from data capture to
post-processing is introduced to show a clear procedure for
collecting precise bare-hand data.

As mentioned before, a marker-based MoCap can ob-
tain high-precision 3D hand poses and is relatively easy to
set up, while CV-based methods require a precise dataset
of bare-hand images. Therefore, for precise ground truth,
we employ a well-calibrated commercial MoCap system to
capture accurate 3D hand pose data and aligned marked-
hand images. After that, the markers on the hands are re-
moved by our proposed marker-removal network, which re-
sults in a bare-hand image with its 3D hand pose ground
truth. Finally, the data is further processed with automatic
interpolation, and a solver using forward kinematics is built
to re-target the marker positions to real joint positions, no
manual annotation is required in the whole process.

3.1. Data Capturing Environment

PianoHand2.5M is captured in two different locations, a
green-back laboratory environment with an 88-key electric
piano (Kawai ES-110) and a studio with an 88-key grand
piano (Kawai GE-20). Both are equipped with an Opti-

) Capture tudio B (GP)
Figure 2. (Left) Hand with 23 markers. (Right and Middle) The
two studios for capturing: One with an electric piano (EP), and
another with a grand piano (GP).

Marker Placement Capture Studio A (EP)

track! MoCap system, where eleven Optitrack Prime 13W
monochrome IR cameras and one Optitrack Prime Color FS
RGB camera are well-calibrated and synchronized for cap-
turing. All cameras capture at 240 frames-per-second (FPS)
while the exposure time is set to 4 ms, and the image resolu-
tion is 1920 x 1080 (1080p). The placement of the camera
is slightly different for the 2 conditions due to the differ-
ence in the shape of the piano (can be seen in the right fig-
ures in Fig.2), but the RGB reference camera is fixed to the
top-middle of the piano. The final mean re-projection er-
ror of both setups is similar, ranging from 0.19 to 0.28 mm
(approx. pixel root mean square error is 0.24-0.35). The
markers used on the hands are the Optitrack hemisphere 4
mm facial reflective markers, which are very tiny and thus
relatively easy to remove. For each hand, twenty markers
are placed on each joint and fingertip and three additional
markers are placed close to the wrist as a triangle to obtain
the wrist rotation (as shown in Fig.2). In total, 46 mark-
ers are placed on both hands of the pianists. Besides the
marker information, a MIDI of each play is also recorded
and synchronized, for the grand piano scene, we also record
a real-time depth of each key (a max. 10 mm keystroke) by
using an IR-sensor embedded behind each key of the piano.
The whole data-capturing procedure is approved by the lo-
cal IRB department.

3.2. Generation of Data

For training a convolutional neural network, the captured
raw image data which have markers on the hands may affect
the training because the markers are providing extra fea-
tures. Three methods for translating marked-hand to bare-
hand are introduced to be compared with raw data (mark-
ers unremoved). Additionally, the 3D tracking informa-
tion of the markers also needs to be pre-processed to serve
as ground truth for the training. Note that, in all descrip-
tions about coordinates here, the z-axis indicates horizontal
movements (positive for the right direction facing the pi-
ano), y-axis indicates vertical movements (positive for the
up direction), and z-axis stands for the depth. The origin O
is set to the center of the 88-key edge (between the key E4
and F4), the same level as the key surface.

Uhttps://optitrack.com/
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Figure 3. Conventional methods of generating training data (2-3), GAN-based method (4), and the proposed MR-Net (5).

3.2.1 Tracking Data Pre-processing

Marker labeling and interpolation: Firstly, the tracked
markers are labeled automatically using a greedy matching
algorithm, where manual labeling might be performed when
the tracking of a marker is lost, however, thanks to the well-
set-up camera system, this operation is only required for
less than 0.1% of the total data. Next, an automatic cubic
spline interpolation is employed to fix the occasional track-
ing loss with a maximum gap set to 10 frames. If there are
still imperfections after this processing, the data are aban-
doned for a retake (very seldom which only happens twice
in the whole capturing session). Finally, square bounding
boxes of the hands are automatically annotated based on the
center of all joints.

Hand Solver: It is obvious that there is an offset be-
tween the marker and the attached joint. Different from
body pose, where kinematic motions might result in a com-
plicated calculation, the offset of markers and the real joints
is a constant value that is close to the thickness of the hand.
Before the recording, we ask all the subjects to place their
hand tightly on a flat horizontal table of which the height
is already measured by the MoCap system, thus the offset
of the joints and markers is equal to half of the distance be-
tween the markers and the table surface. In the case of the
thumb, a tiny rotation in the roll-axis is manually performed
to the marker positions to fix the natural thumb rotation. Fi-
nally, the wrist rotation can be easily calculated from the
plane of the 3 markers placed on the center of the wrist
while the wrist position is considered to be the middle of
point 21 and 22 in Fig.2 (Left).

What to note here is, the whole data recording tasks last
over 30 hours, but the time of manual supervision required
for pre-processing and annotation is less than 4 hours (ex-
cluding the time for checking the data), which is evidently
reduced compared to conventional works.

3.2.2 Synthetic Data (Baseline 3)

For comparison and also as a baseline, a synthetic dataset is
created from the captured data. Technically, synthetic hand
data is the simplest way to “remove the marker” by recon-
structing a hand model from hand pose data. We developed
a virtual piano environment and a hand simulator using for-

ward kinematics. For each finger, we assume that pg — p4
represent the 3D position of the fingertip, DIP, PIP, MCP,
and the center of wrist, while a bone vector v; = p;_1 — p;
The Euler angle o, oo, sy, a3y, representing the rotation
of DIP, PIP, vertical MCP, and horizontal MCP, respectively,
can be calculated:

Vi'Vit1 s
0 = {“TCGOS(|v,||vl+1| le=0)s =120 )

v .
arccos(m|y 0), ©=3h

Since the DIP and PIP (IP and MCP for thumb) have only
one degree of freedom (DOF), the rotation angle of a joint
can be easily calculated from the projection angle between
the previous bone vector v; and the latter bone vector v;41
on the yaw plane (y-z plane). On the other hand, the MCP
(CMC for thumb) has two DOF which are represented in
two Euler angles. Based on these angles and the hand size
of the subjects, a synthetic hand image close to the raw data
can be generated as shown in the second image of Fig.3.

3.2.3 Cycle-GAN (Baseline 4)

The GANerated Hands [17] used two-stream Cycle-GAN
[34] to generate real hand images from simulated hand im-
ages, which still has to overcome a relatively huge domain
gap between synthetic hands and real hands. Neverthe-
less, removing tiny markers on the hand is a much more
straightforward task, so we first utilize a standard Cycle-
GAN as an initial baseline for realistic marker-removal. A
ResNet50 [6] is used as the backbone for the generator and
the discriminator while the cycle-consistency loss uses L1
Loss, as shown in the middle of Fig.3. To train the network,
bare-hand data also needs to be collected from the subjects,
the details will be mentioned in Section 4.

3.2.4 Marker-removal Network (Proposed Method)

The above GAN-based method does show effects in remov-
ing markers from the hands, however, since the generated
bare hand image is not compared to a real image using a
pixel-perfect L1 loss, it sometimes adds unnatural artifacts
to the original data, as shown in Fig.4, the keyboards and
the clothes of the subjects are distorted because they are not
taken into account by the discriminator. It is ideal if a pixel-
to-pixel translation can be performed, but a pair of hand im-
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. . No. of Frame
Data Split Task Subjects  Keystroke R L B Sum
Train (EP) R,L,B1-B6 6 no 150K 110K 400K 660K
Train (GP) R,L,B1-B11 10 yes 263K 217K 834K  1314K
Val (EP+GP) | B1-B6(EP),B1-B11(GP) 1+1 no 0 0 155K 155K
Test (EP) Free Play (R,L,B) 1 no 23K 17K 65K 105K
Test (GP) Free Play (R,L,B) 2 yes 50K 36K 166K 252K
Total / 21 / 513K 403K 1696K 2486K

Table 1. The details of the PianoHand2.5M Dataset. EP: data taken in the electric piano studio. GP: data taken in the grand piano studio.
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ages w/ and w/o markers is required to realize this, which is
not practical. Therefore, we introduce the Marker-removal
network (MR-Net) which generates synthetic markers to
bare-hand images to be used as training data for the gen-
erator, where the output bare-hand image can be directly
compared with the original input using L1 Loss.

The MR-Net consists of two stages: marker synthesiza-
tion and marker-removal. The marker synthesization stage
passes an input bare-hand image B through a CNN back-
bone (ResNet50 till level 4 in this paper) to extract visual
features for marker estimation, which regresses a 2D mark-
ers position vector p (size: 2x21). The backbone here is pre-
trained using some good results by the CycleGAN-based
method which are manually picked out. Simultaneously, 21
marker images M I are randomly chosen from the marker
image set and alpha blended to the corresponding positions.
For data augmentation, a maximum 5% noise is randomly
added to the p and the size of the M, meanwhile, Gaussian
blur and brightness adjustment are performed to the marker
image M. Finally, a hand image with synthetic markers S
is generated. For the marker removal, a U-Net [21] like
encoder-decoder network using the same CNN backbone
(ResNet50) is employed for image translation. The out-
put S from stage I is fed to this network to extract these
marker features where the convolutional layer shares the
weights of the previous marker estimation. These markers
are then removed in the deconvolutional phase. Skip con-
nections are added after each convolutional block to better
maintain the rest of the image. Finally, a marker-removed

bare hand image R is output and we use an L1 loss function:
L1 =31, |R; — B;|/n to realize a pixel-comparison.

One might argue that these synthetic markers still create
domain gaps which contradicts our major motivation, but
a pilot test suggests that domain gaps of synthetic markers
are tiny and have less impact on the marker-removal. This
is also proved by the results of the later experiment.

4. PianoHand Dataset

The contents of the dataset are shown in Table 1.

Subjects: The whole data are captured from 21 unique
experienced pianists (13 females, 9 males, Avg.age=27.75,
SD=7.44). Most subjects start learning piano at the age of
4, and the average experience is 22.7 years. Among them,
two subjects are professional pianists who played in inter-
national concerts, four work as piano instructors or related
professions, and the remaining are all piano students from
local art colleges/universities. The subjects are divided into
two groups, 2 professionals and 6 students are asked to per-
form in the EP studio and the other 13 students are captured
in the GP studio.

Tasks: The whole task is designed based on several
considerations and suggestions from experienced pianists.
Overall, there are two types of tasks to be performed by the
subjects: unimanual (single hand) performance using either
right (R) or left (L) hand, and bimanual (both hand) perfor-
mance (B). The unimanual tasks are conducted in the same
way for both groups of subjects, in which 10 phrases are
played with the right hand and 8 phrases are played with
the left hand. These phrases include fundamental patterns
of hand movements in piano playing (e.g. scale, arpeggio),
some of which involve complex changes in the hand posture
with self-occlusions of the fingers. Each subject is asked to
repeat each phrase 5 times, which results in 50 phrases for
the right and 40 phrases for the left hand. For the bimanual
tasks, particular excerpts of 11 pieces of music are chosen
to be played. All the subjects are told to play each excerpt
repeatedly for approx. one minute. Namely, about 11 min-
utes of data (about 80k frames under 120 fps) are recorded
for each subject in the bimanual task. More details about the
music, the notes, and the reason for the choice can be found
in the supplementary document. Also, please note that two
subjects (one from the EP and one from the GP) are used as
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Figure 5. An overview of the data capture and the proposed PiaNet.

pilot testers, where the unimanual tasks are not conducted.
Their data are therefore used for validation which is men-
tioned later. To evaluate the generality, three subjects (one
from EP, two from GP) are asked to play random music
freely for a total time of about 10 minutes (approx. 1.5, 2,
and 6.5 min for left, right, and bimanual, respectively) for
each of them, of which the data are used as test data.

Data splits: Finally, the collected data are down-
sampled to 120 fps to reduce redundant images and a to-
tal number of 2486K image data are collected. The whole
dataset is divided into training, validation, and test sets for
performing a between-subject evaluation. The training set
consists of data from 16 subjects (6 EP, 10 GP), with a total
number of 2.0M. The validation set, as mentioned above, is
using the two pilot testers’ data, thus no R and L data are
included. The test data consists of the free play of three
subjects, as mentioned above. The detailed contents of the
dataset can be seen in Table.1. For all data, the ground truth
bounding box information is used to crop the hands. In ad-
dition, the real-time keystroke data of the piano as well as
the MIDI are also recorded in the GP scenario.

Data Augmentation: Common augmentations are per-
formed to the annotated data, such as resizing, rotation,
color, and brightness adjustments, and adding motion blur
by Gaussian filter. Unlike most data augmentation, flipping
the hand is not considered because we assume that right-
hand (high part) and left-hand (bass part) motions are dif-
ferent in piano playing.

Other data: For comparative purposes, the same num-
ber of data is also generated using the synthetic method,
the simple-removal method, and the GAN-based method.
Furthermore, the GAN-based method requires similar bare-
hand images to train the discriminator. Therefore, we ask
the subjects to play all the tasks again barehanded for only
once, and a total number of 530K barehand images are col-
lected (which is not counted for the 2.5M data).

5. PiaNet Baseline

To show the practical effect and to serve as a baseline
for future works, we propose the PiaNet, which takes a sin-
gle RGB image I as an input and outputs a real-time 3D
hand joint position P, Fig.5 shows an overall architecture
of PiaNet. The input I is the cropped hand image obtained
by the ground truth bounding boxes which are resized to
256 x 256. The PiaNet itself does not provide a hand de-
tection and bounding box because the background is mostly
fixed with only hands moving in the piano scenario, simple
background subtraction are sufficient for detection.

5.1. 3D Hand Key Point estimation

For 3D hand key point estimation, the PiaNet uses an
encoder-decoder PoseNet architecture which is similar to
the networks by Zimmerman et al. [35] and Ge et al. [5]
with a ResNet50 [6] backbone. Given the features F which
is extracted from I by the encoder, 3D heat maps Hj, are
predicted containing the probability information of the k-
th joint position in 3D. The final joint position coordinate
Py, is obtained as the integration of all locations p in the
domain €2, weighted by their probabilities:

P, = ZpDzzl 2221 ZZZ:l p- Hi(p)

Here, the fIk is the normalized heat map Hj;. The
D, H,W indicates the resolution on depth, height, and
width of the heat maps, respectively. To train this PoseNet
module, L2 loss is used for the heat maps.

5.2. PiaSim Module

In piano performance, the timing of sound (when a key
is pressed) is considered to be the most essential factor.
Accordingly, the fingertip position (also the PIP rotation)
needs to be accurate. To enhance the training to be more
specific towards piano hand motions, a PiaSim network is
developed to output keystrokes based on an input hand se-
quence. The network consists of a long-short term mem-
ory (LSTM) [7] layer to extract time series motions and a
fully-connected layer to reproduce the keystroke. The in-
put stacks the last 5 frames of hand postures, of which the
3D positions are relative to the piano (same as the dataset),
resulting in an input size of 5 x 21 x 3. The output is a
1D array with a size n = 12 (for the 12 keys) showing the
key-depth k; of the i-th key (ranged from 0-10 mm, nor-
malized to 0-1). Since not all the keys are always pressed,
using an L2 loss is not suitable for such a sparse vector. We
developed a keystroke loss function with the ground truth
is k*, and the number of values greater than zero in k* is

N(k*>0): n
['key = Z ||kz -
=1

The output size is set to 12, so an octave (a note and the
same higher note is played, for example, C4 and C5) is

k7 [l2/N = >0) 2)
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Training Set Result on Validation Set (Same task)

MPJPE(mm) MPJAE(°) PCK(%)
Raw 14.44 9.9 66.1
Simple R. 12.04 8.9 74.1
Synthetic 11.12 7.9 75.2
GAN-based 9.98 7.8 78.8
MR-Net 9.22 7.3 81.6
Result on Test Set (Different task)

MPJPE(mm) MPJAE(°) PCK(%)
Raw 22.40 13.5 54.3
Simple R. 21.38 13.0 57.2
Synthetic 19.11 12.1 60.2
GAN-based 10.97 8.5 76.7
MR-Net 9.95 7.9 80.3

Table 2. Result of the between-datasets comparison.

considered to be pressing the same key in the prediction.
For training, given that the keystroke information is not ob-
tained for the EG group, we developed a keystroke simu-
lator to simulate keystroke information from either MIDI
or ground truth hand poses. An ablation study comparing
the networks using different keystroke ground truth is con-
ducted in section 6.2. Finally, the overall loss function for
the training procedure is as follows, where \;, Aqand A3
are the weights for the joint position loss, heat map loss,
and keystroke loss, respectively:

L=M[P =P 2+ X|H-H2+ A3Lkey (3)

6. Quantitative Experiment
In this experiment, we aim to evaluate our data gener-

ation method and compare our results with other state-of-
the-art methods on a variety of publicly available datasets.
To perform a fair comparison, we show the results of the
three most common metrics: the mean per joint position er-
ror (MPJPE), the mean per joint angle error (MPJAE), and
the Percentage of Correct Keypoints (PCK).

6.1. Between-dataset Comparison

Firstly, to show the effect of our marker-removal net-
work over synthetic data and GAN-based methods, a com-
parative study between the three methods is conducted. A
model trained with the raw data (marker unremoved) and
a simple-remover (Simple R.) that replaces markers with
skin-colored circles is also included to serve as a baseline.
All datasets are trained using PiaNet with the PiaSim mod-
ule of which the keystroke ground truth is generated from
the hand pose ground truth.

Table 2 shows the results under three metrics. For the
validation set (same task as the training set), besides the
raw-data trained model which falls behind, tiny differences
in performance are shown between the other four generation
methods. The situation changes for the test set evaluation
(the task is different), models trained with simple-removal
and synthetic data show an obvious drop back in all three

Ablation MPJPE MPJAE PCK
w/o PiaSim (Direct R.) 10.72 8.6 76.1
PiaSim + pose 9.95 7.6 80.2
PiaSim + MIDI 10.09 7.9 79.7
PiaSim + Keystroke 9.95 7.5 80.3

Table 3. Result of the ablation study.

metrics while the GAN-based and MR-Net-based methods
still remain a relatively high precision. Overall, the pro-
posed MR-Net performs the best in both evaluations.

6.2. Ablation Study

We carry out an ablation study to find out whether
the PiaSim module improves the performance of PiaNet.
Four ablations of not using PiaSim (direct regression),
a PiaSim trained with a pose-simulated keystroke (the
one used in previous experiments), a PiaSim trained with
MIDI-simulated keystroke, and a PiaSim trained with raw
keystroke data obtained from the IR-sensors are evaluated.
All conditions are trained and tested only on the GP data,
which has aligned keystroke data. The result is shown in
Table 3, which suggests that all three methods using PiaSim
outperform w/o PiaSim condition while using directly ob-
tained keystroke data shows the best accuracy. To our sur-
prise, the MIDI-based solution falls behind the pose-based
method. Since raw keystroke data cannot be easily cap-
tured, using a pose-based keystroke with close accuracy be-
comes optimal.

6.3. Between-method Comparison

Finally, to show the robustness of our dataset and net-
work, we compared with the FreiHand [36], and the Inter-
Hand [15]. and Zhou et al.’s method [33], which are SOTA
hand pose estimation methods with pre-trained weight re-
leased. For a fair comparison, we evaluate the different
models on the piano sequences of the CMU Panoptic Hand
dataset [22], only top-view images where the hands can
be clearly seen are chosen, so approx. 10k images from
161029 _pianol, 161029 _piano2, 161029 _piano3 are used
for testing.

Results: Table 4 shows the results of 2D and 3D posi-
tions, and 3D angle error, since the finger angles are con-
sidered to be more important in piano, we also show the
detailed error of each specific joint. For the 2D and 3D
positions and MPJAE metrics, the proposed PiaNets both
outperform the other three baselines. It is interesting to no-
tice that for the MCP error, the PiaNet (MR-Net) (MCPE =
7.24) falls behind the PiaNet (Synthetic) and Zhou et al.’s
method, but for the PIP error, the proposed method greatly
overgoes the others which might indicate that the network
is trying to focus on the more important DIP angle.

2983



2D Position

Method MAE PCK

3D Position
MPJPE

3D Angle Error
PCK | MCP  PIP DIP MPJAE

FreiHand [36] 8.4 89.1 | 24.47
InterHand [15] 7.3 94.1 | 21.32
Zhou et al. [33] 6.8 95.0 16.11
PiaNet (Synthetic) 7.2 94.2 14.72
PiaNet (MR-Net) | 5.6 98.1 | 12.49

61.6 | 8.09 1234 1333 11.58
644 | 741 1134 12.00 10.25
673 | 7.02 8.12 12.56 9.22
70.5 | 695 839 11.82 9.05
73.7 | 7.04 712  7.66 7.30

Table 4. Quantitative results of the compared models tested on the piano sequences from the CMU Panoptic Hands dataset.

Qualitative Results

7 . xx .
6
4 I T
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2
1
0
Ours Synthetic InterHand Zhou et al.

Figure 6. Results of the qualitative experiment. Brackets indicate
significant differences. (xp < 0.05, * * p < 0.01)
7. Qualitative Experiment

In the case of the piano, it is important whether the es-
timated hand poses naturally play the corresponding notes,
which is difficult to tell from the previous quantitative ex-
periments. Therefore, to show the practical effect, we col-
lect 8 piano instruction videos to perform a qualitative blind
study on the estimated results of the four best models in the
between-method comparison (Due to the limited number of
subjects, we abandoned the FreiHand [36] model to reduce
condition). Eight experienced pianists are invited to take the
ranking test, where the shuffled estimated results and the
videos with the correct notes are given to them. The sub-
jects can freely rotate the screen to view the 3D hand from
different angles (details are explained in the supplementary
document). A 7-point-Likert-scale questionnaire is given to
subjects to choose how natural each hand pose is.

Result: The results are shown in the chart in Fig.6.
A one-way ANOVA test [24] is performed to analyze the
significant difference between each condition. The result
(F336 = 4.3597,p = 0.0102) suggests significant dif-
ferences within the condition, thus a posthoc Tukey HSD
test [28] is applied to pinpoint which condition exhibits sig-
nificant difference. As a result, there is a significant differ-
ence (p < 0.01) between Ours (Avg=5.31, SD= 0.82) and
the InterHand (Avg=3.93, SD=1.01), and a significant dif-
ference (p < 0.05) between Ours and Zhou et al.’s method
(Avg=4.23, SD=0.94). Even though no analytical signif-
icance was found, the PiaNet trained with synthetic data
shows a higher average score (Avg=4.60, SD=0.81) than
Zhou et al., which is opposite to the quantitative results.

8. Discussions & Limitations

Three quantitative experiments and a qualitative study
are conducted to exemplify the effectiveness of the pro-

posed dataset and network. The marker-removal network
outperforms other data generation methods such as syn-
thetic or GAN-based data which can be explained by a
smaller domain gap. When compared with other SOTA es-
timations on piano-playing hands in a public dataset, our Pi-
aNet trained with the PianoHand dataset shows the highest
PCK with the smallest angle error, especially for the DIP
angle of each finger, which is one of the major factors in
piano performance. Lastly, the qualitative study of 10 expe-
rienced pianists observing the estimated hand pose results
shows the effect of our dataset on practical purposes. De-
spite the results being achieved, several limitations of this
work are also concluded:

* One difficult scenario for our method is when we need to
collect data from a person with many features on the hand
(such as heavy hairs or moles), the marker-removal might
mistakenly remove these features as well.

* Although data from both hands are measured, the pro-
posed PiaNet only focuses on single-hand estimation.
Since hands interact in piano playing, including both
hands as a bootstrapping might improve the performance,
which needs to be studied in the future.

* Even though the proposed method outperforms other
baselines in estimating hand poses during piano playing,
the quantitative accuracy is still far from perfect, which
might be the bottleneck of single RGB image-based esti-
mation. Integration of multiple-camera-view or keystroke
data as input can be considered in the future.

9. Conclusion

We propose a novel marker-removal approach for col-
lecting bare-hand data including a precise ground truth to-
gether with the first large-scale pianist 3D hand dataset, Pi-
anoHand2.5M. This method opens the possibility of creat-
ing precise and realistic hand pose datasets without a heavy
workload for annotation. Also, a PiaNet for piano hand pose
estimation is introduced for successors to use as a baseline,
which also enables pianists to easily set up a motion capture
for home use (e.g. practicing and instruction). We hope the
proposed procedure of making a dataset for a specific appli-
cation inspires future works to create vast datasets in vari-
ous scenarios. We believe this can contribute to the vision
community and also benefit motion capture manufacturers
to embed our system to realize direct “marker-less” output.
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