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Abstract

Multi-contrast MRI (MC-MRI) captures multiple com-
plementary imaging modalities to aid in radiological
decision-making. Given the need for lowering the time cost
of multiple acquisitions, current deep accelerated MRI re-
construction networks focus on exploiting the redundancy
between multiple contrasts. However, existing works are
largely supervised with paired data and/or prohibitively
expensive fully-sampled MRI sequences. Further, recon-
struction networks typically rely on convolutional architec-
tures which are limited in their capacity to model long-
range interactions and may lead to suboptimal recovery
of fine anatomical detail. To these ends, we present a
dual-domain self-supervised transformer (DSFormer) for
accelerated MC-MRI reconstruction. DSFormer develops
a deep conditional cascade transformer (DCCT) consist-
ing of cascaded Swin transformer reconstruction networks
(SwinRN) trained under two deep conditioning strategies
to enable MC-MRI information sharing. We further use a
dual-domain (image and k-space) self-supervised learning
strategy for DCCT to alleviate the costs of acquiring fully
sampled training data. DSFormer generates high-fidelity
reconstructions which outperform current fully-supervised
baselines and approach the performance of full supervision.

1. Introduction
Diagnosticians often capture a series of multi-contrast

magnetic resonance images (MC-MRI) of a single subject
to acquire complementary tissue information towards more
accurate and comprehensive radiological evaluation [21,
2]. However, due to physical constraints, MRI intrinsi-
cally requires prolonged acquisition which often leads to
patient discomfort and the accumulation of motion arti-
facts and system imperfections in the image that obfus-
cate biomedically-relevant anatomical detail. These limita-
tions have lead to immense interest in accelerated methods
that can reconstruct high-fidelity and artifact-free images
from fewer (undersampled) frequency-domain (k-space)

MRI measurements and reduced scan time.
While the inverse Fourier transform can reconstruct im-

ages from fewer k-space measurements, it comes at the cost
of strong aliasing and blurring effects in the reconstruc-
tion and has thus motivated works which exploit transform-
domain data priors to achieve higher quality reconstruc-
tions with fewer artifacts [20, 6, 22]. However, these meth-
ods may still yield blurred and sub-clinical reconstructions
and are generally slow and hyperparameter-sensitive as they
are based on iterative instance-specific optimization. More
recently, deep MRI reconstruction networks have greatly
improved MRI reconstruction fidelity under high under-
sampling rates with prediction times on the order of sec-
onds [32, 27, 24, 8, 1, 7, 43, 38, 3, 40, 31, 37, 34, 28, 42, 25].

However, these works typically achieve their strong re-
sults via supervised training on ground-truth fully-sampled
images and/or k-space target data, which is often practically
infeasible in both time and cost to acquire. Recently, self-
supervised reconstruction frameworks have emerged requir-
ing only undersampled k-space data [31, 37, 10], yet their
performance remains upper-bounded by full supervision.
Further, whether supervised or self-supervised, the afore-
mentioned works largely focus on single contrast MRI ac-
celeration, whereas most diagnostics require MC-MRI to
visualize disparate anatomical characteristics. Fortunately,
in MC-MRI reconstruction, fully sampled MRI modali-
ties requiring shorter acquisitions can be used as a refer-
ence to guide target modalities that require longer acqui-
sitions via methods which inject a fully-sampled reference
modality as an extra input channel into a reconstruction net-
work [35, 29, 5, 42, 17, 18].

While these MC-MRI methods achieve excellent recon-
structions, they have the following major limitations. First,
previous MC-MRI reconstruction methods operate directly
on the undersampled target MRI image as input (recon-
structed via zero-padding and the inverse Fourier transform)
and thus suffer from severe aliasing in their starting point.
Second, current MC-MRI reconstruction networks ubiqui-
tously employ convolutional architectures [17, 35, 5, 26],
such as U-shaped network designs [26] and sequential con-
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Figure 1. An overview of the Dual-domain Self-supervised TransFormer (DSFormer). The Deep Conditional Cascade Transformer
(DCCT) is trained in a self-supervised fashion with randomly partitioned undersampled k-space data sets fed into DCCT in parallel. The
partition data consistency loss (LPDC ) and appearance consistency loss (LAC ) are used for self-supervised training. At testing, arbitrarily
undersampled data is reconstructed by DCCT. SwinRN (Fig. 3) is used as the backbone network for DCCT.

volutional layers with residual connections [17, 27], both of
which are limited in modeling long-range interactions and
may recover reduced fine image detail due to the lack of
non-local contextual information. Third, existing MC-MRI
reconstruction methods require fully-supervised and fully-
sampled training data from large-scale paired data, which is
prohibitively expensive to obtain. The fully-sampled data
of target contrasts demanding longer acquisitions are also
prone to motion and other accumulating errors. There-
fore, self-supervised learning operating on undersampled
data with shorter acquisitions would be less susceptible to
non-ideal imaging conditions.

To these ends, we present DSFormer, a dual-domain
self-supervised transformer for accelerated MC-MRI recon-
struction, with the following contributions:

1. Multi-contrast information sharing. We develop a
deep MC-MRI conditioning method for efficient us-
age of multi-contrast information in MC-MRI recon-
struction. Briefly, as opposed to the zero-padded

and aliased initial reconstruction used in most works,
our framework leverages fully-sampled reference MRI
data by grafting its k-space data into the unacquired
k-space bins of the undersampled/accelerated tar-
get modality, whose inversion provides a sharp, de-
aliased, and anatomically-correct starting point for the
network to operate on (Figure 2). To further reinforce
reference information in the undersampled reconstruc-
tion, we also channel-wise concatenate the reference
MRI alongside the network inputs.

2. Vision Transformers for MRI reconstruction. Inspired
by recent advances in vision transformers showing im-
proved image restoration over CNNs [33, 4, 16, 19]
by using non-local processing to recover fine detail,
we develop a Swin transformer Reconstruction Net-
work (SwinRN) to be used as a backbone in a cas-
caded framework. By combining MC-MRI condition-
ing with SwinRN-cascades, we propose a Deep Condi-
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tional Cascade Transformer (DCCT) for high-fidelity
MRI reconstruction.

3. Dual-domain self-supervised learning. To train DCCT
in a self-supervised fashion using only undersam-
pled target MRI data, we further use a dual image
and k-space domain self-supervised learning approach,
achieving reconstruction quality comparable to fully
supervised training.

Extensive experiments on MC-MRI data with different
acceleration protocols demonstrate that DSFormer trained
with either full supervision or only self-supervision gen-
erates superior reconstructions over previous architectures
and conditioning mechanisms with fully supervised train-
ing strategies.

2. Related work
Fully-supervised MRI reconstruction. Convolutional
neural networks (CNNs) have been extensively studied to
reconstruct images from undersampled k-space data. For
example, Wang et al. [32] recover fully-sampled MRIs from
undersampled acquisitions using supervised CNN training
on paired data. Schlemper et al. [27, 24] develop a deep
cascade of CNNs with intermediate data consistency lay-
ers which ensure that the originally-sampled k-space in the
input is consistent with the reconstruction. Hammernik et
al. [8] develop variational networks to solve reconstruc-
tion optimization using gradient descent with CNNs. Simi-
larly, Aggarwal et al. [1] use a conjugate gradient algorithm
within the reconstruction network.

In addition to methods operating in the image domain,
dual image and k-space methods have also been explored.
Eo et al. [7] add an additional k-space reconstruction
network to [27] to enable cross-domain MRI reconstruc-
tion. Similarly, Singh et al. [28] show that combining
frequency and image feature representation learning using
two-task-independent layers can improve reconstruction
performance over single-domain methods. Zhu et al.
[43] directly map the undersampled k-space data to its
image reconstruction using manifold learning. Moreover,
reinforcement learning-aided reconstruction networks were
also found to improve the reconstruction quality [34, 23].
While achieving promising performance, these methods re-
quire fully supervised training data from large-scale paired
undersampled and fully sampled k-space scans [38, 3, 14].
Moreover, these methods only focus on single-contrast
MRI reconstruction instead of MC-MRI reconstruction.

Self-supervised MRI reconstruction. Recently, self-
supervised reconstruction methods requiring only
undersampled k-space data have been proposed for
single-contrast MRI reconstruction. HQS-Net [31] decou-
ples the minimization of the data consistency term and

Figure 2. K-space filling (KF) conditioning for ×4 accelerated
T2w reconstruction. Undersampled T2w data is combined with
fully sampled PD data via KF to generate an initial DCCT input
generating much fewer artifacts as compared to zero-padding.

regularization term in [27] based on a neural network,
such that network training relies only on undersampled
measurements. Yaman et al. [37] proposed a physically-
guided self-supervised learning method that trains the
deep cascade reconstruction network [27] by predicting
one undersampled k-space data partition using the other
data partition, with a similar approach used in Yaman et
al. [36] for subject-specific zero-shot MRI reconstruc-
tion. Concurrently to our work, Korkmaz et al. [15]
propose a self-supervised transformer-GAN for zero-shot
instance-specific optimization and is not comparable to
this submission as it focuses on latent noise-to-image
GAN mapping and needs to be trained on each new input
slice. Hu et al. [10] also propose to use ISTA-Net [39]
with a parallel training framework for self-supervised
single-contrast MRI reconstruction. Furthermore, Zhou
et al. [41] devise a triple branch-based dual-domain self-
supervised reconstruction framework, achieving promising
performance on single-contrast low-field MRI. However, to
our knowledge, self-supervised multi-constrast MRI recon-
struction remains unexplored and is the subject of this work.

MC-MRI reconstruction. Currently, there are few deep
learning-based fast MC-MRI reconstruction methods [42,
35, 29, 5, 17, 18]. Xiang et al. [35] use fully sampled T1w
images as an additional CNN channel input to facilitate ac-
celerated T2w reconstructions. Similarly, Dar et al. [5] add
adversarial learning and a perceptual loss [12] to further im-
prove performance. More recently, Liu et al. [17] and Zhou
et al. [42] feed the fully sampled reference data as an ad-
ditional channel input into a deep cascade network [27].
Similar strategies have also been proposed for variational
reconstruction [8, 18].

3. Methods and Materials

The overall DSFormer pipeline is illustrated in Figure 1
and consists of two major parts: (1) the deep conditional
cascade transformer architecture (Fig. 1b) and (2) the dual-
domain self-supervised learning strategy used for training
DCCT (Fig. 1a).
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Figure 3. The architecture of Swin Transformer Reconstruction
Network (SwinRN). It consists of initial feature extraction, deep
feature extraction, and image reconstruction modules, and is used
as the backbone reconstruction network in Figure 1.

3.1. Deep Conditional Cascade Transformer

DCCT uses a cascaded network design with interleaved
data consistency (DC) layers [27]. To efficiently exploit
multi-contrast information for reconstruction learning,
we develop two deep multi-contrast network conditioning
mechanisms to better leverage fully-sampled reference
acquisitions. To further enable high-quality reconstruction,
we propose a Swin Transformer Reconstruction Network
(SwinRN) as the backbone network in DCCT.

Deep MC-MRI Conditioning. With MC-MRI, we use two
conditioning methods for sharing reference MRI with tar-
get MRI in DCCT: K-space Filling (KF) conditioning and
Channel-wise (CC) conditioning. First, we use KF, because
multi-contrast MRI depicts distinct physiological proper-
ties of imaged tissues, resulting in different image contrast,
but the multi-contrast MRI images share the same anatomy.
While target contrast zero-padded reconstruction with un-
dersampled k-space data could result in severe artifacts,
filling the unacquired k-space with reference contrast k-
space data (assuming no motion between the target and ref-
erence) can produce alias-reduced reconstruction with the
same anatomy and altered contrast. This KF reconstruction
can be used as initial DCCT input, so that it can focus on
learning contrast conversion instead of de-aliasing. An ex-
ample of KF is shown in Fig. 2.

In addition to KF, we also use CC. As illustrated in
Figure 1b, the first input to the cascade is the channel-wise
concatenation of KF target and the reference contrast
MRI image, while the following cascade inputs are the
channel-wise concatenations of the previous cascade output
and the reference contrast MRI image.

Swin Transformer Reconstruction Network. SwinRN is
used as the backbone network for DCCT with its architec-

ture shown in Figure 3. SwinRN consists of three modules:
initial feature extraction (IFE) using a 3 × 3 convolutional
layer, deep feature extraction (DFE) using multiple Swin
Transformer Blocks (SwinTB), and image reconstruction
using global residual learning and a 3×3 convolution layer.
The workflow is described as F0 = PIFE(Xinit|Xref ),
where PIFE denotes the IFE operation and | · denotes con-
ditional input. The IFE feature F0 is then used for residual
learning in the reconstruction step and is fed into multiple
SwinTBs for DFE. If there are n SwinTBs, the n-th output
Fn is Fn = PSwinTBn(Fn−1).

Then, the output of DFE is given by FDFE =
PDFE(Fn), where PDFE is a 3 × 3 convolutional layer
for final feature fusion in DFE. Given FDFE and the global
residual connection of FIFE , the final reconstruction can be
generated via

Xoutput = PIR(FDFE + FIFE), (1)

where PIR is another 3 × 3 convolutional layer for gener-
ating a one-channel image reconstruction output.

Swin Transformer Block. Each SwinTB (Fig. 3) consists
of multiple Swin transformer layers (SwinTL), a convolu-
tion layer for local feature fusion, and a residual connection
for local residual learning. Given the input feature Fi,0 of
the i-th SwinTB, the intermediate feature is written as:

Fi,j = PSwinTLi,j
(Fi,j−1), (2)

where PSwinTLi,j
(·) is the j-th SwinTL in the i-th SwinTB.

Then, local feature fusion and local residual learning is ap-
plied to generate the SwinTB output:

Fi = PLFFi
(Fi,K) + Fi,0, (3)

where K is the number of SwinTL in SwinTB and PLFFi is
a convolutional layer for SwinTB’s i-th local feature fusion.

SwinTL [19] consists of layer normalization (LN),
multi-layer perceptrons (MLP), and multi-head self atten-
tion (MSA) modules [30] with regular windowing (W-
MSA) and shifted windowing (SW-MSA) configurations.
Given an input with feature size H ×W ×C, SwinTL first
reshapes the input into (M ×M)× (H

M × W
M )×C by parti-

tioning it into non-overlapping H
M × W

M windows with each
window containing M × M patches. Then, self-attention
can be computed for each window [30] and can formulate
the attention output of W-MSA. To enable cross-window
connection, self-attention is also computed for each window
by shifting the feature by (⌊M

2 ⌋, ⌊M
2 ⌋) before partitioning.

SwinTL processing (Fig. 3) can thus be summarized as,

z̄ = W -MSA(LN(z)) + z, (4)
z̈ = MLP (LN(z̄)) + z̄, (5)
ẑ = SW -MSA(LN(z̈) + z̈, (6)
z̆ = MLP (LN(ẑ)) + ẑ, (7)
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where MLP is a 2-layer and 30-60 neuron wide MLP with
a GELU activation [9].

In summary, SwinRN with SwinTB blocks is embedded
in the cascaded framework of DCCT for MRI reconstruc-
tion. We use three SwinRNs by default in our cascade, with
each SwinRN sharing the same parameters as the default
setting. The number of SwinTB in each SwinRN is set to
four, with each SwinTB containing four SwinTLs.

3.2. Dual-Domain Self-Supervised Learning

To train DCCT in a self-supervised fashion without us-
ing any fully-sampled ground truth data in the target do-
main, we use dual-domain self-supervision, as illustrated in
Figure 1. Let fdcct(ytag, yref ) denote DCCT, where ytag is
the target contrast’s undersampled data and yref is the ref-
erence contrast’s fully sampled data. During training, we
first randomly partition ytag into two disjoint sets via,

yp1
= ytag ⊙M1 (8)

yp2
= ytag ⊙M2, (9)

where ⊙ is element-wise multiplication and M1 and M2 are
binary k-space masks for partition 1 and partition 2. Note
that M1 + M2 = Mtag , where Mtag is the binary mask
indicating all under-sampled locations. The partitions yp1

and yp2 are then fed into DCCT for parallel reconstruction,

Xp1
= fdcct(yp1

, yref ) (10)
Xp2

= fdcct(yp2
, yref ), (11)

where the networks share the same weights. As the recon-
structions of yp1

and yp2
should be consistent with each

other, our first loss is an Appearance Consistency (AC) loss
operating in the image domain as,

LAC = λ1Limg + λ2Lgrad, (12)

where,
Limg = ||Xp1

−Xp2
||1 (13)

and,

Lgrad = ||∇vXp1
−∇vXp2

||1 + ||∇hXp1
−∇hXp2

||1,
(14)

where ∇v and ∇h are vertical and horiztonal intensity gra-
dient operators, respectively. We empirically found λ1 = 1
and λ2 = 0.1 to achieve optimal performance.

Our second loss corresponds to a Partition Data Con-
sistency (PDC) loss which operates in k-space. If DCCT
can generate a high-quality image from any undersampled
k-space measurement, the k-space data of the image pre-
dicted from the first partition yp1

should be consistent with

the other partition yp2 and vice versa. The predicted k-space
partition can be written as,

y2→1 = F(Xp2
)⊙M1 (15)

y1→2 = F(Xp1
)⊙M2, (16)

Therefore, the PDC loss is formulated as,

LPDC = ||y2→1 − yp1
||1 + ||y1→2 − yp2

||1, (17)

where the first and second term are the partial data consis-
tency losses for partitions 1 and 2, respectively. Combining
the AC loss in the image domain and the PDC loss in k-
space, our total loss can be written as,

Ltot = LAC + λ3LPDC (18)

where λ3 = 0.1 is used to balance the scale between k-
space and image domain losses.

3.3. Data Preparation

We use 578 MC-MRI subjects with both T2-weighted
and Proton Density (PD)-weighted acquisitions from IXI1

for our experiments. The registered MC-MRI data consist-
ing of 11808 pairs of T2 and PD weighted axial slices were
split subject-wise into 8376 pairs for training, 1080 for vali-
dation, and 2352 for testing, with no slices from any subject
overlapping. We consider two MC-MRI scenarios in our ex-
periments: accelerating T2-weighted acquisition (the target
protocol) by utilizing a fully sampled PD-weighted acquisi-
tion (the reference protocol), and accelerating PD-weighted
target acquisition with a fully sampled T2-weighted refer-
ence. Here, we consider the Cartesian sampling pattern
with the acceleration factor (R) set to a value between 2
and 8 corresponding to acceleration in acquisition time for
the target protocol.

3.4. Evaluation Metrics and Baselines Comparisons

Benchmark results are presented on 2352 test slices from
114 patients. We evaluate the target reconstruction re-
sults using Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index (SSIM) computed against ground
truth. For baseline comparison, we first compare our
results against previous fully-supervised MC-MRI recon-
struction methods that require ground truth fully-sampled
data, including UFNet [35], MCNet [17], and VarNet [18].
To further benchmark against previous self-supervised
MRI reconstruction methods originally designed for single-
contrasts, we also extend SSDU [37], HQSNet [31], and
SSISTA [10] to the MC-MRI setting by using the ref-
erence contrast as an extra input channel. As an upper
bound, we also compare self-supervised DSFormer against
a supervised-variant where the DCCT of DSFormer was
trained in a fully supervised fashion with ground truth avail-
able.

1https://brain-development.org/ixi-dataset/, CC BY-SA 3.0 license
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Table 1. Quantitative comparison of T2 (left sub-table) and PD (right sub-table) reconstructions under three different acceleration settings
for the target contrast MRI. Fully supervised methods and self-supervised methods are marked in bold and underlined, respectively. Best
results are marked in red.

PSNR/SSIM Target: T2w | Reference: PD Target:PD | Reference:T2w Runtime Number
Methods ×2 ×4 ×6 ×8 ×2 ×4 ×6 ×8 (ms) of Param

Zero-padding 24.86/.761 22.72/.679 21.48/.623 19.11/.597 23.92/.744 21.68/.663 20.47/.610 18.78/.579 - -
CS-TV[11] 30.18/.890 29.04/.862 26.13/.789 25.67/.762 30.09/.887 29.18/.861 26.05/.787 25.21/.750 3023.8 -

SSDU[37] 42.54/.981 38.47/.976 34.21/.972 31.72/.961 41.78/.983 37.63/.979 33.99/.968 31.61/.960 49.9 0.11M
HQSNet[31] 40.13/.980 37.79/.973 33.38/.969 31.12/.958 40.82/.981 35.97/.974 33.37/.967 31.03/.956 49.9 0.11M
SSISTA[10] 42.09/.980 38.29/.974 34.13/.971 31.51/.960 41.29/.982 37.43/.977 33.67/.968 31.43/.959 40.8 0.38M

UFNet[35] 32.30/.970 32.07/.969 31.85/.967 30.02/.950 32.22/.971 32.06/.969 31.88/.968 29.99/.948 10.6 7.6M
VarNet[18] 33.01/.973 32.71/.971 32.43/.970 30.65/.957 33.08/.974 32.86/.972 32.67/.970 30.55/.955 48.7 8.2M
MCNet[17] 43.79/.989 39.14/.983 35.61/.972 32.12/.963 42.90/.988 38.56/.979 35.45/.971 32.03/.961 49.9 0.11M

DSFormer 45.05/.993 40.31/.985 37.04/.977 33.65/.969 45.07/.993 40.52/.987 37.45/.982 33.48/.967 51.3 0.18M

3.5. Implementation Details

We implement our method in Pytorch and perform ex-
periments using an NVIDIA Quadro RTX 8000 GPU with
48GB memory. The Adam solver [13] was used to optimize
our models with lr = 2× 10−4, β1 = 0.9, and β2 = 0.999.
We use a batch size of 3 during training. In DSFormer, the
number of cascades can be flexibly adjusted and is set to
three as the default setting in the main experiments and is
swept over in Fig. 6. The SwinRN shares the same pa-
rameters in each cascade. The number of SwinTB in each
SwinRN is set to four, with each SwinTB containing four
SwinTLs. During training, the data partitioning rate is ran-
domly generated between [0.2, 0.8] on-the-fly which sep-
arates the undersampled k-space data into two disjoint k-
space data and augments the training data. For baseline
implementations, we compare with SSDU, HQSNet, and
SSISTA, UFNet, MCNet, and VarNet. The hyperparame-
ters of each method are tuned on the validation set with test
data held-out for final evaluation.

4. Experimental Results
4.1. Image Quality Evaluation and Comparison

Quantitative evaluations on two different MC-MRI sce-
narios under three different acceleration settings are sum-
marized in Table 1. The left sub-table summarizes MC-
MRI reconstruction with T2 target contrast and PD ref-
erence contrast (T2 reconstructions were evaluated here).
Among fully supervised methods, MCNet [17] achieves the
best T2 reconstruction performance with PSNR up to 43.79
dB and SSIM up to 0.989 when using ×2 acceleration.
It can also be observed that MCNet [17] consistently out-
performs the previous self-supervised MRI reconstruction
methods modified to operate on multi-contrast data. In the
last row of Table 1, we see that DSFormer trained with self-
supervision alone outperforms supervised baselines and in-
creases PSNR from 43.79 dB to 45.05 dB and SSIM from
0.989 to 0.993. Similar observations are made for the ×4

accelerated T2 experiments where DSFormer outperforms
MCNet, with PSNR increasing from 39.14 dB to 40.31 dB
and SSIM increasing from 0.983 to 0.985.

As expected, the reconstruction performance of all meth-
ods decreases as the acceleration rate increases. However,
DSFormer is still able to widely outperform previous super-
vised methods and keep PSNR at 37.04 and SSIM at 0.977
with ×6 accelerated T2 reconstruction. The inference run
time and the number of model parameters of different meth-
ods are also summarized in Table 1, with the deep learning
methods achieving orders of magnitude faster reconstruc-
tion over iterative methods like CS-TV [11]. As compared
to the previous best results of MCNet, DSFormer requires
only a slightly increased number of parameters and run-time
to achieve improved reconstruction performance.

The qualitative comparison of various T2 reconstruc-
tions is shown in Fig. 4, illustrating ×4 and ×6 accel-
eration settings. Reconstructions with zero padding cre-
ate significant aliasing artifacts and lose anatomical details.
While both VarNet [18] and MCNet [17] significantly re-
duce the aliasing artifacts with decreased reconstruction er-
ror, they require fully supervised training from paired data.
On the other hand, DSFormer, using only self-supervision
and multi-contrast conditioning, further reduces the resid-
ual error between the reconstruction and the ground truth
and yields superior reconstruction quality. The full qualita-
tive comparison of T2 reconstruction is visualized in Figure
S1 in the supplemental materials.

The right sub-table of Table 1 summarizes MC-MRI with
PD target contrast and T2 reference contrast, where PD
reconstructions were evaluated. Similar observations are
made for PD reconstruction, where DSFormer still achieves
the best reconstruction under all three acceleration settings
over previous fully supervised methods [35, 18, 17] and
modified previous self-supervised methods [37, 31, 10].
The qualitative comparison of several PD reconstruction
methods is shown in the supplementary materials.
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Figure 4. Qualitative comparisons of T2 reconstructions using ×4 and ×6 acceleration. For T2 reconstruction, PD is used as the reference
contrast. The corresponding error maps between ground truth images and the reconstructions are illustrated in BWR colormaps. Across
both supervised and self-supervised methods, DSFormer achieves the highest-fidelity reconstructions due to its improved architecture,
dual-domain self-supervision, and conditioning mechanisms.

4.2. Ablation Studies

Dual-domain self-supervision. To isolate the individ-
ual utility of the various components of dual-domain self-
supervision, we evaluate performance using either only
image-domain self-supervision (LAC) or only k-space self-
supervision (LPDC). The quantitative comparison is
summarized in Table 2. We observe that using either
only k-space self-supervision or only image-domain self-
supervision still yields strong reconstruction quality, with
a PSNR of 39.95 under ×4 acceleration, which indicates
self-supervision in both domains can help with reconstruc-
tion. Combining both image-domain and k-space self-

supervision yields the best reconstruction performance. A
visual comparison of reconstructions from different self-
supervision settings is illustrated in Figure 5.

Table 2. Quantitative comparison of T2 reconstruction perfor-
mance from different self-supervision settings, including image-
domain only self-supervision, k-space only self-supervision, and
the proposed dual-domain self-supervision. Higher is better.

PSNR/SSIM ×4 ×6

Only k-space self-supervision 40.23/0.982 36.89/0.975

Only image self-supervision 39.95/0.981 36.55/0.973

DSFormer (proposed) 40.31/0.985 37.04/0.977

Deep MC-MRI conditioning. To understand the impact of
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Figure 5. Further ablation studies comparing MRI reconstruction
from different self-supervision settings. Lower error is better.

KF and CC at the initial network input, we evaluate DS-
Former performance with or without KF and CC, with re-
sults summarized in Table 3. DSFormer without both KF
and CC implies no multi-contrast data is used and results
in only 38.24 PSNR under R = 4 setting. Under the same
setting, DSFormer with either KF-only or CC-only can inte-
grate multi-contrast information and improves PSNR from
38.24 to 39.06 with KF-only and 40.22 with CC-only. Us-
ing both KF and CC leads to the best performance where
PSNR is further improved to 40.31. Similar trends are ob-
served for 6× acceleration.

Table 3. Quantitative comparison of T2 reconstruction perfor-
mance when using DSFormer with or without KF and CC and
when training DSFormer in a fully supervised manner similar to
[17, 35] without our proposed consistency losses. † means fully
supervised training.

PSNR/SSIM ×4 ×6

DSFormer w/o KF 40.22/0.982 36.93/0.972

DSFormer w/o CC 39.06/0.979 35.22/0.970

DSFormer w/o KF and CC 38.24/0.971 34.51/0.961

DSFormer 40.31/0.985 37.04/0.977

†DSFormer (Upper Bound) 40.34/0.989 37.12/0.981

†DSFormer w/o KF 40.25/0.983 36.99/0.974

†DSFormer w/o CC 39.12/0.981 35.31/0.972

†DSFormer w/o KF and CC 38.42/0.976 34.70/0.965

Fully-supervised vs. Self-supervised DSFormer. In or-
der to understand the performance gap between full su-
pervision and dual-domain self-supervision, we compare
the reconstruction performance of DCCT trained without
partitioning the input and replacing its consistency losses
with direct image-domain reconstruction losses against the
target ground truth, similar to the supervised training in
[35, 17]. Quantitative comparisons are summarized in Ta-
ble S1. As an upper bound, fully supervised DSFormer
achieved reconstruction PSNR of 40.34 dB under ×4 accel-

eration, which is only ∼ 0.03 higher than self-supervised
DSFormer in terms of PSNR. SwinRN effectiveness can
be further evaluated by comparing supervised DSFormer
w/o KF with MCNet (Table 1) where both methods share
the same cascade framework except the difference in the
backbone network. We can observe our supervised method
based on SwinRN achieves PSNR of 40.25 which is sig-
nificantly better than MCNet based on simple sequential
convolutional layers with residual connection with PSNR
of 39.14 under ×4 setting. However, at 6× acceleration
we see a gap emerging between supervised DSFormer and
self-supervised DSFormer, each achieving 37.12 and 37.04
dB PSNR, respectively, indicating that there is still a per-
formance benefit to using fully sampled training data under
higher acceleration factors.

Figure 6. The effect of increasing the number of cascaded Swin-
RNs in DSFormer at ×4 acceleration.

Impact of the number of cascades. As the number of cas-
cades can be flexibly adjusted in DSFormer, we analyze
the effect of increasing the number of cascaded blocks in
our framework, with the result summarized in Figure 6 us-
ing ×4 acceleration. Using a higher number of cascaded
blocks boosts the reconstruction performance, with gains
asymptotically stabilizing on further increases beyond three
blocks. In T2 reconstruction, increasing the number of cas-
caded blocks from 3 to 4 only increases PSNR by less than
0.002 dB. Similar observations can be made from the PD
reconstructions.

5. Conclusion
We developed DSFormer, a dual-domain self-supervised

transformer for accelerated multi-contrast MRI reconstruc-
tion. DSFormer proposed a deep conditional cascaded
transformer architecture trained under both k-space and im-
age domain self-supervision. Benchmarks against estab-
lished baselines demonstrate that DSFormer outperformed
previous fully supervised methods that require training with
paired data (Table 1) and that DSFormer achieves nearly
the same performance when trained with either full supervi-
sion or with our proposed dual-domain self-supervision (Ta-
ble 3), almost closing the gap between supervised and self-
supervised methods for accelerated MRI reconstruction.
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Akçakaya. Self-supervised learning of physics-guided re-
construction neural networks without fully sampled refer-
ence data. Magnetic resonance in medicine, 84(6):3172–
3191, 2020.

[38] Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Mur-
rell, Zhengnan Huang, Matthew J Muckley, Aaron Defazio,
Ruben Stern, Patricia Johnson, Mary Bruno, et al. fastmri:
An open dataset and benchmarks for accelerated mri. arXiv
preprint arXiv:1811.08839, 2018.

[39] Jian Zhang and Bernard Ghanem. Ista-net: Interpretable
optimization-inspired deep network for image compressive
sensing. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1828–1837, 2018.

[40] Zizhao Zhang, Adriana Romero, Matthew J Muckley, Pascal
Vincent, Lin Yang, and Michal Drozdzal. Reducing uncer-
tainty in undersampled mri reconstruction with active acqui-
sition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2049–2058, 2019.

[41] Bo Zhou, Jo Schlemper, Neel Dey, Seyed Sadegh Mohseni
Salehi, Kevin Sheth, Chi Liu, James S Duncan, and Michal
Sofka. Dual-domain self-supervised learning for accelerated
non-cartesian mri reconstruction. Medical Image Analysis,
page 102538, 2022.

[42] Bo Zhou and S Kevin Zhou. Dudornet: Learning a dual-
domain recurrent network for fast mri reconstruction with
deep t1 prior. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4273–
4282, 2020.

[43] Bo Zhu, Jeremiah Z Liu, Stephen F Cauley, Bruce R Rosen,
and Matthew S Rosen. Image reconstruction by domain-
transform manifold learning. Nature, 555(7697):487, 2018.

4975


