Supplementary Material for
“PreViTS: Contrastive PREtraining with Vldeo Tracking Supervision”

This appendix is organized as follows:
1. Implementation details.

2. Additional experimental results.

3. Experiment details.

4. Additional qualitative results.

1. Implementation details

Image model is from MoCo, video model is from RSP-
Net. For experiments with the image model, we use the
ResNet-50 backbone and sample one frame with 224 x 224
spatial sizes for each clip. For experiments with the video
model, we use an S3D-g [15] backbone and sample 16 con-
tinuous frames with 224 x 224 spatial sizes for each clip.
We perform standard data augmentation on clips, includ-
ing random Gaussian blur, and random color jitter [2]. To
compare with other baseline methods, we also trained on
R(2+1)D[13], and C3D[12] backbone following [I]. We
followed [ 1] to train our model with 200 epochs with SGD
and a batch size of 256. We apply a cosine learning rate
scheduler with an LR of 0.03 for the image model and
0.5 for the video model. Following He er al. [7], we set
7 = 0.07, K = 65535, v = 0.15, 4 = 0.3, A = 3. The
training time is two days for pretraining VGG-Sound and
three days for pretraining on Kinetics. For both image and
video tasks, we compare with the following baselines: (1)
Random Init of weights without pretraining, (2) MoCo/R-
SPNet to demonstrate standard self-supervised model per-
formance for image (MoCo) and video (RSPNet), (3) Mo-
Co/RSPNet + Tracking Constrained Sampling to evalu-
ate our unsupervised tracking-based spatial-temporal sam-
pling strategy.

2. Additional experimental results

Generalize to image recognition tasks. = We evaluate
our learned features on four downstream image recogni-
tion tasks: (a) PASCAL VOC [06] linear classification, (b)
ImageNet-1k [4, 10] linear classification, (¢) PASCAL VOC
object detection, and (d) COCO [&] instance segmentation.
Following [5, 11], for (a, b), we perform linear classifica-
tion by using the SSL model as a frozen feature extractor
and training a classifier on top. For (¢, d), we use the SSL

model as weight initialization for fine-tuning on the labeled
datasets. Detailed experimental settings can be found in the
supplementary. Our results in Table 1 show that training
PreViTS outperforms baseline MoCo training on all tasks,
obtaining robust gains in VOC and ImageNet classification,
along with VOC detection and COCO instance classifica-
tion. Notably, the performance gains when pretraining on
VGG-Sound are larger as compared to those on Kinetics-
400, even though Kinetics-400 is 20% larger in terms of the
number of videos. We speculate that due to VGG-Sound
containing a more diverse collection of objects as compared
to Kinetics-400, which is primarily human action-centric,
VGG-Sound benefits more from being able to learn object-
focused representations when training with PreViTS. The
performance improvement over baseline is especially large
on the VOC detection task, aided by the improved ability
to localize objects during pretraining. Finally, while it is
typically challenging to obtain comparable performance to
supervised ImageNet pretraining using video SSL pretrain-
ing on image recognition tasks [9], due to the larger domain
shift, MoCo models trained with PreViTS still obtain com-
parable or better performance to ImageNet-fully supervised
training on VOC detection and COCO instance segmenta-
tion tasks.

Video Backgrounds Challenge (mini-Kinetics). In ad-
dition to the video backgrounds challenge, we also evalu-
ate robustness to background signal on the mini-Kinetics
dataset [3], a subset of Kinetics-400 designed to study if
video classification models depend on the background sig-
nal for scene classification. This dataset contains fore-
ground bounding boxes computed by a person detection
model. We utilize the bounding boxes to mask the fore-
ground object to analyze if the model depended on scene
features when performing action classification. The model
with PreViTS achieved an accuracy of 55.24% in the Orig-
inal setting compared to 47.18% for the baseline RSPNet.
When the foreground was masked (No-FG), the accuracy
for PreViTS drops by 6.9%, as compared to a drop of 2.71%
for the baseline model, indicating that the PreViTS-trained
model relies less on the background signal.

Computational resource compared to baseline. Obtain-
ing tracking for a dataset is a fixed, one-time computational



VOCO7 clf. IN-1k clf. PASCAL VOC Detection COCO Instance Segmentation
Method Dataset mAP  Top-lacc. APbbox Apbbox apbbox  gpbbox  gpbbox  Apbbox  Apmask Apmask Apmask
1) Random Init - - 33.8 602 331 36.7 567 400 337 538 359
2) ImageNet Fully Sup - - 535 813  59.1 389 59.6 427 354 565 381
3) MoCo K400 69.3 473 506 780  55.1 405 589 419 351 556 373
4) + Tracking Con. Sampling K400 70.4+1.1 48.2_0‘9 51-2+0.678~4+0.4 56.]+1.0 40‘8+0.3 59-5+0.642~6+0.7 35.8+0.7 56.8+1.2 38.3+1_0
5) +PreViTS K400 71219 486413 51.8.1,78.3.0356.0109 41.040559.4,0542.8.0935.610557.241,638.41.1
6) MoCo VGG Sound 68.3 46.9 483 765 526 384 587 419 350 558 372
7)  + Tracking Con. Sampling VGG Sound 70.3 1, 48112 49.010777.150652.7 101 383 01587 10041.7 0235.010055.9,0137.6104
8) +PreViTS VGG Sound  73.0447  50.6437 52.5.4578.722551 25 39.4,1059.811.143.051.135.710756.811.038.2 10

Table 1: Transfer Learning on Image Downstream Tasks: On tasks using linear probes (VOC and ImageNet classification)
and finetuning (VOC Detection, COCO Segmentation), PreViTS outperforms baseline MoCo when evaluated on models
pretrained on VGG-Sound and Kinetics-400. We color the difference > 0.5 to show improvement over the baseline MoCo

models (row 3 and 6).
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Figure 1: Percentage of VGG-Sound videos used for train-
ing.

cost. During training, PreViTS only needs 1.3x GPU mem-
ory and training time due to the extra forward pass for the
foreground key and query to compute Grad-CAM. PreViTS
is also efficient, it outperforms baseline with only half of the
training data (VGG-Sound), i.e., 65% of its training time in
Figure 1.

Method Complexity of PreViTS. While PreViTS contains
several components, it is not sensitive to their hyperparam-
eters and design choices. To test sensitivity, we randomly
chose a combination of parameters p, A, using the setting
in Tab. 1(8) in the main paper and obtained +4.32 VOCO7
mAP over the baseline, only lower by -0.38 than our best
model.

Evidence for lack of proper supervisory signal in cur-
rent SSL approaches. As visualized in Fig. 1(d) in the
main paper, simply applying contrastive loss may lead to
learning background correlation when the backgrounds are
similar. Moreover, through a study using supervised seg-
mentation on VGGSound, we found that traditional SSL ap-
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Figure 2: Image Background Challenge Settings

proaches sample different concepts as positive pairs 27% of
the time, while only 7% with our spatio-temporal sampling
strategy. This indicates our strategy can acquire a cleaner
supervisory signal.

3. Experiment details

Image Backgrounds Challenge. The settings of different
scenarios of backgrounds are shown in Figure 2. The figure
is from [14].

Code of the paper. We will release our code by the time
when the paper is published.

4. Additional qualitative results

We include more visualizations for UCF-101 action
recognition in Figure 3, Video Backgrounds Challenge in
Figure 4, and DAVIS video object segmentation in Figure 5
and 6.
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Figure 3: Grad-CAM Visualization for UCF-101 Action Classification.
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Figure 4: Grad-CAM Visualization for Video Backgrounds Challenge.



Figure 5: Grad-CAM Visualization for DAVIS Video Object Tracking and Segmentation.

(c) Soccer ball

Figure 6: Grad-CAM Visualization for DAVIS Video Object Tracking and Segmentation.
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