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1. Face ROI Extraction
The landmark points corresponding to different face re-

gions are depicted in Figure 1 (a) in blue and yellow colors.
The landmark points in yellow are used for defining the fa-
cial region with the significant rPPG information. The ex-
tracted face region is presented in Figure 1 (b). The divided
face ROIs are depicted using red squares in Figure 1 (c).
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Figure 1. Example of ROI extraction. Face landmark points are
shown in (a) with blue color and the landmarks used for obtaining
the convex hull in green color, the extracted face region is shown
in (b), and the extracted ROIs are shown in (c) using red color
squares.

2. Chrominance signals
The chrominance subspace consists of projections of

RGB temporal signals into two orthogonal vectors [2]. For
obtaining the chrominance signals, the filtered RGB signals,
r̃j , g̃j and b̃j are normalized. The normalized RGB signals
are represented by r̄j , ḡj and b̄j . These normalized sig-
nals are then projected into orthogonal vectors ηj and µj

obtained by:

ηj = 3 ∗ r̄j − 2 ∗ ḡj
µj = 1.5 ∗ r̄j + ḡj − 1.5 ∗ b̄j

(1)

Kindly note that the coefficients associated with each of
the color channels intensitites r̄j , ḡj and b̄j are empirically
derived by large scale experiments described in [2]. The
obtained vectors, ηj and µj are fed to the bandpass filter,
ψbp(·) for obtaining the vectors η̃j and µ̃j . Eventually, the

chrominance signal, cj is obtained by:

cj = η̃j − α ∗ µ̃j ,where α =
σ(η̃j)

σ(µ̃j)
(2)

where, σ(·) represents the standard deviation operator.

3. Synthetic Temporal Signals
The synthetic temporal signals used for pre-training our

architecture are generated using sine waves and noise func-
tions as described in [3]. To mimic the systolic and dias-
tolic peaks in the synthetic temporal signals, we have used
two waves with the same time period, corresponding to the
pulse, with one of the waves having twice the amplitude of
the other wave. Further, another wave, having the time pe-
riod corresponding to the respiratory signal, is used. For
adding the effect of noise, we have used a step function and
the Gaussian noise function. The synthetic temporal signal
ssyn is given by:

ssyn = κ1 ∗ sin (ω1t+ ϕ) + κ2 ∗ sin (ω2t+ θ)+

0.5 ∗ κ1 ∗ sin (2ω1t+ ϕ) + N(t)

p1 ∗ step (t− t1) + p2 ∗ step (t− t2)

(3)

where, κ1 and κ2 are amplitudes of the sine waves sampled
randomly from [0, 1]; ω1 and ω2 are the HR and respira-
tion frequencies, respectively. Random phase ϕ and θ are
sampled randomly from [0, π]. Also, step (t) denotes the
step function used to add noise and the values t1 and t2 are
chosen between [0, T ] randomly, where T is the video clip
length. Furthermore. N represents the Gaussian noise. The
values p1 and p2 are derived from Bernoulli distribution.

4. Effect of size of the ROIs used for rPPG es-
timation

The effect of different block sizes considered for ROI
divison on the performance of our method is provided in
Table 1. The experiments are performed by changing the
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Figure 2. Example of HR estimation by our proposed method RADIANT over the UBFC-rPPG dataset [1].

Table 1. Performance analysis of RADIANT with varying blocks
for obtaining the ROIs. All the values are in BPM and all the
metrics represent better performance if they have lower values.

UBFC-rPPG COHFACE
Blocks σ MAE RMSE σ MAE RMSE

8 05.54 03.68 06.65 10.11 09.81 11.10
9 04.32 03.51 05.12 08.99 09.02 10.56
10 03.45 02.91 04.52 07.41 08.01 10.12
11 05.22 04.61 06.69 09.12 08.65 11.32
12 06.81 05.25 08.59 11.78 10.18 12.06

number of non-overlapping blocks in the horizontal direc-
tion. Hence, when we increase the number of blocks, the
size of the patch decreases. Likewise, on decreasing the
number of blocks, the patch size increases. Initially, when
we decrease the size of the patch, the performance of our
method improves. However, the performance saturates for
an optimum size of the patches, after which a decrease in
the performance is observed. As we go on decreasing the
patch size, the total number of temporal signals obtained
increases, hence, providing a better combination of rPPG
information. However, the smaller patch sizes are suscepti-
ble to noise, which affects the quality of rPPG information,
leading to performance degradation. RADIANT obtains op-
timal performance when 10 horizontal blocks are consid-
ered.

5. Qualitative Results

The figures 2 (a) and 2 (b) depict examples for HR es-
timation by our proposed method. The face videos and
temporal signals are presented in the first row; the second
row shows the estimated pulse signal and its Fourier Power
Spectrum, and the third row presents the ground truth sig-
nal and its Power Spectrum. In Figure 2 (a), an example
of successful HR estimation is provided with the estimated
and ground truth pulse rate to be 98 BPM. The quality score
for the temporal signals is 5.19 for this sample. Further, a
higher correlation is observed in the estimated and ground
truth pulse signal. Similarly, the Fourier Power Spectrum of
the estimated pulse and the ground truth pulse signal show
single peaks denoting less amount of noise in the estimated
pulse signal. An example of unsuccessful HR estimation
can be observed in Figure 2 (b) where the estimated HR is
63 BPM, and the ground truth is 92 BPM. The quality score
of the temporal signals is 3.80. Further, there is little cor-
relation between the estimated pulse signal and the ground
truth pulse signal. Likewise, the Fourier Power Spectrum of
the estimated pulse signal shows multiple peaks indicating
a higher noise content resulting in incorrect HR estimation.
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